電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>人工智能>深度解析神經(jīng)網(wǎng)絡(luò)的常用損失函數(shù)

深度解析神經(jīng)網(wǎng)絡(luò)的常用損失函數(shù)

收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴

評論

查看更多

相關(guān)推薦

從零開始學(xué)習(xí)用Python構(gòu)建神經(jīng)網(wǎng)絡(luò)

內(nèi)容涵蓋神經(jīng)網(wǎng)絡(luò)定義、損失函數(shù)、前向傳播、反向傳播、梯度下降算法,對于想要了解深度學(xué)習(xí)運(yùn)作原理的各位來說,內(nèi)容精彩不可錯(cuò)過。
2018-05-30 08:54:5610373

新一代人工智能新課題:神經(jīng)網(wǎng)絡(luò)深度解析

基于神經(jīng)網(wǎng)絡(luò)中層信息量指標(biāo),分析不同神經(jīng)網(wǎng)絡(luò)模型的處理能力。我們分析比較了四種在 NLP 中常用深度學(xué)習(xí)模型,即 BERT, Transformer, LSTM, 和 CNN。在各 NLP 任務(wù)中,BERT 模型往往表現(xiàn)最好,Transformer 模型次之。
2020-09-11 16:56:241160

使用PyTorch深度解析卷積神經(jīng)網(wǎng)絡(luò)

卷積神經(jīng)網(wǎng)絡(luò)(CNN)是一種特殊類型的神經(jīng)網(wǎng)絡(luò),在圖像上表現(xiàn)特別出色。卷積神經(jīng)網(wǎng)絡(luò)由Yan LeCun在1998年提出,可以識別給定輸入圖像中存在的數(shù)字。
2022-09-21 10:12:50637

神經(jīng)網(wǎng)絡(luò)基本的訓(xùn)練和工作原理是什么

在兩層神經(jīng)網(wǎng)絡(luò)之間,必須有激活函數(shù)連接,從而加入非線性因素,提高神經(jīng)網(wǎng)絡(luò)的能力。所以,我們先從激活函數(shù)學(xué)起,一類是擠壓型的激活函數(shù),常用于簡單網(wǎng)絡(luò)的學(xué)習(xí);另一類是半線性的激活函數(shù)常用深度網(wǎng)絡(luò)的學(xué)習(xí)。
2023-08-07 10:02:29441

深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)架構(gòu)解析

感知器是所有神經(jīng)網(wǎng)絡(luò)中最基本的,也是更復(fù)雜的神經(jīng)網(wǎng)絡(luò)的基本組成部分。它只連接一個(gè)輸入神經(jīng)元和一個(gè)輸出神經(jīng)元。
2023-08-31 16:55:50671

詳解深度學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用

在如今的網(wǎng)絡(luò)時(shí)代,錯(cuò)綜復(fù)雜的大數(shù)據(jù)和網(wǎng)絡(luò)環(huán)境,讓傳統(tǒng)信息處理理論、人工智能與人工神經(jīng)網(wǎng)絡(luò)都面臨巨大的挑戰(zhàn)。近些年,深度學(xué)習(xí)逐漸走進(jìn)人們的視線,通過深度學(xué)習(xí)解決若干問題的案例越來越多。一些傳統(tǒng)的圖像
2024-01-11 10:51:32596

深度神經(jīng)網(wǎng)絡(luò)是什么

多層感知機(jī) 深度神經(jīng)網(wǎng)絡(luò)in collaboration with Hsu Chung Chuan, Lin Min Htoo, and Quah Jia Yong. 與許忠傳,林敏濤和華佳勇合作
2021-07-12 06:35:22

神經(jīng)網(wǎng)絡(luò)50例

神經(jīng)網(wǎng)絡(luò)50例
2012-11-28 16:49:56

神經(jīng)網(wǎng)絡(luò)Matlab程序

神經(jīng)網(wǎng)絡(luò)Matlab程序
2009-09-15 12:52:24

神經(jīng)網(wǎng)絡(luò)和反向傳播算法

03_深度學(xué)習(xí)入門_神經(jīng)網(wǎng)絡(luò)和反向傳播算法
2019-09-12 07:08:05

神經(jīng)網(wǎng)絡(luò)在訓(xùn)練時(shí)常用的一些損失函數(shù)介紹

神經(jīng)網(wǎng)絡(luò)在訓(xùn)練時(shí)的優(yōu)化首先是對模型的當(dāng)前狀態(tài)進(jìn)行誤差估計(jì),然后為了減少下一次評估的誤差,需要使用一個(gè)能夠表示錯(cuò)誤函數(shù)對權(quán)重進(jìn)行更新,這個(gè)函數(shù)被稱為損失函數(shù)。損失函數(shù)的選擇與神經(jīng)網(wǎng)絡(luò)模型從示例中學(xué)
2022-10-20 17:14:15

神經(jīng)網(wǎng)絡(luò)基本介紹

神經(jīng)網(wǎng)絡(luò)基本介紹
2018-01-04 13:41:23

神經(jīng)網(wǎng)絡(luò)教程(李亞非)

