電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>人工智能>神經(jīng)網(wǎng)絡(luò)信號(hào)對(duì)故障電池檢測方法深度分析

神經(jīng)網(wǎng)絡(luò)信號(hào)對(duì)故障電池檢測方法深度分析

收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

評(píng)論

查看更多

相關(guān)推薦

詳解深度學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用

在如今的網(wǎng)絡(luò)時(shí)代,錯(cuò)綜復(fù)雜的大數(shù)據(jù)和網(wǎng)絡(luò)環(huán)境,讓傳統(tǒng)信息處理理論、人工智能與人工神經(jīng)網(wǎng)絡(luò)都面臨巨大的挑戰(zhàn)。近些年,深度學(xué)習(xí)逐漸走進(jìn)人們的視線,通過深度學(xué)習(xí)解決若干問題的案例越來越多。一些傳統(tǒng)的圖像
2024-01-11 10:51:32596

深度神經(jīng)網(wǎng)絡(luò)是什么

多層感知機(jī) 深度神經(jīng)網(wǎng)絡(luò)in collaboration with Hsu Chung Chuan, Lin Min Htoo, and Quah Jia Yong. 與許忠傳,林敏濤和華佳勇合作
2021-07-12 06:35:22

神經(jīng)網(wǎng)絡(luò)和反向傳播算法

03_深度學(xué)習(xí)入門_神經(jīng)網(wǎng)絡(luò)和反向傳播算法
2019-09-12 07:08:05

神經(jīng)網(wǎng)絡(luò)基本介紹

神經(jīng)網(wǎng)絡(luò)基本介紹
2018-01-04 13:41:23

神經(jīng)網(wǎng)絡(luò)教程(李亞非)

  第1章 概述  1.1 人工神經(jīng)網(wǎng)絡(luò)研究與發(fā)展  1.2 生物神經(jīng)元  1.3 人工神經(jīng)網(wǎng)絡(luò)的構(gòu)成  第2章人工神經(jīng)網(wǎng)絡(luò)基本模型  2.1 MP模型  2.2 感知器模型  2.3 自適應(yīng)線性
2012-03-20 11:32:43

神經(jīng)網(wǎng)絡(luò)移植到STM32的方法

神經(jīng)網(wǎng)絡(luò)移植到STM32最近在做的一個(gè)項(xiàng)目需要用到網(wǎng)絡(luò)進(jìn)行擬合,并且將擬合得到的結(jié)果用作控制,就在想能不能直接在單片機(jī)上做神經(jīng)網(wǎng)絡(luò)計(jì)算,這樣就可以實(shí)時(shí)計(jì)算,不依賴于上位機(jī)。所以要解決的主要是兩個(gè)
2022-01-11 06:20:53

神經(jīng)網(wǎng)絡(luò)簡介

神經(jīng)網(wǎng)絡(luò)簡介
2012-08-05 21:01:08

神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索有什么優(yōu)勢?

近年來,深度學(xué)習(xí)的繁榮,尤其是神經(jīng)網(wǎng)絡(luò)的發(fā)展,顛覆了傳統(tǒng)機(jī)器學(xué)習(xí)特征工程的時(shí)代,將人工智能的浪潮推到了歷史最高點(diǎn)。然而,盡管各種神經(jīng)網(wǎng)絡(luò)模型層出不窮,但往往模型性能越高,對(duì)超參數(shù)的要求也越來越嚴(yán)格
2019-09-11 11:52:14

神經(jīng)網(wǎng)絡(luò)解決方案讓自動(dòng)駕駛成為現(xiàn)實(shí)

制造業(yè)而言,深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)開辟了令人興奮的研究途徑。為了實(shí)現(xiàn)從諸如高速公路全程自動(dòng)駕駛儀的短時(shí)輔助模式到專職無人駕駛旅行的自動(dòng)駕駛,汽車制造業(yè)一直在尋求讓響應(yīng)速度更快、識(shí)別準(zhǔn)確度更高的方法,而深度
2017-12-21 17:11:34

神經(jīng)網(wǎng)絡(luò)資料

基于深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)算法
2019-05-16 17:25:05

BP神經(jīng)網(wǎng)絡(luò)PID控制電機(jī)模型仿真

求一個(gè)simulink的蓄電池用BP神經(jīng)網(wǎng)絡(luò)PID控制電機(jī)加速勻速減速運(yùn)動(dòng)的模型仿真
2020-02-22 02:17:03

EdgeBoard中神經(jīng)網(wǎng)絡(luò)算子在FPGA中的實(shí)現(xiàn)方法是什么?

