我們提出一種學習卷積神經(jīng)網(wǎng)絡(luò)(CNN)結(jié)構(gòu)的新方法,該方法比現(xiàn)有的基于強化學習和進化算法的技術(shù)更有效。使用了基于序列模型的優(yōu)化(SMBO)策略,在這種策略中,按照增加的復雜性對結(jié)構(gòu)進行搜索,同時學習代理模型(surrogate model)來引導在結(jié)構(gòu)空間中的搜索。
2018-08-03 09:32:325215 深度學習在計算機視覺、自然語言處理等領(lǐng)域取得了很多重大突破。神經(jīng)網(wǎng)絡(luò)的表達能力通常隨著其網(wǎng)絡(luò)深度呈指數(shù)增長,這一特性賦予了它很強的泛化能力。然而深層的網(wǎng)絡(luò)也產(chǎn)生了梯度消失或梯度爆炸,以及模型中的信息傳遞變差等一系列問題。
2020-03-27 15:06:524778 提出了一種基于Deep U-Net的多任務(wù)學習框架,用于GE-MRI左心房分割,該框架同時執(zhí)行心房分割和消融前后分類。雖然論文已經(jīng)很老了,但是改論文提出的多任務(wù)和后處理方法到現(xiàn)在還是可以
2022-11-10 15:35:57
摘要故障診斷是保證水輪發(fā)電機組安全運行的重要環(huán)節(jié)。軸心軌跡辨識是HGU故障診斷的一種有效方法。提出了一種基于綜合幾何特征和概率神經(jīng)網(wǎng)絡(luò)(CGC-PNN)的HGU軸軌識別方法。該方法從結(jié)構(gòu)、區(qū)域和邊界
2021-09-15 08:18:35
圖數(shù)據(jù)是一種非結(jié)構(gòu)化的數(shù)據(jù),但能夠蘊含很多結(jié)構(gòu)化數(shù)據(jù)中無法蘊含的信息。圖數(shù)據(jù)無處不在,世界上大部分數(shù)據(jù)都能夠用圖數(shù)據(jù)來表達。為了高效的提取圖特征,圖神經(jīng)網(wǎng)絡(luò)是一種非常重要的圖特征提取方式。圖神經(jīng)網(wǎng)絡(luò)
2022-09-28 10:34:13
源程序 5.3 Gaussian機 第6章自組織神經(jīng)網(wǎng)絡(luò) 6.1 競爭型學習 6.2 自適應(yīng)共振理論(ART)模型 6.3 自組織特征映射(SOM)模型 6.4 CPN模型 第7章 聯(lián)想
2012-03-20 11:32:43
制造業(yè)而言,深度學習神經(jīng)網(wǎng)絡(luò)開辟了令人興奮的研究途徑。為了實現(xiàn)從諸如高速公路全程自動駕駛儀的短時輔助模式到專職無人駕駛旅行的自動駕駛,汽車制造業(yè)一直在尋求讓響應(yīng)速度更快、識別準確度更高的方法,而深度
2017-12-21 17:11:34
基于深度學習的神經(jīng)網(wǎng)絡(luò)算法
2019-05-16 17:25:05
,稍有不同就無法復現(xiàn)論文的結(jié)果。而網(wǎng)絡(luò)結(jié)構(gòu)作為一種特殊的超參數(shù),在深度學習整個環(huán)節(jié)中扮演著舉足輕重的角色。在圖像分類任務(wù)上大放異彩的ResNet、在機器翻譯任務(wù)上稱霸的Transformer等網(wǎng)絡(luò)結(jié)構(gòu)
2019-09-11 11:52:14
誤差反向傳播算法的學習過程,由信息的正向傳播和誤差的反向傳播兩個過程組成,是一種應(yīng)用最為廣泛的神經(jīng)網(wǎng)絡(luò)。先來看一下BP神經(jīng)網(wǎng)絡(luò)的流程圖:由BP神經(jīng)網(wǎng)絡(luò)流程圖可以看出,正向傳播處理過程和人工神經(jīng)網(wǎng)絡(luò)的流程
2018-06-05 10:11:50
參考算法后,另一個重要的任務(wù),就是選擇深度學習框架。深度學習框架是一種用于神經(jīng)網(wǎng)絡(luò)算法開發(fā)的工具,其主要作用,是根據(jù)神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),以數(shù)據(jù)集中的圖片和標注為輸入,計算得到與之對應(yīng)的權(quán)重參數(shù)。神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)+對應(yīng)