  第1章 概述  1.1 人工神經(jīng)網(wǎng)絡(luò)研究與發(fā)展  1.2 生物神經(jīng)元  1.3 人工神經(jīng)網(wǎng)絡(luò)的構(gòu)成  第2章人工神經(jīng)網(wǎng)絡(luò)基本模型  2.1 MP模型  2.2 感知器模型  2.3 自適應(yīng)線性
2012-03-20 11:32:43

神經(jīng)網(wǎng)絡(luò)移植到STM32的方法

神經(jīng)網(wǎng)絡(luò)移植到STM32最近在做的一個(gè)項(xiàng)目需要用到網(wǎng)絡(luò)進(jìn)行擬合,并且將擬合得到的結(jié)果用作控制,就在想能不能直接在單片機(jī)上做神經(jīng)網(wǎng)絡(luò)計(jì)算,這樣就可以實(shí)時(shí)計(jì)算,不依賴于上位機(jī)。所以要解決的主要是兩個(gè)
2022-01-11 06:20:53

神經(jīng)網(wǎng)絡(luò)簡介

神經(jīng)網(wǎng)絡(luò)簡介
2012-08-05 21:01:08

神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索有什么優(yōu)勢?

近年來,深度學(xué)習(xí)的繁榮,尤其是神經(jīng)網(wǎng)絡(luò)的發(fā)展,顛覆了傳統(tǒng)機(jī)器學(xué)習(xí)特征工程的時(shí)代,將人工智能的浪潮推到了歷史最高點(diǎn)。然而,盡管各種神經(jīng)網(wǎng)絡(luò)模型層出不窮,但往往模型性能越高,對超參數(shù)的要求也越來越嚴(yán)格
2019-09-11 11:52:14

神經(jīng)網(wǎng)絡(luò)資料

基于深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)算法
2019-05-16 17:25:05

解析深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)原理與視覺實(shí)踐

解析深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)原理與視覺實(shí)踐
2020-06-14 22:21:12

MATLAB神經(jīng)網(wǎng)絡(luò)

MATLAB神經(jīng)網(wǎng)絡(luò)
2013-07-08 15:17:13

MATLAB神經(jīng)網(wǎng)絡(luò)工具箱函數(shù)

MATLAB神經(jīng)網(wǎng)絡(luò)工具箱函數(shù)說明:本文檔中所列出的函數(shù)適用于MATLAB5.3以上版本,為了簡明起見,只列出了函數(shù)名,若需要進(jìn)一步的說明,請參閱MATLAB的幫助文檔。1. 網(wǎng)絡(luò)創(chuàng)建函數(shù)newp
2009-09-22 16:10:08

labview BP神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)

請問:我在用labview做BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)故障診斷,在NI官網(wǎng)找到了機(jī)器學(xué)習(xí)工具包(MLT),但是里面沒有關(guān)于這部分VI的幫助文檔,對于”BP神經(jīng)網(wǎng)絡(luò)分類“這個(gè)范例有很多不懂的地方,比如
2017-02-22 16:08:08

matlab實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò) 精選資料分享

習(xí)神經(jīng)神經(jīng)網(wǎng)絡(luò),對于神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)是如何一直沒有具體實(shí)現(xiàn)一下:現(xiàn)看到一個(gè)簡單的神經(jīng)網(wǎng)絡(luò)模型用于訓(xùn)練的輸入數(shù)據(jù):對應(yīng)的輸出數(shù)據(jù):我們這里設(shè)置:1:節(jié)點(diǎn)個(gè)數(shù)設(shè)置:輸入層、隱層、輸出層的節(jié)點(diǎn)
2021-08-18 07:25:21

【PYNQ-Z2試用體驗(yàn)】神經(jīng)網(wǎng)絡(luò)基礎(chǔ)知識

學(xué)習(xí)和認(rèn)知科學(xué)領(lǐng)域,是一種模仿生物神經(jīng)網(wǎng)絡(luò)(動(dòng)物的中樞神經(jīng)系統(tǒng),特別是大腦)的結(jié)構(gòu)和功能的數(shù)學(xué)模型或計(jì)算模型,用于對函數(shù)進(jìn)行估計(jì)或近似。神經(jīng)網(wǎng)絡(luò)由大量的人工神經(jīng)元聯(lián)結(jié)進(jìn)行計(jì)算。大多數(shù)情況下人工神經(jīng)網(wǎng)絡(luò)
2019-03-03 22:10:19

【專輯精選】人工智能之神經(jīng)網(wǎng)絡(luò)教程與資料

電子發(fā)燒友總結(jié)了以“神經(jīng)網(wǎng)絡(luò)”為主題的精選干貨,今后每天一個(gè)主題為一期,希望對各位有所幫助!(點(diǎn)擊標(biāo)題即可進(jìn)入頁面下載相關(guān)資料)人工神經(jīng)網(wǎng)絡(luò)算法的學(xué)習(xí)方法與應(yīng)用實(shí)例(pdf彩版)卷積神經(jīng)網(wǎng)絡(luò)入門資料MATLAB神經(jīng)網(wǎng)絡(luò)30個(gè)案例分析《matlab神經(jīng)網(wǎng)絡(luò)應(yīng)用設(shè)計(jì)》深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)
2019-05-07 19:18:14