FPGA加速的關(guān)鍵因素是什么?EdgeBoard中神經(jīng)網(wǎng)絡(luò)算子在FPGA中的實(shí)現(xiàn)方法是什么?
2021-09-28 06:37:44

MATLAB神經(jīng)網(wǎng)絡(luò)

MATLAB神經(jīng)網(wǎng)絡(luò)
2013-07-08 15:17:13

[MATAB神經(jīng)網(wǎng)絡(luò)30個(gè)案例分析].史峰.

[MATAB神經(jīng)網(wǎng)絡(luò)30個(gè)案例分析].史峰.掃描版[***51.net]
2016-06-06 19:03:27

labview BP神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)

請(qǐng)問:我在用labview做BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)故障診斷,在NI官網(wǎng)找到了機(jī)器學(xué)習(xí)工具包(MLT),但是里面沒有關(guān)于這部分VI的幫助文檔,對(duì)于”BP神經(jīng)網(wǎng)絡(luò)分類“這個(gè)范例有很多不懂的地方,比如
2017-02-22 16:08:08

matlab神經(jīng)網(wǎng)絡(luò)30個(gè)案例分析源碼

matlab神經(jīng)網(wǎng)絡(luò)30個(gè)案例分析源碼
2012-12-19 14:51:24

【PYNQ-Z2試用體驗(yàn)】神經(jīng)網(wǎng)絡(luò)基礎(chǔ)知識(shí)

語言,使用numpy.dot方法即可計(jì)算矩陣乘法。 以上便是一個(gè)簡單神經(jīng)網(wǎng)絡(luò)的基本原理,對(duì)神經(jīng)網(wǎng)絡(luò)有了基本的認(rèn)識(shí)之后,我們才能進(jìn)行復(fù)雜的神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)??偨Y(jié)本文講解了神經(jīng)網(wǎng)絡(luò)的基本概念及其工作原理,利用
2019-03-03 22:10:19

【專輯精選】人工智能之神經(jīng)網(wǎng)絡(luò)教程與資料

電子發(fā)燒友總結(jié)了以“神經(jīng)網(wǎng)絡(luò)”為主題的精選干貨,今后每天一個(gè)主題為一期,希望對(duì)各位有所幫助!(點(diǎn)擊標(biāo)題即可進(jìn)入頁面下載相關(guān)資料)人工神經(jīng)網(wǎng)絡(luò)算法的學(xué)習(xí)方法與應(yīng)用實(shí)例(pdf彩版)卷積神經(jīng)網(wǎng)絡(luò)入門資料MATLAB神經(jīng)網(wǎng)絡(luò)30個(gè)案例分析《matlab神經(jīng)網(wǎng)絡(luò)應(yīng)用設(shè)計(jì)》深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)
2019-05-07 19:18:14

【大聯(lián)大世平 NXP ZigBee JN5189開發(fā)板試用體驗(yàn)】基于神經(jīng)網(wǎng)絡(luò)的Zigbee汽機(jī)故障診斷裝置

的診斷計(jì)算模塊進(jìn)行分析。4 神經(jīng)網(wǎng)絡(luò)故障診斷中應(yīng)用圖 3 診斷對(duì)象在故障診斷前需對(duì)采集對(duì)象加以描述。如圖3所示,對(duì)于整個(gè)伺服模件而言,該產(chǎn)品形成了一個(gè)完整的閉環(huán)控制系統(tǒng),主要信號(hào)包括閥門給定,驅(qū)動(dòng)信號(hào)
2020-11-23 14:58:22

【案例分享】ART神經(jīng)網(wǎng)絡(luò)與SOM神經(jīng)網(wǎng)絡(luò)

今天學(xué)習(xí)了兩個(gè)神經(jīng)網(wǎng)絡(luò),分別是自適應(yīng)諧振(ART)神經(jīng)網(wǎng)絡(luò)與自組織映射(SOM)神經(jīng)網(wǎng)絡(luò)。整體感覺不是很難,只不過一些最基礎(chǔ)的概念容易理解不清。首先ART神經(jīng)網(wǎng)絡(luò)是競爭學(xué)習(xí)的一個(gè)代表,競爭型學(xué)習(xí)
2019-07-21 04:30:00

【案例分享】基于BP算法的前饋神經(jīng)網(wǎng)絡(luò)