2020-05-18 17:13:24
了針對每種深度學習框架圖結(jié)構(gòu)的轉(zhuǎn)化函數(shù)?! elay:這是一個高層次圖結(jié)構(gòu)的描述,它有自己的IR表示,用這些IR表示來描述神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)。一些高層次的優(yōu)化也是在relay IR的基礎(chǔ)上
2021-01-07 17:21:48
請問:我在用labview做BP神經(jīng)網(wǎng)絡(luò)實現(xiàn)故障診斷,在NI官網(wǎng)找到了機器學習工具包(MLT),但是里面沒有關(guān)于這部分VI的幫助文檔,對于”BP神經(jīng)網(wǎng)絡(luò)分類“這個范例有很多不懂的地方,比如
2017-02-22 16:08:08
《 AI加速器架構(gòu)設(shè)計與實現(xiàn)》+第一章卷積神經(jīng)網(wǎng)絡(luò)觀感
? ?在本書的引言中也提到“一圖勝千言”,讀完第一章節(jié)后,對其進行了一些歸納(如圖1),第一章對常見的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)進行了介紹,舉例了一些結(jié)構(gòu)
2023-09-11 20:34:01
`本篇主要介紹:人工神經(jīng)網(wǎng)絡(luò)的起源、簡單神經(jīng)網(wǎng)絡(luò)模型、更多神經(jīng)網(wǎng)絡(luò)模型、機器學習的步驟:訓練與預測、訓練的兩階段:正向推演與反向傳播、以TensorFlow + Excel表達訓練流程以及AI普及化教育之路。`
2020-11-05 17:48:39
探索整個過程中資源利用的優(yōu)化使整個過程更加節(jié)能高效預計成果:1、在PYNQ上實現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)2、對以往實現(xiàn)結(jié)構(gòu)進行優(yōu)化3、為卷積神經(jīng)網(wǎng)絡(luò)網(wǎng)路在硬件上,特別是在FPGA實現(xiàn)提供一種優(yōu)化思路和方案
2018-12-19 11:37:22
學習和認知科學領(lǐng)域,是一種模仿生物神經(jīng)網(wǎng)絡(luò)(動物的中樞神經(jīng)系統(tǒng),特別是大腦)的結(jié)構(gòu)和功能的數(shù)學模型或計算模型,用于對函數(shù)進行估計或近似。神經(jīng)網(wǎng)絡(luò)由大量的人工神經(jīng)元聯(lián)結(jié)進行計算。大多數(shù)情況下人工神經(jīng)網(wǎng)絡(luò)
2019-03-03 22:10:19
是一種常用的無監(jiān)督學習策略,在使用改策略時,網(wǎng)絡(luò)的輸出神經(jīng)元相互競爭,每一時刻只有一個競爭獲勝的神經(jīng)元激活。ART神經(jīng)網(wǎng)絡(luò)由比較層、識別層、識別閾值、重置模塊構(gòu)成。其中比較層負責接收輸入樣本,并將其傳遞
2019-07-21 04:30:00
`BP神經(jīng)網(wǎng)絡(luò)首先給出只包含一個隱層的BP神經(jīng)網(wǎng)絡(luò)模型(兩層神經(jīng)網(wǎng)絡(luò)): BP神經(jīng)網(wǎng)絡(luò)其實由兩部分組成:前饋神經(jīng)網(wǎng)絡(luò):神經(jīng)網(wǎng)絡(luò)是前饋的,其權(quán)重都不回送到輸入單元,或前一層輸出單元(數(shù)據(jù)信息是單向
2019-07-21 04:00:00
人工神經(jīng)網(wǎng)絡(luò)是根據(jù)人的認識過程而開發(fā)出的一種算法。假如我們現(xiàn)在只有一些輸入和相應(yīng)的輸出,而對如何由輸入得到輸出的機理并不清楚,那么我們可以把輸入與輸出之間的未知過程看成是一個“網(wǎng)絡(luò)”,通過不斷地給
2008-06-19 14:40:42
人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決一些非線性,非平穩(wěn),復雜的實際問題。那有哪些辦法能實現(xiàn)人工神經(jīng)網(wǎng)絡(luò)呢?