【案例分享】ART神經(jīng)網(wǎng)絡(luò)與SOM神經(jīng)網(wǎng)絡(luò)

是一種常用的無監(jiān)督學(xué)習(xí)策略,在使用改策略時(shí),網(wǎng)絡(luò)的輸出神經(jīng)元相互競爭,每一時(shí)刻只有一個(gè)競爭獲勝的神經(jīng)元激活。ART神經(jīng)網(wǎng)絡(luò)由比較層、識別層、識別閾值、重置模塊構(gòu)成。其中比較層負(fù)責(zé)接收輸入樣本,并將其傳遞
2019-07-21 04:30:00

【案例分享】基于BP算法的前饋神經(jīng)網(wǎng)絡(luò)

`BP神經(jīng)網(wǎng)絡(luò)首先給出只包含一個(gè)隱層的BP神經(jīng)網(wǎng)絡(luò)模型(兩層神經(jīng)網(wǎng)絡(luò)): BP神經(jīng)網(wǎng)絡(luò)其實(shí)由兩部分組成:前饋神經(jīng)網(wǎng)絡(luò)神經(jīng)網(wǎng)絡(luò)是前饋的,其權(quán)重都不回送到輸入單元,或前一層輸出單元(數(shù)據(jù)信息是單向
2019-07-21 04:00:00

人工神經(jīng)網(wǎng)絡(luò)原理及下載

人工神經(jīng)網(wǎng)絡(luò)是根據(jù)人的認(rèn)識過程而開發(fā)出的一種算法。假如我們現(xiàn)在只有一些輸入和相應(yīng)的輸出,而對如何由輸入得到輸出的機(jī)理并不清楚,那么我們可以把輸入與輸出之間的未知過程看成是一個(gè)“網(wǎng)絡(luò)”,通過不斷地給
2008-06-19 14:40:42

人工神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)方法有哪些?

人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決一些非線性,非平穩(wěn),復(fù)雜的實(shí)際問題。那有哪些辦法能實(shí)現(xiàn)人工神經(jīng)網(wǎng)絡(luò)呢?
2019-08-01 08:06:21

人工神經(jīng)網(wǎng)絡(luò)課件

人工神經(jīng)網(wǎng)絡(luò)課件
2016-06-19 10:15:48

人臉識別、語音翻譯、無人駕駛...這些高科技都離不開深度神經(jīng)網(wǎng)絡(luò)了!

,如何用一個(gè)神經(jīng)網(wǎng)絡(luò),寫出一套機(jī)器學(xué)習(xí)算法,來自動(dòng)識別未知的圖像。一個(gè) 4 層的神經(jīng)網(wǎng)絡(luò)輸入層經(jīng)過幾層算法得到輸出層 實(shí)現(xiàn)機(jī)器學(xué)習(xí)的方法有很多,近年被人們討論得多的方法就是深度學(xué)習(xí)。 深度學(xué)習(xí)是一種實(shí)現(xiàn)
2018-05-11 11:43:14

什么是LSTM神經(jīng)網(wǎng)絡(luò)

簡單理解LSTM神經(jīng)網(wǎng)絡(luò)
2021-01-28 07:16:57

什么是圖卷積神經(jīng)網(wǎng)絡(luò)?

圖卷積神經(jīng)網(wǎng)絡(luò)
2019-08-20 12:05:29

從AlexNet到MobileNet,帶你入門深度神經(jīng)網(wǎng)絡(luò)

transform net)和預(yù)訓(xùn)練好的損失計(jì)算網(wǎng)絡(luò)VGG-16,圖像轉(zhuǎn)換網(wǎng)絡(luò)T以內(nèi)容圖像x為輸入,輸出風(fēng)格遷移后的圖像y,隨后內(nèi)容圖像yc,風(fēng)格圖像ys,以及y’輸入vgg-16計(jì)算特征。在此次深度神經(jīng)網(wǎng)絡(luò)
2018-05-08 15:57:47

使用keras搭建神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)基于深度學(xué)習(xí)算法的股票價(jià)格預(yù)測

本文使用keras搭建神經(jīng)網(wǎng)絡(luò),實(shí)現(xiàn)基于深度學(xué)習(xí)算法的股票價(jià)格預(yù)測。本文使用的數(shù)據(jù)來源為tushare,一個(gè)免費(fèi)開源接口;且只取開票價(jià)進(jìn)行預(yù)測。import numpy as npimport
2022-02-08 06:40:03

全連接神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)有什么區(qū)別

全連接神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別
2019-06-06 14:21:42

卷積神經(jīng)網(wǎng)絡(luò)CNN介紹

深度學(xué)習(xí)】卷積神經(jīng)網(wǎng)絡(luò)CNN
2020-06-14 18:55:37

卷積神經(jīng)網(wǎng)絡(luò)深度卷積網(wǎng)絡(luò):實(shí)例探究及學(xué)習(xí)總結(jié)

深度學(xué)習(xí)工程師-吳恩達(dá)》03卷積神經(jīng)網(wǎng)絡(luò)深度卷積網(wǎng)絡(luò):實(shí)例探究 學(xué)習(xí)總結(jié)
2020-05-22 17:15:57

卷積神經(jīng)網(wǎng)絡(luò)為什么適合圖像處理?