`BP神經(jīng)網(wǎng)絡(luò)首先給出只包含一個(gè)隱層的BP神經(jīng)網(wǎng)絡(luò)模型(兩層神經(jīng)網(wǎng)絡(luò)): BP神經(jīng)網(wǎng)絡(luò)其實(shí)由兩部分組成:前饋神經(jīng)網(wǎng)絡(luò)神經(jīng)網(wǎng)絡(luò)是前饋的,其權(quán)重都不回送到輸入單元,或前一層輸出單元(數(shù)據(jù)信息是單向
2019-07-21 04:00:00

【轉(zhuǎn)】電力電子電路故障診斷方法

。故障診斷方法按提取特征的方法的區(qū)別,可分為譜分析方法、基于動(dòng)態(tài)系統(tǒng)數(shù)學(xué)模型的方法、采用模式識(shí)別的方法、基于神經(jīng)網(wǎng)絡(luò)方法、專家系統(tǒng)的方法、小波變換的方法和利用遺傳算法等。這些方法將在下文具體介紹。 一
2018-03-06 20:35:01

人工神經(jīng)網(wǎng)絡(luò)原理及下載

人工神經(jīng)網(wǎng)絡(luò)是根據(jù)人的認(rèn)識(shí)過程而開發(fā)出的一種算法。假如我們現(xiàn)在只有一些輸入和相應(yīng)的輸出,而對(duì)如何由輸入得到輸出的機(jī)理并不清楚,那么我們可以把輸入與輸出之間的未知過程看成是一個(gè)“網(wǎng)絡(luò)”,通過不斷地給
2008-06-19 14:40:42

人工神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)方法有哪些?

人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決一些非線性,非平穩(wěn),復(fù)雜的實(shí)際問題。那有哪些辦法能實(shí)現(xiàn)人工神經(jīng)網(wǎng)絡(luò)呢?
2019-08-01 08:06:21

人臉識(shí)別、語音翻譯、無人駕駛...這些高科技都離不開深度神經(jīng)網(wǎng)絡(luò)了!

,如何用一個(gè)神經(jīng)網(wǎng)絡(luò),寫出一套機(jī)器學(xué)習(xí)算法,來自動(dòng)識(shí)別未知的圖像。一個(gè) 4 層的神經(jīng)網(wǎng)絡(luò)輸入層經(jīng)過幾層算法得到輸出層 實(shí)現(xiàn)機(jī)器學(xué)習(xí)的方法有很多,近年被人們討論得多的方法就是深度學(xué)習(xí)。 深度學(xué)習(xí)是一種實(shí)現(xiàn)
2018-05-11 11:43:14

什么是LSTM神經(jīng)網(wǎng)絡(luò)

簡單理解LSTM神經(jīng)網(wǎng)絡(luò)
2021-01-28 07:16:57

從AlexNet到MobileNet,帶你入門深度神經(jīng)網(wǎng)絡(luò)

深度神經(jīng)網(wǎng)絡(luò)運(yùn)用的方法。AlexNet在研發(fā)的時(shí)候,使用的GTX580僅有3GB的顯存,所以創(chuàng)造性的把模型拆解在兩張顯卡中,架構(gòu)如下:1.第一層是卷積層,針對(duì)224x224x3的輸入圖片進(jìn)行卷積操作
2018-05-08 15:57:47

優(yōu)化神經(jīng)網(wǎng)絡(luò)訓(xùn)練方法有哪些?

優(yōu)化神經(jīng)網(wǎng)絡(luò)訓(xùn)練方法有哪些?
2022-09-06 09:52:36

全連接神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)有什么區(qū)別

全連接神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別
2019-06-06 14:21:42

卷積神經(jīng)網(wǎng)絡(luò)CNN介紹

深度學(xué)習(xí)】卷積神經(jīng)網(wǎng)絡(luò)CNN
2020-06-14 18:55:37

卷積神經(jīng)網(wǎng)絡(luò)深度卷積網(wǎng)絡(luò):實(shí)例探究及學(xué)習(xí)總結(jié)

深度學(xué)習(xí)工程師-吳恩達(dá)》03卷積神經(jīng)網(wǎng)絡(luò)深度卷積網(wǎng)絡(luò):實(shí)例探究 學(xué)習(xí)總結(jié)
2020-05-22 17:15:57

卷積神經(jīng)網(wǎng)絡(luò)為什么適合圖像處理?