2019-08-01 08:06:21
簡單理解LSTM神經(jīng)網(wǎng)絡(luò)
2021-01-28 07:16:57
取得了良好的性能??梢哉f,DNN其實是一種架構(gòu),是指深度超過幾個相似層的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),一般能夠達到幾十層,或者由一些復雜的模塊組成。ILSVRC(ImageNet大規(guī)模視覺識別挑戰(zhàn)賽)每年都不斷被深度
2018-05-08 15:57:47
本文首先簡單的選取了少量的樣本并進行樣本歸一化,這樣就得到了可供訓練的訓練集和測試集。然后訓練了400×25×2的三層BP神經(jīng)網(wǎng)絡(luò),最后對最初步的模型進行了誤差分析并找到了一種效果顯著的提升方法!
2021-07-12 06:49:37
速度增長,需要新的硬件和軟件創(chuàng)新來繼續(xù)平衡內(nèi)存,計算效率和帶寬。神經(jīng)網(wǎng)絡(luò) (NN) 的訓練對于 AI 能力的持續(xù)提升至關(guān)重要,今天標志著這一演變的激動人心的一步,Arm、英特爾和 NVIDIA 聯(lián)合
2022-09-15 15:15:46
卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)在工程上經(jīng)歷了曲折的歷史,您為什么還會在意它呢? 對于這些非常中肯的問題,我們似乎可以給出相對簡明的答案。
2019-07-17 07:21:50
十余年來快速發(fā)展的嶄新領(lǐng)域,越來越受到研究者的關(guān)注。卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型是深度學習模型中最重要的一種經(jīng)典結(jié)構(gòu),其性能在近年來深度學習任務(wù)上逐步提高。由于可以自動學習樣本數(shù)據(jù)的特征表示,卷積
2022-08-02 10:39:39
卷積神經(jīng)網(wǎng)絡(luò)的層級結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)的常用框架
2020-12-29 06:16:44
Top100論文導讀:深入理解卷積神經(jīng)網(wǎng)絡(luò)CNN(Part Ⅱ)
2019-08-22 14:20:39
列文章將只關(guān)注卷積神經(jīng)網(wǎng)絡(luò) (CNN)。CNN的主要應(yīng)用領(lǐng)域是輸入數(shù)據(jù)中包含的對象的模式識別和分類。CNN是一種用于深度學習的人工神經(jīng)網(wǎng)絡(luò)。此類網(wǎng)絡(luò)由一個輸入層、多個卷積層和一個輸出層組成。卷積層是最重
2023-02-23 20:11:10
什么是卷積神經(jīng)網(wǎng)絡(luò)?ImageNet-2010網(wǎng)絡(luò)結(jié)構(gòu)是如何構(gòu)成的?有哪些基本參數(shù)?