卷積神經(jīng)網(wǎng)絡(luò)為什么適合圖像處理?
2022-09-08 10:23:10

卷積神經(jīng)網(wǎng)絡(luò)如何使用

卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)在工程上經(jīng)歷了曲折的歷史,您為什么還會(huì)在意它呢? 對于這些非常中肯的問題,我們似乎可以給出相對簡明的答案。
2019-07-17 07:21:50

卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用

卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用轉(zhuǎn)載****地址:http://fcst.ceaj.org/CN/abstract/abstract2521.shtml深度學(xué)習(xí)是機(jī)器學(xué)習(xí)和人工智能研究的最新趨勢,作為一個(gè)
2022-08-02 10:39:39

卷積神經(jīng)網(wǎng)絡(luò)的層級結(jié)構(gòu)和常用框架

  卷積神經(jīng)網(wǎng)絡(luò)的層級結(jié)構(gòu)  卷積神經(jīng)網(wǎng)絡(luò)常用框架
2020-12-29 06:16:44

卷積神經(jīng)網(wǎng)絡(luò)簡介:什么是機(jī)器學(xué)習(xí)?

列文章將只關(guān)注卷積神經(jīng)網(wǎng)絡(luò) (CNN)。CNN的主要應(yīng)用領(lǐng)域是輸入數(shù)據(jù)中包含的對象的模式識別和分類。CNN是一種用于深度學(xué)習(xí)的人工神經(jīng)網(wǎng)絡(luò)。此類網(wǎng)絡(luò)由一個(gè)輸入層、多個(gè)卷積層和一個(gè)輸出層組成。卷積層是最重
2023-02-23 20:11:10

卷積神經(jīng)網(wǎng)絡(luò)(CNN)是如何定義的?

什么是卷積神經(jīng)網(wǎng)絡(luò)?ImageNet-2010網(wǎng)絡(luò)結(jié)構(gòu)是如何構(gòu)成的?有哪些基本參數(shù)?
2021-06-17 11:48:22

基于深度神經(jīng)網(wǎng)絡(luò)的激光雷達(dá)物體識別系統(tǒng)

【新技術(shù)發(fā)布】基于深度神經(jīng)網(wǎng)絡(luò)的激光雷達(dá)物體識別系統(tǒng)及其嵌入式平臺部署激光雷達(dá)可以準(zhǔn)確地完成三維空間的測量,具有抗干擾能力強(qiáng)、信息豐富等優(yōu)點(diǎn),但受限于數(shù)據(jù)量大、不規(guī)則等難點(diǎn),基于深度神經(jīng)網(wǎng)絡(luò)
2021-12-21 07:59:18

基于深度神經(jīng)網(wǎng)絡(luò)的激光雷達(dá)物體識別系統(tǒng)及其嵌入式平臺部署

基于深度神經(jīng)網(wǎng)絡(luò)的激光雷達(dá)物體識別系統(tǒng)及其嵌入式平臺部署
2021-01-04 06:26:23

基于BP神經(jīng)網(wǎng)絡(luò)的PID控制

最近在學(xué)習(xí)電機(jī)的智能控制,上周學(xué)習(xí)了基于單神經(jīng)元的PID控制,這周研究基于BP神經(jīng)網(wǎng)絡(luò)的PID控制。神經(jīng)網(wǎng)絡(luò)具有任意非線性表達(dá)能力,可以通過對系統(tǒng)性能的學(xué)習(xí)來實(shí)現(xiàn)具有最佳組合的PID控制。利用BP
2021-09-07 07:43:47

基于BP神經(jīng)網(wǎng)絡(luò)的辨識

基于BP神經(jīng)網(wǎng)絡(luò)的辨識
2018-01-04 13:37:27

基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評估及局限性

FPGA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)關(guān)鍵問題分析基于FPGA的ANN實(shí)現(xiàn)方法基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評估及局限性
2021-04-30 06:58:13

基于RBF神經(jīng)網(wǎng)絡(luò)的辨識

基于RBF神經(jīng)網(wǎng)絡(luò)的辨識
2018-01-04 13:38:52

基于光學(xué)芯片的神經(jīng)網(wǎng)絡(luò)訓(xùn)練解析,不看肯定后悔

基于光學(xué)芯片的神經(jīng)網(wǎng)絡(luò)訓(xùn)練解析,不看肯定后悔
2021-06-21 06:33:55

基于賽靈思FPGA的卷積神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)設(shè)計(jì)

FPGA 上實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò) (CNN)。CNN 是一類深度神經(jīng)網(wǎng)絡(luò),在處理大規(guī)模圖像識別任務(wù)以及與機(jī)器學(xué)習(xí)類似的其他問題方面已大獲成功。在當(dāng)前案例中,針對在 FPGA 上實(shí)現(xiàn) CNN 做一個(gè)可行性研究
2019-06-19 07:24:41

如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)?

如何用stm32cube.ai簡化人工神經(jīng)網(wǎng)絡(luò)映射?如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)
2021-10-11 08:05:42

如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?