卷積神經(jīng)網(wǎng)絡(luò)為什么適合圖像處理?
2022-09-08 10:23:10

卷積神經(jīng)網(wǎng)絡(luò)如何使用

卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)在工程上經(jīng)歷了曲折的歷史,您為什么還會(huì)在意它呢? 對(duì)于這些非常中肯的問題,我們似乎可以給出相對(duì)簡明的答案。
2019-07-17 07:21:50

卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用

神經(jīng)網(wǎng)絡(luò)已經(jīng)廣泛應(yīng)用于圖像分類、目標(biāo)檢測、語義分割以及自然語言處理等領(lǐng)域。首先分析了典型卷積神經(jīng)網(wǎng)絡(luò)模型為提高其性能增加網(wǎng)絡(luò)深度以及寬度的模型結(jié)構(gòu),分析了采用注意力機(jī)制進(jìn)一步提升模型性能的網(wǎng)絡(luò)結(jié)構(gòu),然后歸納
2022-08-02 10:39:39

卷積神經(jīng)網(wǎng)絡(luò)的層級(jí)結(jié)構(gòu)和常用框架

  卷積神經(jīng)網(wǎng)絡(luò)的層級(jí)結(jié)構(gòu)  卷積神經(jīng)網(wǎng)絡(luò)的常用框架
2020-12-29 06:16:44

卷積神經(jīng)網(wǎng)絡(luò)簡介:什么是機(jī)器學(xué)習(xí)?

復(fù)雜數(shù)據(jù)中提取特征的強(qiáng)大工具。例如,這包括音頻信號(hào)或圖像中的復(fù)雜模式識(shí)別。本文討論了 CNN 相對(duì)于經(jīng)典線性規(guī)劃的優(yōu)勢。后續(xù)文章“訓(xùn)練卷積神經(jīng)網(wǎng)絡(luò):什么是機(jī)器學(xué)習(xí)?——第2部分”將討論如何訓(xùn)練CNN
2023-02-23 20:11:10

卷積神經(jīng)網(wǎng)絡(luò)(CNN)是如何定義的?

什么是卷積神經(jīng)網(wǎng)絡(luò)?ImageNet-2010網(wǎng)絡(luò)結(jié)構(gòu)是如何構(gòu)成的?有哪些基本參數(shù)?
2021-06-17 11:48:22

基于深度神經(jīng)網(wǎng)絡(luò)的激光雷達(dá)物體識(shí)別系統(tǒng)

的激光雷達(dá)物體識(shí)別技術(shù)一直難以在嵌入式平臺(tái)上實(shí)時(shí)運(yùn)行。經(jīng)緯恒潤經(jīng)過潛心研發(fā),攻克了深度神經(jīng)網(wǎng)絡(luò)在嵌入式平臺(tái)部署所面臨的算子定制與加速、量化策略、模型壓縮等難題,率先實(shí)現(xiàn)了高性能激光檢測神經(jīng)網(wǎng)絡(luò)并成功地在嵌入式平臺(tái)(德州儀TI TDA4系列)上完成部署。系統(tǒng)功能目前該系統(tǒng):?支持接入禾賽Pandar 40和
2021-12-21 07:59:18

基于深度神經(jīng)網(wǎng)絡(luò)的激光雷達(dá)物體識(shí)別系統(tǒng)及其嵌入式平臺(tái)部署

基于深度神經(jīng)網(wǎng)絡(luò)的激光雷達(dá)物體識(shí)別系統(tǒng)及其嵌入式平臺(tái)部署
2021-01-04 06:26:23

基于BP神經(jīng)網(wǎng)絡(luò)的PID控制

最近在學(xué)習(xí)電機(jī)的智能控制,上周學(xué)習(xí)了基于單神經(jīng)元的PID控制,這周研究基于BP神經(jīng)網(wǎng)絡(luò)的PID控制。神經(jīng)網(wǎng)絡(luò)具有任意非線性表達(dá)能力,可以通過對(duì)系統(tǒng)性能的學(xué)習(xí)來實(shí)現(xiàn)具有最佳組合的PID控制。利用BP
2021-09-07 07:43:47

基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評(píng)估及局限性

FPGA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)關(guān)鍵問題分析基于FPGA的ANN實(shí)現(xiàn)方法基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評(píng)估及局限性
2021-04-30 06:58:13

基于賽靈思FPGA的卷積神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)設(shè)計(jì)

FPGA 上實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò) (CNN)。CNN 是一類深度神經(jīng)網(wǎng)絡(luò),在處理大規(guī)模圖像識(shí)別任務(wù)以及與機(jī)器學(xué)習(xí)類似的其他問題方面已大獲成功。在當(dāng)前案例中,針對(duì)在 FPGA 上實(shí)現(xiàn) CNN 做一個(gè)可行性研究
2019-06-19 07:24:41

如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)?