2021-06-17 11:48:22
二十多種不同的神經(jīng)網(wǎng)絡(luò)計算,各種復雜的網(wǎng)絡(luò)結(jié)構(gòu)。它幾乎不依賴硬件平臺,同時能在各種32bit 和64bit的平臺上編譯運行。它提供一鍵轉(zhuǎn)換腳本,可以一行代碼把剛訓練好的Keras模型轉(zhuǎn)換成一個獨立的C
2019-05-01 19:03:01
本文設(shè)計了一種基于神經(jīng)網(wǎng)絡(luò)控制算法的伺服運動控制卡。
2021-06-03 06:05:09
最近在學習電機的智能控制,上周學習了基于單神經(jīng)元的PID控制,這周研究基于BP神經(jīng)網(wǎng)絡(luò)的PID控制。神經(jīng)網(wǎng)絡(luò)具有任意非線性表達能力,可以通過對系統(tǒng)性能的學習來實現(xiàn)具有最佳組合的PID控制。利用BP
2021-09-07 07:43:47
網(wǎng)絡(luò)?! P 網(wǎng)絡(luò)的學習規(guī)則是使用最速下降法,通過反向傳播來不斷調(diào)整網(wǎng)絡(luò)的權(quán)值和閾值,使網(wǎng)絡(luò)的誤差平方和最小?! ? BP 算法 BP 神經(jīng)網(wǎng)絡(luò)是一種前向傳播的多層網(wǎng)絡(luò),網(wǎng)絡(luò)除了輸入節(jié)點以外,還有
2018-11-13 16:04:45
,看一下 FPGA 是否適用于解決大規(guī)模機器學習問題。卷積神經(jīng)網(wǎng)絡(luò)是一種深度神經(jīng)網(wǎng)絡(luò) (DNN),工程師最近開始將該技術(shù)用于各種識別任務(wù)。圖像識別、語音識別和自然語言處理是 CNN 比較常見的幾大應(yīng)用。
2019-06-19 07:24:41
如何使用STM32F4+MPU9150去實現(xiàn)一種神經(jīng)網(wǎng)絡(luò)識別手勢呢?其過程是怎樣的?
2021-11-19 06:38:58
原文鏈接:http://tecdat.cn/?p=5725 神經(jīng)網(wǎng)絡(luò)是一種基于現(xiàn)有數(shù)據(jù)創(chuàng)建預測的計算系統(tǒng)。如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)包括:輸入層:根據(jù)現(xiàn)有數(shù)據(jù)獲取輸入的層隱藏層:使用反向傳播優(yōu)化輸入變量權(quán)重的層,以提高模型的預測能力輸出層:基于輸入和隱藏層的數(shù)據(jù)輸出預測
2021-07-12 08:02:11
某人工神經(jīng)網(wǎng)絡(luò)的FPGA處理器能夠?qū)?shù)據(jù)進行運算處理,為了實現(xiàn)集數(shù)據(jù)通信、操作控制和數(shù)據(jù)處理于一體的便攜式神經(jīng)網(wǎng)絡(luò)處理器,需要設(shè)計一種基于嵌入式ARM內(nèi)核及現(xiàn)場可編程門陣列FPGA的主從結(jié)構(gòu)處理系統(tǒng)滿足要求。
2021-05-21 06:35:27
)第二步:使用Lattice sensAI 軟件編譯已訓練好的神經(jīng)網(wǎng)絡(luò),定點化網(wǎng)絡(luò)參數(shù)。該軟件會根據(jù)神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)和預設(shè)的FPGA資源進行分析并給出性能評估報告,此外用戶還可以在軟件中做
2020-11-26 07:46:03
稱為BP神經(jīng)網(wǎng)絡(luò)。采用BP神經(jīng)網(wǎng)絡(luò)模型能完成圖像數(shù)據(jù)的壓縮處理。在圖像壓縮中,神經(jīng)網(wǎng)絡(luò)的處理優(yōu)勢在于:巨量并行性;信息處理和存儲單元結(jié)合在一起;自組織自學習功能。與傳統(tǒng)的數(shù)字信號處理器DSP
2019-08-08 06:11:30
概述:ZISC78是由IBM和Sillicon聯(lián)合研發(fā)的一種具有自學習功能的徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)芯片,它內(nèi)含78個神經(jīng)元;并且采用并行結(jié)構(gòu),運行速度與神經(jīng)元數(shù)量無關(guān);支持RBF/KNN算法;內(nèi)部可分為若干獨立子網(wǎng)...