原文鏈接:http://tecdat.cn/?p=5725 神經(jīng)網(wǎng)絡(luò)是一種基于現(xiàn)有數(shù)據(jù)創(chuàng)建預(yù)測的計(jì)算系統(tǒng)。如何構(gòu)建神經(jīng)網(wǎng)絡(luò)神經(jīng)網(wǎng)絡(luò)包括:輸入層:根據(jù)現(xiàn)有數(shù)據(jù)獲取輸入的層隱藏層:使用反向傳播優(yōu)化輸入變量權(quán)重的層,以提高模型的預(yù)測能力輸出層:基于輸入和隱藏層的數(shù)據(jù)輸出預(yù)測
2021-07-12 08:02:11

如何設(shè)計(jì)BP神經(jīng)網(wǎng)絡(luò)圖像壓縮算法?

神經(jīng)網(wǎng)絡(luò)(Neural Networks)是人工神經(jīng)網(wǎng)絡(luò)(Ar-tificial Neural Networks)的簡稱,是當(dāng)前的研究熱點(diǎn)之一。人腦在接受視覺感官傳來的大量圖像信息后,能迅速做出反應(yīng)
2019-08-08 06:11:30

有提供編寫神經(jīng)網(wǎng)絡(luò)預(yù)測程序服務(wù)的嗎?

有提供編寫神經(jīng)網(wǎng)絡(luò)預(yù)測程序服務(wù)的嗎?
2011-12-10 13:50:46

求助地震波神經(jīng)網(wǎng)絡(luò)程序

求助地震波神經(jīng)網(wǎng)絡(luò)程序,共同交流?。?/div>
2013-05-11 08:14:19

求助基于labview的神經(jīng)網(wǎng)絡(luò)pid控制

小女子做基于labview的蒸發(fā)過程中液位的控制,想使用神經(jīng)網(wǎng)絡(luò)pid控制,請問這個(gè)控制方法可以嗎?有誰會(huì)神經(jīng)網(wǎng)絡(luò)pid控制么。。。叩謝
2016-09-23 13:43:16

求助大神關(guān)于神經(jīng)網(wǎng)絡(luò)的問題

求助大神 小的現(xiàn)在有個(gè)難題: 一組車重實(shí)時(shí)數(shù)據(jù) 對應(yīng)一個(gè)車重的最終數(shù)值(一個(gè)一維數(shù)組輸入對應(yīng)輸出一個(gè)數(shù)值) 這其中可能經(jīng)過均值、方差、去掉N個(gè)最大值、、、等等的計(jì)算 我的目的就是弄清楚這個(gè)中間計(jì)算過程 最近實(shí)在想不出什么好辦法就打算試試神經(jīng)網(wǎng)絡(luò) 請教大神用什么神經(jīng)網(wǎng)絡(luò)好求神經(jīng)網(wǎng)絡(luò)程序
2016-07-14 13:35:44

離散小波轉(zhuǎn)換(DWT)深度神經(jīng)網(wǎng)絡(luò)是什么

2018年全球第三大風(fēng)力發(fā)電機(jī)制造商論文下載地址:https://arxiv.org/pdf/1902.05625v1.pdf論文代碼地址:https://github.com/BinhangYuan/WaveletFCNN需要簡單儲備的知識離散小波轉(zhuǎn)換(DWT)深度神經(jīng)網(wǎng)絡(luò)回顧離散小波變
2021-07-12 07:38:36

簡單神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)

最簡單的神經(jīng)網(wǎng)絡(luò)
2019-09-11 11:57:36

計(jì)算機(jī)視覺神經(jīng)網(wǎng)絡(luò)資料全集

CV之YOLOv3:深度學(xué)習(xí)之計(jì)算機(jī)視覺神經(jīng)網(wǎng)絡(luò)Yolov3-5clessses訓(xùn)練自己的數(shù)據(jù)集全程記錄(第二次)——Jason niu
2018-12-24 11:52:25

輕量化神經(jīng)網(wǎng)絡(luò)的相關(guān)資料下載

原文鏈接:【嵌入式AI部署&基礎(chǔ)網(wǎng)絡(luò)篇】輕量化神經(jīng)網(wǎng)絡(luò)精述--MobileNet V1-3、ShuffleNet V1-2、NasNet深度神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用在圖像分類、物體檢測等機(jī)器
2021-12-14 07:35:25

遺傳算法 神經(jīng)網(wǎng)絡(luò) 解析

關(guān)于遺傳算法和神經(jīng)網(wǎng)絡(luò)
2013-05-19 10:22:16

非局部神經(jīng)網(wǎng)絡(luò),打造未來神經(jīng)網(wǎng)絡(luò)基本組件

`將非局部計(jì)算作為獲取長時(shí)記憶的通用模塊,提高神經(jīng)網(wǎng)絡(luò)性能在深度神經(jīng)網(wǎng)絡(luò)中,獲取長時(shí)記憶(long-range dependency)至關(guān)重要。對于序列數(shù)據(jù)(例如語音、語言),遞歸運(yùn)算
2018-11-12 14:52:50