如何用stm32cube.ai簡化人工神經(jīng)網(wǎng)絡(luò)映射?如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)?
2021-10-11 08:05:42

如何構(gòu)建神經(jīng)網(wǎng)絡(luò)

原文鏈接:http://tecdat.cn/?p=5725 神經(jīng)網(wǎng)絡(luò)是一種基于現(xiàn)有數(shù)據(jù)創(chuàng)建預(yù)測的計(jì)算系統(tǒng)。如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)包括:輸入層:根據(jù)現(xiàn)有數(shù)據(jù)獲取輸入的層隱藏層:使用反向傳播優(yōu)化輸入變量權(quán)重的層,以提高模型的預(yù)測能力輸出層:基于輸入和隱藏層的數(shù)據(jù)輸出預(yù)測
2021-07-12 08:02:11

如何用卷積神經(jīng)網(wǎng)絡(luò)方法去解決機(jī)器監(jiān)督學(xué)習(xí)下面的分類問題?

人工智能下面有哪些機(jī)器學(xué)習(xí)分支?如何用卷積神經(jīng)網(wǎng)絡(luò)(CNN)方法去解決機(jī)器學(xué)習(xí)監(jiān)督學(xué)習(xí)下面的分類問題?
2021-06-16 08:09:03

如何設(shè)計(jì)BP神經(jīng)網(wǎng)絡(luò)圖像壓縮算法?

稱為BP神經(jīng)網(wǎng)絡(luò)。采用BP神經(jīng)網(wǎng)絡(luò)模型能完成圖像數(shù)據(jù)的壓縮處理。在圖像壓縮中,神經(jīng)網(wǎng)絡(luò)的處理優(yōu)勢在于:巨量并行性;信息處理和存儲(chǔ)單元結(jié)合在一起;自組織自學(xué)習(xí)功能。與傳統(tǒng)的數(shù)字信號(hào)處理器DSP
2019-08-08 06:11:30

容差模擬電路軟故障診斷的小波與量子神經(jīng)網(wǎng)絡(luò)方法設(shè)計(jì)

中,從而減少故障識(shí)別的不確定度,提高模式識(shí)別的準(zhǔn)確性。文章提出了容差模擬電路軟故障診斷的小波與量子神經(jīng)網(wǎng)絡(luò)方法,利用MonteCarlo分析解決電路容差問題,又利用小波分析,取其能反映故障信號(hào)特征
2019-07-05 08:06:02

小波神經(jīng)網(wǎng)絡(luò)在汽車電控汽油機(jī)故障診斷中的應(yīng)用是什么?

本文對(duì)小波神經(jīng)網(wǎng)絡(luò)提出了兩個(gè)方面的改進(jìn)并將其應(yīng)用于汽車電控汽油機(jī)故障診斷中。
2021-05-19 07:10:45

嵌入式中的人工神經(jīng)網(wǎng)絡(luò)的相關(guān)資料分享

設(shè)備沒有連接的時(shí)候。 在這種情況下,需要一個(gè)能夠?qū)崟r(shí)進(jìn)行信號(hào)預(yù)處理和執(zhí)行神經(jīng)網(wǎng)絡(luò)的平臺(tái),需要最低功耗,尤其是在一個(gè)電池設(shè)備上運(yùn)行的時(shí)候。通過使用不同的工具(如 python 腳本) ,可以訓(xùn)練一個(gè)數(shù)...
2021-11-09 08:06:27

求助基于labview的神經(jīng)網(wǎng)絡(luò)pid控制

小女子做基于labview的蒸發(fā)過程中液位的控制,想使用神經(jīng)網(wǎng)絡(luò)pid控制,請(qǐng)問這個(gè)控制方法可以嗎?有誰會(huì)神經(jīng)網(wǎng)絡(luò)pid控制么。。。叩謝
2016-09-23 13:43:16