2021-04-07 06:48:33
FPGA的嵌入式應(yīng)用。某人工神經(jīng)網(wǎng)絡(luò)的FPGA處理器能夠?qū)?shù)據(jù)進行運算處理,為了實現(xiàn)集數(shù)據(jù)通信、操作控制和數(shù)據(jù)處理于一體的便攜式神經(jīng)網(wǎng)絡(luò)處理器,需要設(shè)計一種基于嵌入式ARM內(nèi)核及現(xiàn)場可編程門陣列FPGA的主從結(jié)構(gòu)處理系統(tǒng)滿足要求。
2019-09-20 06:15:20
一定的早熟收斂問題,引入一種自適應(yīng)動態(tài)改變慣性因子的PSO算法,使算法具有較強的全局搜索能力.將此算法訓練的模糊神經(jīng)網(wǎng)絡(luò)應(yīng)用于語音識別中,結(jié)果表明,與BP算法相比,粒子群優(yōu)化的模糊神經(jīng)網(wǎng)絡(luò)具有較高
2010-05-06 09:05:35
脈沖神經(jīng)網(wǎng)絡(luò)的學習方式有哪幾種?
2021-10-26 06:58:01
,而且計算量較小。利用所提出的片上模型結(jié)構(gòu),即權(quán)重生成和“超級掩碼”擴展相結(jié)合,Hiddenite 芯片大大減少了外部存儲器訪問,提高了計算效率。深層神經(jīng)網(wǎng)絡(luò)是一種復雜的人工智能機器學習體系結(jié)構(gòu),需要
2022-03-17 19:15:13
最高的精度。由此表明非局部模塊可以作為一種比較通用的基本組件,在設(shè)計深度神經(jīng)網(wǎng)絡(luò)時使用。實驗及結(jié)果在這一節(jié)我們簡單介紹論文中描述的實驗及結(jié)果。 視頻的基線模型是 ResNet-50 C2D。三維輸出映射
2018-11-12 14:52:50
給出一種神經(jīng)網(wǎng)絡(luò)方法在鋼橋結(jié)構(gòu)損傷檢測中的應(yīng)用。著重討論了網(wǎng)絡(luò)設(shè)計和學習算法問題。網(wǎng)絡(luò)結(jié)構(gòu)模擬桁架橋,訓練樣本從多個損傷區(qū)域產(chǎn)生。仿真表明,本算法只需少量的
2009-06-10 13:50:0312 設(shè)計了一種基于神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)的模糊控制器,并將它與PID 控制器相結(jié)合,動態(tài)的調(diào)整PID 參數(shù)。系統(tǒng)根據(jù)技術(shù)人員的經(jīng)驗和知識,離線的進行學習,使得模糊神經(jīng)網(wǎng)絡(luò)掌握調(diào)節(jié)PID 參
2009-06-15 09:39:3812 神經(jīng)網(wǎng)絡(luò)分類
特征提取和選擇完成后,再利用分類器進行圖像目標分類,本文采用神經(jīng)網(wǎng)絡(luò)中的BP網(wǎng)絡(luò)進行分類。在設(shè)計神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)時,
2009-03-01 17:55:131507 提出了一種基于NARMAX模型的小波神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)確定和權(quán)系數(shù)估計算法.采用NARMAX模型和雙正交小波函數(shù)來構(gòu)造小波神經(jīng)網(wǎng)絡(luò),識別人臉圖像,實驗結(jié)果表明用本文構(gòu)造的小波神經(jīng)網(wǎng)絡(luò)能
2011-09-27 17:31:1928 基于自適應(yīng)果蠅算法的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)訓練_霍慧慧
2017-01-03 17:41:580 現(xiàn)在深度學習太火了。 神經(jīng)網(wǎng)絡(luò)是一種方法,既可以用來做有監(jiān)督的任務(wù),如分類、視覺識別等,也可以用作無監(jiān)督的任務(wù)。
2017-11-15 12:54:1833181 1. 概念 英文名:convolutional neural network 是一種前饋神經(jīng)網(wǎng)絡(luò),即表明沒有環(huán)路,普通神經(jīng)網(wǎng)絡(luò)的 BP 算法只是用于方便計算梯度,也是前饋神經(jīng)網(wǎng)絡(luò)。 是深度學習結(jié)構(gòu)
2017-11-15 16:35:341635 它模擬了人腦中局部調(diào)整、相互覆蓋接收域(或稱感受野-Receptive Field)的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),因此,RBF網(wǎng)絡(luò)是一種局部逼近網(wǎng)絡(luò),已證明它能任意精度逼近任意連續(xù)函數(shù)[1]。