懲罰函數(shù)優(yōu)化的前饋神經(jīng)網(wǎng)絡(luò)盲多用戶檢測

提出一種前饋神經(jīng)網(wǎng)絡(luò)盲多用戶檢測算法,利用前饋神經(jīng)網(wǎng)絡(luò)替代原有檢測器中的濾波器,通過懲罰函數(shù)對約束恒模代價(jià)函數(shù)進(jìn)行求解,獲得前饋神經(jīng)網(wǎng)絡(luò)權(quán)值和參數(shù)的迭代公式,
2009-04-22 08:41:4729

神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)》講義

神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)》講義
2017-07-20 08:58:240

BP神經(jīng)網(wǎng)絡(luò)編碼樣例及工作原理

人工神經(jīng)網(wǎng)絡(luò)是一種經(jīng)典的機(jī)器學(xué)習(xí)模型,隨著深度學(xué)習(xí)的發(fā)展神經(jīng)網(wǎng)絡(luò)模型日益完善。聯(lián)想大家熟悉的回歸問題, 神經(jīng)網(wǎng)絡(luò)模型實(shí)際上是根據(jù)訓(xùn)練樣本創(chuàng)造出一個(gè)多維輸入多維輸出的函數(shù), 并使用該函數(shù)進(jìn)行預(yù)測
2017-11-16 12:26:526900

神經(jīng)網(wǎng)絡(luò)中的損失函數(shù)層和Optimizers圖文解讀

對于許多機(jī)器學(xué)習(xí)算法來說,最終要解決的問題往往是最小化一個(gè)函數(shù),我們通常稱這個(gè)函數(shù)損失函數(shù)。在神經(jīng)網(wǎng)絡(luò)里面同樣如此,損失函數(shù)層(CostLayer)和 Optimizers 因而應(yīng)運(yùn)而生(……)。
2017-11-30 16:09:108083

開源神經(jīng)網(wǎng)絡(luò)圖片上色技術(shù)解析 解密深度學(xué)習(xí)自動(dòng)上色

如何利用深度神經(jīng)網(wǎng)絡(luò)給圖片自動(dòng)上色,本文介紹了開源神經(jīng)網(wǎng)絡(luò)圖片上色技術(shù),解析深度學(xué)習(xí)會(huì)自動(dòng)上色的核心技術(shù),并且?guī)酌腌娋蛯?shí)現(xiàn)PS幾個(gè)月的效果
2018-01-10 13:21:5211397

詳細(xì)解析神經(jīng)網(wǎng)絡(luò)的含義、挑戰(zhàn)、類型、應(yīng)用

Statsbot深度學(xué)習(xí)開發(fā)者Jay Shah帶你入門神經(jīng)網(wǎng)絡(luò),一起了解自動(dòng)編碼器、卷積神經(jīng)網(wǎng)絡(luò)、循環(huán)神經(jīng)網(wǎng)絡(luò)等流行的神經(jīng)網(wǎng)絡(luò)類型及其應(yīng)用。
2018-01-15 17:11:388954

【人工神經(jīng)網(wǎng)絡(luò)基礎(chǔ)】為什么神經(jīng)網(wǎng)絡(luò)選擇了“深度”?

由 Demi 于 星期四, 2018-09-06 09:33 發(fā)表 現(xiàn)在提到“神經(jīng)網(wǎng)絡(luò)”和“深度神經(jīng)網(wǎng)絡(luò)”,會(huì)覺得兩者沒有什么區(qū)別,神經(jīng)網(wǎng)絡(luò)還能不是“深度”(deep)的嗎?我們常用
2018-09-06 20:48:01557

為什么SGD能令神經(jīng)網(wǎng)絡(luò)損失降到零?

解。這是對深度學(xué)習(xí)的復(fù)古?到底是否有效?社區(qū)中很多人對此發(fā)表了看法。機(jī)器之心簡要介紹了該論文,更詳細(xì)的推導(dǎo)過程與方法請查看原論文,不過這樣的證明讀者們都 Hold 住嗎。 用一階方法訓(xùn)練的神經(jīng)網(wǎng)絡(luò)已經(jīng)對很多應(yīng)用產(chǎn)生了顯著影響,但
2018-10-18 20:46:01435

快速了解神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)的教程資料免費(fèi)下載

本文檔的詳細(xì)介紹的是快速了解神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)的教程資料免費(fèi)下載主要內(nèi)容包括了:機(jī)器學(xué)習(xí)概述,線性模型,前饋神經(jīng)網(wǎng)絡(luò),卷積神經(jīng)網(wǎng)絡(luò),循環(huán)神經(jīng)網(wǎng)絡(luò),網(wǎng)絡(luò)優(yōu)化與正則化,記憶與注意力機(jī)制,無監(jiān)督學(xué)習(xí),概率圖模型,玻爾茲曼機(jī),深度信念網(wǎng)絡(luò),深度生成模型,深度強(qiáng)化學(xué)習(xí)
2019-02-11 08:00:0025

圖文詳解:神經(jīng)網(wǎng)絡(luò)的激活函數(shù)

什么是神經(jīng)網(wǎng)絡(luò)激活函數(shù)?激活函數(shù)有助于決定我們是否需要激活神經(jīng)元。如果我們需要發(fā)射一個(gè)神經(jīng)元那么信號的強(qiáng)度是多少。激活函數(shù)神經(jīng)元通過神經(jīng)網(wǎng)絡(luò)處理和傳遞信息的機(jī)制
2020-07-05 11:21:213352