離散小波轉(zhuǎn)換(DWT)深度神經(jīng)網(wǎng)絡(luò)是什么

2018年全球第三大風(fēng)力發(fā)電機(jī)制造商論文下載地址:https://arxiv.org/pdf/1902.05625v1.pdf論文代碼地址:https://github.com/BinhangYuan/WaveletFCNN需要簡單儲(chǔ)備的知識(shí)離散小波轉(zhuǎn)換(DWT)深度神經(jīng)網(wǎng)絡(luò)回顧離散小波變
2021-07-12 07:38:36

解析深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)原理與視覺實(shí)踐

解析深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)原理與視覺實(shí)踐
2020-06-14 22:21:12

輕量化神經(jīng)網(wǎng)絡(luò)的相關(guān)資料下載

原文鏈接:【嵌入式AI部署&基礎(chǔ)網(wǎng)絡(luò)篇】輕量化神經(jīng)網(wǎng)絡(luò)精述--MobileNet V1-3、ShuffleNet V1-2、NasNet深度神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用在圖像分類、物體檢測等機(jī)器
2021-12-14 07:35:25

非局部神經(jīng)網(wǎng)絡(luò),打造未來神經(jīng)網(wǎng)絡(luò)基本組件

`將非局部計(jì)算作為獲取長時(shí)記憶的通用模塊,提高神經(jīng)網(wǎng)絡(luò)性能在深度神經(jīng)網(wǎng)絡(luò)中,獲取長時(shí)記憶(long-range dependency)至關(guān)重要。對(duì)于序列數(shù)據(jù)(例如語音、語言),遞歸運(yùn)算
2018-11-12 14:52:50

神經(jīng)網(wǎng)絡(luò)在入侵檢測系統(tǒng)中的應(yīng)用

本文簡要分析了當(dāng)前的幾種入侵檢測方法,指出了將神經(jīng)網(wǎng)絡(luò)應(yīng)用于入侵檢測系統(tǒng)的優(yōu)越性。重點(diǎn)介紹了LVQ神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)及其學(xué)習(xí)算法,提出了將LVQ 神經(jīng)網(wǎng)絡(luò)用于入侵檢測系統(tǒng)的
2009-06-04 10:25:2025

神經(jīng)網(wǎng)絡(luò)電力電子裝置故障診斷技術(shù)

提出了一種基于神經(jīng)網(wǎng)絡(luò)故障診斷新方法。研究了基于波形直接分析和BP神經(jīng)網(wǎng)絡(luò)的電力電子整流裝置故障診斷方法。以三相橋式可控整流電路晶閘管斷路故障為例,通過對(duì)一個(gè)
2009-06-19 08:17:2418

基于神經(jīng)網(wǎng)絡(luò)的傳感器故障監(jiān)測與診斷方法研究

提出了一種基于神經(jīng)網(wǎng)絡(luò)的傳感器故障監(jiān)測與診斷的新方法. 該方法先用BP 網(wǎng)絡(luò)的預(yù)測輸出和傳感器實(shí)際輸出之差來判斷傳感器是否發(fā)生了故障,然后用函數(shù)型連接神經(jīng)網(wǎng)絡(luò)模擬傳
2009-06-23 08:57:0327

基于神經(jīng)網(wǎng)絡(luò)的傳感器故障監(jiān)測與診斷方法研究

提出了一種基于神經(jīng)網(wǎng)絡(luò)的傳感器故障監(jiān)測與診斷的新方法. 該方法先用BP 網(wǎng)絡(luò)的預(yù)測輸出和傳感器實(shí)際輸出之差來判斷傳感器是否發(fā)生了故障,然后用函數(shù)型連接神經(jīng)網(wǎng)絡(luò)模擬傳
2009-07-04 11:14:5318

傳感器故障檢測的Powell神經(jīng)網(wǎng)絡(luò)方法

大型熱力控制系統(tǒng)必須能夠檢測傳感器故障,并采取相應(yīng)的措施,保證控制過程的順利進(jìn)行。提出了一種基于Powell 神經(jīng)網(wǎng)絡(luò)故障檢測方法,為系統(tǒng)中每一個(gè)傳感器構(gòu)造一個(gè)神經(jīng)網(wǎng)絡(luò)
2009-07-07 09:21:076

基于神經(jīng)網(wǎng)絡(luò)的局域網(wǎng)故障診斷系統(tǒng)設(shè)計(jì)