2017-12-06 15:10:300 針對神經(jīng)網(wǎng)絡(luò)初始結(jié)構(gòu)的設(shè)定依賴于工作者的經(jīng)驗、自適應(yīng)能力較差等問題,提出一種基于半監(jiān)督學習(SSL)算法的動態(tài)神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計方法。該方法采用半監(jiān)督學習方法利用已標記樣例和無標記樣例對神經(jīng)網(wǎng)絡(luò)進行
2017-12-21 15:49:380 機器學習已經(jīng)在各個行業(yè)得到了大規(guī)模的廣泛應(yīng)用,并為提升業(yè)務(wù)流程的效率、提高生產(chǎn)率做出了極大的貢獻。這篇文章主要介紹了機器學習中最先進的算法之一——神經(jīng)網(wǎng)絡(luò)的八種不同架構(gòu),并從原理和適用范圍進行了
2018-01-10 16:30:0811405 近年來,基于神經(jīng)網(wǎng)絡(luò)的深度學習方法在自然語言處理領(lǐng)域已經(jīng)取得了不少進展。作為NLP領(lǐng)域的基礎(chǔ)任務(wù)—命名實體識別(Named Entity Recognition,NER)也不例外,神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)
2018-01-18 09:24:364409 憶阻器被用作人工神經(jīng)網(wǎng)絡(luò)的突觸發(fā)揮著重要作用,本文提出了一種新型橋式憶阻電路模型,并借鑒集成電路板構(gòu)建模型空間結(jié)構(gòu),旨在解決現(xiàn)有模型的缺陷。應(yīng)用了基于憶阻器的多層神經(jīng)網(wǎng)絡(luò),基于硬件編程嵌入式修改權(quán)
2018-01-31 11:33:166 神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計一直是深度學習里的核心問題。在基于深度學習的分類、檢測、分割、跟蹤等任務(wù)中,基礎(chǔ)神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)對整體算法的性能優(yōu)劣有著決定性的影響。
2018-05-17 09:44:435221 膠囊網(wǎng)絡(luò)是 Geoffrey Hinton 提出的一種新型神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),為了解決卷積神經(jīng)網(wǎng)絡(luò)(ConvNets)的一些缺點,提出了膠囊網(wǎng)絡(luò)。
2019-02-02 09:25:005417 該項目是對基于深度學習的自然語言處理(NLP)的概述,包括用來解決不同 NLP 任務(wù)和應(yīng)用的深度學習模型(如循環(huán)神經(jīng)網(wǎng)絡(luò)、卷積神經(jīng)網(wǎng)絡(luò)和強化學習)的理論介紹和實現(xiàn)細節(jié),以及對 NLP 任務(wù)(機器翻譯、問答和對話系統(tǒng))當前最優(yōu)結(jié)果的總結(jié)。
2019-03-01 09:13:574424 圖描述人群信息,消除人群遮擋影響;其次通過構(gòu)建多尺度卷積神經(jīng)網(wǎng)絡(luò)解決人群尺度不一問題,以多任務(wù)學習機制同時估計密度圖及人群密度等級,解決人群分布不均問題;最后設(shè)計一種加權(quán)損失函數(shù),提高人群計數(shù)準確率。
2019-03-28 15:37:146 圖描述人群信息,消除人群遮擋影響;其次通過構(gòu)建多尺度卷積神經(jīng)網(wǎng)絡(luò)解決人群尺度不一問題,以多任務(wù)學習機制同時估計密度圖及人群密度等級,解決人群分布不均問題;最后設(shè)計一種加權(quán)損失函數(shù),提高人群計數(shù)準確率。在UCF_CC_50和Worl
2019-11-06 15:46:3310 近日,來自加州大學圣迭戈分校(UCSD)的研究者提出一種神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)改進方法「ReZero」,它能夠動態(tài)地加快優(yōu)質(zhì)梯度和任意深層信號的傳播。
2020-04-17 09:30:565083 谷歌發(fā)明的用于神經(jīng)網(wǎng)絡(luò)任務(wù)的AI芯片,通過引入標準人工智能運算管芯,使得AI芯片可以應(yīng)對多種復雜的網(wǎng)絡(luò)結(jié)構(gòu),從而降低了芯片設(shè)計時長以及減少了設(shè)計的工作量。