基于深度神經(jīng)網(wǎng)絡(luò)的文本分類分析

  隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展,許多研究者嘗試?yán)?b class="flag-6" style="color: red">深度學(xué)習(xí)來解決文本分類問題,特別是在卷積神經(jīng)網(wǎng)絡(luò)和循環(huán)神經(jīng)網(wǎng)絡(luò)方面,出現(xiàn)了許多新穎且有效的分類方法。對基于深度神經(jīng)網(wǎng)絡(luò)的文本分類問題進(jìn)行分析,介紹
2021-03-10 16:56:5636

端到端深度學(xué)習(xí)卷積神經(jīng)網(wǎng)絡(luò)識別商家招牌

為解決采用卷積神經(jīng)網(wǎng)絡(luò)對商家招牌進(jìn)行分類時(shí)存在特征判別性較差的問題,通過在注意力機(jī)制中引入神經(jīng)網(wǎng)絡(luò),提岀一種端到端的深度學(xué)習(xí)卷積神經(jīng)網(wǎng)絡(luò)方法。使用卷積注意力模塊分別學(xué)習(xí)通道注意力與空間注意力信息
2021-03-12 10:51:458

基于深度殘差神經(jīng)網(wǎng)絡(luò)的遠(yuǎn)程監(jiān)督關(guān)系抽取模型

基于卷積神經(jīng)網(wǎng)絡(luò)的遠(yuǎn)程監(jiān)督關(guān)系抽取方法提取的特征單一,且標(biāo)準(zhǔn)交叉熵損失函數(shù)未能較好處理數(shù)據(jù)集中正負(fù)樣本比例不均衡的情況。為此,提出一種基于深度殘差神經(jīng)網(wǎng)絡(luò)的遠(yuǎn)程監(jiān)督關(guān)系抽取模型,通過改進(jìn)交叉熵聚焦
2021-05-24 17:06:083

深度學(xué)習(xí):神經(jīng)網(wǎng)絡(luò)函數(shù)

深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一個(gè)子集,它使用神經(jīng)網(wǎng)絡(luò)來執(zhí)行學(xué)習(xí)和預(yù)測。深度學(xué)習(xí)在各種任務(wù)中都表現(xiàn)出了驚人的表現(xiàn),無論是文本、時(shí)間序列還是計(jì)算機(jī)視覺。
2022-04-07 10:17:051380

深入了解神經(jīng)網(wǎng)絡(luò)

本章將介紹用于解決實(shí)際問題的深度學(xué)習(xí)架構(gòu)的不同模塊。前一章使用PyTorch的低級操作構(gòu)建了如網(wǎng)絡(luò)架構(gòu)、損失函數(shù)和優(yōu)化器這些模塊。本章將介紹用于解決真實(shí)問題的神經(jīng)網(wǎng)絡(luò)的一些重要組件,以及
2022-07-08 10:22:08544

神經(jīng)網(wǎng)絡(luò)面臨的問題和挑戰(zhàn)

神經(jīng)網(wǎng)絡(luò)從感知機(jī)發(fā)展到多層前饋神經(jīng)網(wǎng)絡(luò)網(wǎng)絡(luò)變得越來越復(fù)雜。如上一篇 機(jī)器學(xué)習(xí)中的函數(shù)(2)- 多層前饋網(wǎng)絡(luò)巧解“異或”問題,損失函數(shù)上場優(yōu)化網(wǎng)絡(luò)性能 討論針對前饋神經(jīng)網(wǎng)絡(luò)我們的目標(biāo)是要讓損失函數(shù)
2022-11-01 11:54:292551

什么是神經(jīng)網(wǎng)絡(luò)?什么是卷積神經(jīng)網(wǎng)絡(luò)?

在介紹卷積神經(jīng)網(wǎng)絡(luò)之前,我們先回顧一下神經(jīng)網(wǎng)絡(luò)的基本知識。就目前而言,神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)算法的核心,我們所熟知的很多深度學(xué)習(xí)算法的背后其實(shí)都是神經(jīng)網(wǎng)絡(luò)
2023-02-23 09:14:442256

什么是神經(jīng)網(wǎng)絡(luò)應(yīng)用-2

本項(xiàng)目在之前項(xiàng)目分類模型基礎(chǔ)上神經(jīng)網(wǎng)絡(luò)應(yīng)用(一)進(jìn)一步拓展神經(jīng)網(wǎng)絡(luò)應(yīng)用,相比之前本項(xiàng)目增加了新的知識點(diǎn),比如正則化,softmax函數(shù)和交叉熵損失函數(shù)等。
2023-02-24 15:43:471286

淺析三種主流深度神經(jīng)網(wǎng)絡(luò)

來源:青榴實(shí)驗(yàn)室 1、引子 深度神經(jīng)網(wǎng)絡(luò)(DNNs)最近在圖像分類或語音識別等復(fù)雜機(jī)器學(xué)習(xí)任務(wù)中表現(xiàn)出的優(yōu)異性能令人印象深刻。 在本文中,我們將了解深度神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識和三個(gè)最流行神經(jīng)網(wǎng)絡(luò):多層
2023-05-15 14:20:01550