為了實(shí)現(xiàn)準(zhǔn)確有效地排除網(wǎng)絡(luò)故障,根據(jù)局域網(wǎng)的特點(diǎn),本文在分析現(xiàn)有計(jì)算機(jī)網(wǎng)絡(luò)故障診斷方法不足的基礎(chǔ)上,結(jié)合層次分類神經(jīng)網(wǎng)絡(luò)原理,提出了基于層次分類BP 神經(jīng)網(wǎng)絡(luò)算法
2009-09-24 10:20:5212

一種基于傅里葉基神經(jīng)網(wǎng)絡(luò)的頻譜分析方法

該文提出了一種用遞推最小二乘法訓(xùn)練傅里葉基神經(jīng)網(wǎng)絡(luò)權(quán)值的頻譜分析方法。其主要思想是采用遞推最小二乘法訓(xùn)練傅里葉基神經(jīng)網(wǎng)絡(luò)權(quán)值,根據(jù)權(quán)值獲得信號(hào)的幅度譜和相位譜
2009-11-11 15:52:3616

基于量子神經(jīng)網(wǎng)絡(luò)的模擬電路的軟故障診斷

提出了基于小波與量子神經(jīng)網(wǎng)絡(luò)的容差模擬電路的軟故障診斷方法, 它能將故障的不確定性數(shù)據(jù)合理地分配到各類中,從而減少故障檢測的不確定度, 提高故障檢測的診斷率,克服
2009-12-23 11:30:108

基于H-BP神經(jīng)網(wǎng)絡(luò)的設(shè)備故障診斷方法

BP 神經(jīng)網(wǎng)絡(luò)在訓(xùn)練過程中容易出現(xiàn)局部最小從而無法獲得最優(yōu)解,在進(jìn)行故障診斷時(shí)還會(huì)出現(xiàn)誤判的情況。針對(duì)這一問題,本文提出H-BP,簡神經(jīng)網(wǎng)絡(luò)故障診斷方法,該網(wǎng)絡(luò)結(jié)合Hop
2009-12-23 12:01:0910

基于灰色關(guān)聯(lián)分析神經(jīng)網(wǎng)絡(luò)模型

在BP 神經(jīng)網(wǎng)絡(luò)算法的基礎(chǔ)上,針對(duì)在多變量復(fù)雜系統(tǒng)建模過程中BP 網(wǎng)絡(luò)輸入變量無法自動(dòng)尋優(yōu)的問題,將其與灰色關(guān)聯(lián)分析方法結(jié)合,建立基于灰色關(guān)聯(lián)分析神經(jīng)網(wǎng)絡(luò)優(yōu)化算法(GM2BPANN)
2010-01-03 17:01:2315

RBF神經(jīng)網(wǎng)絡(luò)變速箱齒輪故障診斷

提出了徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)應(yīng)用于變速箱齒輪故障診斷的基本方法 利用345647 神經(jīng)網(wǎng)絡(luò)工具箱對(duì)變速箱齒輪進(jìn)行故障診斷仿真并創(chuàng)建神經(jīng)網(wǎng)絡(luò)與(神經(jīng)網(wǎng)絡(luò)來進(jìn)行故障診斷$ 通過對(duì)比診斷結(jié)果證明網(wǎng)絡(luò)在診斷精度診斷速度上均優(yōu)于 網(wǎng)絡(luò)網(wǎng)絡(luò)應(yīng)用于齒 輪的故障診斷準(zhǔn)確
2011-02-11 14:04:1032

基于動(dòng)態(tài)神經(jīng)網(wǎng)絡(luò)的交通事件檢測算法

本文將一種新型的動(dòng)態(tài) 神經(jīng)網(wǎng)絡(luò) 結(jié)構(gòu)與傳統(tǒng)的基于狀態(tài)估計(jì)的故障檢測方法相結(jié)合, 提出了一種基于動(dòng)態(tài)神經(jīng)網(wǎng)絡(luò)的交通事件檢測算法。該網(wǎng)絡(luò)借鑒靜態(tài)BP 網(wǎng)絡(luò)的訓(xùn)練算法, 并針對(duì)其訓(xùn)
2011-07-26 15:36:3826

基于免疫神經(jīng)網(wǎng)絡(luò)故障檢測方法

提出了一種基于徑向基函數(shù)(RBF) 免疫神經(jīng)網(wǎng)絡(luò)故障檢測方法,該故障檢測方法由系統(tǒng)辨識(shí)、殘差過濾和故障報(bào)警濃度等功能模塊構(gòu)成。系統(tǒng)辨識(shí)基于免疫RBF神經(jīng)網(wǎng)絡(luò),用于故障檢測的殘
2011-07-27 16:51:2122