2020-11-18 09:54:331858 圖描述人群信息,消除人群遮擋影響;其次通過構(gòu)建多尺度卷積神經(jīng)網(wǎng)絡(luò)解決人群尺度不一問題,以多任務(wù)學習機制同時估計密度圖及人群密度等級,解決人群分布不均問題;最后設(shè)計一種加權(quán)損失函數(shù),提高人群計數(shù)準確率。
2021-01-18 16:47:009 為提升網(wǎng)絡(luò)結(jié)構(gòu)的尋優(yōu)能力,提岀一種改進的深度神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索方法。針對網(wǎng)絡(luò)結(jié)構(gòu)間距難以度量的問題,結(jié)合神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)搜索方案,設(shè)計基于圖的深度神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)間距度量方式。對少量步數(shù)訓練和充分訓練
2021-03-16 14:05:463 人類對于生物系統(tǒng)信息的處理主要依賴于構(gòu)成復雜神經(jīng)網(wǎng)絡(luò)的數(shù)十億個神經(jīng)元,并且信息以脈沖的形式進行傳輸。利用STDP學習算法構(gòu)建基于LIF模型的兩層脈沖神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),并對分類層算法進行改進,提出一種投票
2021-03-23 16:42:3518 幾種典型神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)的比較與分析說明。
2021-04-28 10:11:583 (channel)。比如黑白圖片的深度為1,而在RGB色彩模式下,圖像的深度為3。從輸入層開始,卷積神經(jīng)網(wǎng)絡(luò)通過不同的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)下將上一層的三維矩陣轉(zhuǎn)化為下一層的三維矩陣轉(zhuǎn)化為下一層的三維矩陣,直到最后的全連接層。
2021-05-11 17:02:5415213 學習社區(qū)的一個研究熱點.本文整理了卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)優(yōu)化技術(shù)的發(fā)展歷史、研究現(xiàn)狀以及典型方法,將這些工作歸納為網(wǎng)絡(luò)剪枝與稀疏化、張量分解、知識遷移和精細模塊設(shè)計4 個方面并進行了較為全面的探討.最后,本文對當前研究的熱點與難點作了分析和總結(jié),并對網(wǎng)絡(luò)結(jié)構(gòu)優(yōu)化領(lǐng)域未來的發(fā)展方向和應(yīng)用前景進行了展望.
2022-02-14 11:02:59755 卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)優(yōu)化綜述 ? 來源:《自動化學報》?,作者林景棟等 摘 要?近年來,卷積神經(jīng)網(wǎng)絡(luò)(Convolutional neural network,CNNs)在計算機視覺、自然語言處理、語音
2022-03-07 16:42:07876 近些年來,人工神經(jīng)網(wǎng)絡(luò)方法已經(jīng)成為了自然語言處理中最重要的范式之一。但是,大量依賴人工設(shè)計的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),導致自然語言處理領(lǐng)域的發(fā)展很大程度依賴于神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)上的突破。
2022-09-22 14:49:16983 在介紹卷積神經(jīng)網(wǎng)絡(luò)之前,我們先回顧一下神經(jīng)網(wǎng)絡(luò)的基本知識。就目前而言,神經(jīng)網(wǎng)絡(luò)是深度學習算法的核心,我們所熟知的很多深度學習算法的背后其實都是神經(jīng)網(wǎng)絡(luò)。
來源: 機器學習算法那些事 卷積神經(jīng)網(wǎng)絡(luò)是以卷積層為主的深度網(wǎng)路結(jié)構(gòu),網(wǎng)絡(luò)結(jié)構(gòu)包括有卷積層、激活層、BN層、池化層、FC層、損失層等。卷積操作是對圖像和濾波矩陣做內(nèi)積(元素相乘再求和)的操作。 1.