三個(gè)最流行神經(jīng)網(wǎng)絡(luò)

在本文中,我們將了解深度神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識和三個(gè)最流行神經(jīng)網(wǎng)絡(luò):多層神經(jīng)網(wǎng)絡(luò)(MLP),卷積神經(jīng)網(wǎng)絡(luò)(CNN)和遞歸神經(jīng)網(wǎng)絡(luò)(RNN)。
2023-05-15 14:19:181096

訓(xùn)練深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)常用5個(gè)損失函數(shù)

被稱為損失函數(shù)損失函數(shù)的選擇與神經(jīng)網(wǎng)絡(luò)模型從示例中學(xué)習(xí)的特定預(yù)測建模問題(例如分類或回歸)有關(guān)。在本文中我們將介紹常用的一些損失函數(shù),包括:回歸模型的均方誤差損失
2022-10-19 11:17:35477

淺析三種主流深度神經(jīng)網(wǎng)絡(luò)

來源:青榴實(shí)驗(yàn)室1、引子深度神經(jīng)網(wǎng)絡(luò)(DNNs)最近在圖像分類或語音識別等復(fù)雜機(jī)器學(xué)習(xí)任務(wù)中表現(xiàn)出的優(yōu)異性能令人印象深刻。在本文中,我們將了解深度神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識和三個(gè)最流行神經(jīng)網(wǎng)絡(luò):多層神經(jīng)網(wǎng)絡(luò)
2023-05-17 09:59:19946

卷積神經(jīng)網(wǎng)絡(luò)通俗理解

卷積神經(jīng)網(wǎng)絡(luò)通俗理解 卷積神經(jīng)網(wǎng)絡(luò),英文名為Convolutional Neural Network,成為了當(dāng)前深度學(xué)習(xí)領(lǐng)域最重要的算法之一,也是很多圖像和語音領(lǐng)域任務(wù)中最常用深度學(xué)習(xí)模型之一
2023-08-17 16:30:252062

卷積神經(jīng)網(wǎng)絡(luò)原理:卷積神經(jīng)網(wǎng)絡(luò)模型和卷積神經(jīng)網(wǎng)絡(luò)算法

卷積神經(jīng)網(wǎng)絡(luò)原理:卷積神經(jīng)網(wǎng)絡(luò)模型和卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種基于深度學(xué)習(xí)的人工神經(jīng)網(wǎng)絡(luò),是深度學(xué)習(xí)技術(shù)的重要應(yīng)用之
2023-08-17 16:30:30806

卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用 卷積神經(jīng)網(wǎng)絡(luò)常用來處理什么

卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用 卷積神經(jīng)網(wǎng)絡(luò)常用來處理什么 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種在神經(jīng)網(wǎng)絡(luò)領(lǐng)域內(nèi)廣泛應(yīng)用的神經(jīng)網(wǎng)絡(luò)模型。相較于傳統(tǒng)
2023-08-21 16:41:453487

卷積神經(jīng)網(wǎng)絡(luò)深度神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn) 卷積神經(jīng)網(wǎng)絡(luò)深度神經(jīng)網(wǎng)絡(luò)的區(qū)別

深度神經(jīng)網(wǎng)絡(luò)是一種基于神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)算法,其主要特點(diǎn)是由多層神經(jīng)元構(gòu)成,可以根據(jù)數(shù)據(jù)自動(dòng)調(diào)整神經(jīng)元之間的權(quán)重,從而實(shí)現(xiàn)對大規(guī)模數(shù)據(jù)進(jìn)行預(yù)測和分類。卷積神經(jīng)網(wǎng)絡(luò)深度神經(jīng)網(wǎng)絡(luò)的一種,主要應(yīng)用于圖像和視頻處理領(lǐng)域。
2023-08-21 17:07:361869

構(gòu)建神經(jīng)網(wǎng)絡(luò)模型的常用方法 神經(jīng)網(wǎng)絡(luò)模型的常用算法介紹

神經(jīng)網(wǎng)絡(luò)模型是一種通過模擬生物神經(jīng)元間相互作用的方式實(shí)現(xiàn)信息處理和學(xué)習(xí)的計(jì)算機(jī)模型。它能夠?qū)斎霐?shù)據(jù)進(jìn)行分類、回歸、預(yù)測和聚類等任務(wù),已經(jīng)廣泛應(yīng)用于計(jì)算機(jī)視覺、自然語言處理、語音處理等領(lǐng)域。下面將就神經(jīng)網(wǎng)絡(luò)模型的概念和工作原理,構(gòu)建神經(jīng)網(wǎng)絡(luò)模型的常用方法以及神經(jīng)網(wǎng)絡(luò)模型算法介紹進(jìn)行詳細(xì)探討。
2023-08-28 18:25:27582

淺析深度神經(jīng)網(wǎng)絡(luò)壓縮與加速技術(shù)

深度神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)的一種框架,它是一種具備至少一個(gè)隱層的神經(jīng)網(wǎng)絡(luò)。與淺層神經(jīng)網(wǎng)絡(luò)類似
2023-10-11 09:14:33363

已全部加載完成