2023-06-27 10:20:01705 來源:機器學習算法那些事卷積神經(jīng)網(wǎng)絡(luò)是以卷積層為主的深度網(wǎng)路結(jié)構(gòu),網(wǎng)絡(luò)結(jié)構(gòu)包括有卷積層、激活層、BN層、池化層、FC層、損失層等。卷積操作是對圖像和濾波矩陣做內(nèi)積(元素相乘再求和)的操作。1.卷積
2023-06-28 10:05:591321 神經(jīng)網(wǎng)絡(luò)是一個具有相連節(jié)點層的計算模型,其分層結(jié)構(gòu)與大腦中的神經(jīng)元網(wǎng)絡(luò)結(jié)構(gòu)相似。神經(jīng)網(wǎng)絡(luò)可通過數(shù)據(jù)進行學習,因此,可訓練其識別模式、對數(shù)據(jù)分類和預測未來事件。
2023-07-26 18:28:411622 卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)是一種前饋神經(jīng)網(wǎng)絡(luò),常用于圖像處理、自然語言處理等領(lǐng)域中。它是一種深度學習(Deep
2023-08-17 16:30:35804 卷積神經(jīng)網(wǎng)絡(luò)模型原理 卷積神經(jīng)網(wǎng)絡(luò)模型結(jié)構(gòu)? 卷積神經(jīng)網(wǎng)絡(luò)是一種深度學習神經(jīng)網(wǎng)絡(luò),是在圖像、語音、文本和視頻等方面的任務(wù)中最有效的神經(jīng)網(wǎng)絡(luò)之一。它的總體思想是使用在輸入數(shù)據(jù)之上的一系列過濾器來捕捉
2023-08-21 16:41:58604 中最重要的神經(jīng)網(wǎng)絡(luò)之一。它是一種由多個卷積層和池化層(也可稱為下采樣層)組成的神經(jīng)網(wǎng)絡(luò)。CNN 的基本思想是以圖像為輸入,通過網(wǎng)絡(luò)的卷積、下采樣和全連接等多個層次的處理,將圖像的高層抽象特征提取出來,從而完成對圖像的識別、分類等任務(wù)。 CNN 的基本結(jié)構(gòu)包括輸入層、卷積層、
2023-08-21 16:49:391144 卷積神經(jīng)網(wǎng)絡(luò)層級結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)的卷積層講解 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種基于深度學習的神經(jīng)網(wǎng)絡(luò)模型,在許多視覺相關(guān)的任務(wù)中表現(xiàn)出色,如圖
2023-08-21 16:49:423760 卷積神經(jīng)網(wǎng)絡(luò)一共有幾層 卷積神經(jīng)網(wǎng)絡(luò)模型三層? 卷積神經(jīng)網(wǎng)絡(luò) (Convolutional Neural Networks,CNNs) 是一種在深度學習領(lǐng)域中發(fā)揮重要作用的模型。它是一種有層次結(jié)構(gòu)
2023-08-21 17:11:533332 以解決圖像識別問題為主要目標,但它的應(yīng)用已經(jīng)滲透到了各種領(lǐng)域,從自然語言處理、語音識別、到物體標記以及醫(yī)療影像分析等。在此,本文將對CNN的原理、結(jié)構(gòu)以及基礎(chǔ)代碼進行講解。 1. CNN的原理 CNN是一種能夠自動提取特征的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),它的每個層次在進行特征提取時會自動適應(yīng)輸入數(shù)據(jù)
2023-08-21 17:16:131622 人工神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別? 人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network, ANN)是一種模仿人腦神經(jīng)元網(wǎng)絡(luò)結(jié)構(gòu)和功能的計算模型,也被稱為神經(jīng)網(wǎng)絡(luò)(Neural
2023-08-22 16:45:182941 神經(jīng)網(wǎng)絡(luò)是深度學習算法的基本構(gòu)建模塊。神經(jīng)網(wǎng)絡(luò)是一種機器學習算法,旨在模擬人腦的行為。它由相互連接的節(jié)點組成,也稱為人工神經(jīng)元,這些節(jié)點組織成層次結(jié)構(gòu)。Source:victorzhou.com
2023-09-21 08:30:07642
評論
查看更多