一種基于深度神經(jīng)網(wǎng)絡(luò)的基音檢測算法

一種基于深度神經(jīng)網(wǎng)絡(luò)的基音檢測算法_曹猛
2017-01-07 19:08:430

基于神經(jīng)網(wǎng)絡(luò)的聚類方法研究_胡偉

基于神經(jīng)網(wǎng)絡(luò)的聚類方法研究_胡偉
2017-03-16 09:37:530

神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)》講義

神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)》講義
2017-07-20 08:58:240

基于深度卷積神經(jīng)網(wǎng)絡(luò)的航空器目標(biāo)檢測與識(shí)別

針對(duì)軍用機(jī)場大尺寸衛(wèi)星圖像中航空器檢測識(shí)別的具體應(yīng)用場景,建立了一套實(shí)時(shí)目標(biāo)檢測識(shí)別框架,將深度卷積神經(jīng)網(wǎng)絡(luò)應(yīng)用到大尺寸圖像中的航空器目標(biāo)檢測與識(shí)別任務(wù)中。首先,將目標(biāo)檢測的任務(wù)看成空間上獨(dú)立
2017-12-01 15:55:090

基于虛擬化的多GPU深度神經(jīng)網(wǎng)絡(luò)訓(xùn)練框架

針對(duì)深度神經(jīng)網(wǎng)絡(luò)在分布式多機(jī)多GPU上的加速訓(xùn)練問題,提出一種基于虛擬化的遠(yuǎn)程多GPU調(diào)用的實(shí)現(xiàn)方法。利用遠(yuǎn)程GPU調(diào)用部署的分布式GPU集群改進(jìn)傳統(tǒng)一對(duì)一的虛擬化技術(shù),同時(shí)改變深度神經(jīng)網(wǎng)絡(luò)在分布式
2018-03-29 16:45:250

【人工神經(jīng)網(wǎng)絡(luò)基礎(chǔ)】為什么神經(jīng)網(wǎng)絡(luò)選擇了“深度”?

由 Demi 于 星期四, 2018-09-06 09:33 發(fā)表 現(xiàn)在提到“神經(jīng)網(wǎng)絡(luò)”和“深度神經(jīng)網(wǎng)絡(luò)”,會(huì)覺得兩者沒有什么區(qū)別,神經(jīng)網(wǎng)絡(luò)還能不是“深度”(deep)的嗎?我們常用
2018-09-06 20:48:01557

快速了解神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)的教程資料免費(fèi)下載

本文檔的詳細(xì)介紹的是快速了解神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)的教程資料免費(fèi)下載主要內(nèi)容包括了:機(jī)器學(xué)習(xí)概述,線性模型,前饋神經(jīng)網(wǎng)絡(luò),卷積神經(jīng)網(wǎng)絡(luò),循環(huán)神經(jīng)網(wǎng)絡(luò)網(wǎng)絡(luò)優(yōu)化與正則化,記憶與注意力機(jī)制,無監(jiān)督學(xué)習(xí),概率圖模型,玻爾茲曼機(jī),深度信念網(wǎng)絡(luò),深度生成模型,深度強(qiáng)化學(xué)習(xí)
2019-02-11 08:00:0025

基于深度神經(jīng)網(wǎng)絡(luò)的文本分類分析

  隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展,許多研究者嘗試?yán)?b class="flag-6" style="color: red">深度學(xué)習(xí)來解決文本分類問題,特別是在卷積神經(jīng)網(wǎng)絡(luò)和循環(huán)神經(jīng)網(wǎng)絡(luò)方面,出現(xiàn)了許多新穎且有效的分類方法。對(duì)基于深度神經(jīng)網(wǎng)絡(luò)的文本分類問題進(jìn)行分析,介紹
2021-03-10 16:56:5636

神經(jīng)網(wǎng)絡(luò)方法學(xué)習(xí)課件免費(fèi)下載

  本文檔的主要內(nèi)容詳細(xì)介紹的是神經(jīng)網(wǎng)絡(luò)方法學(xué)習(xí)課件免費(fèi)下載包括了:神經(jīng)網(wǎng)絡(luò)發(fā)展史,神經(jīng)網(wǎng)絡(luò)理論基礎(chǔ),深度神經(jīng)網(wǎng)絡(luò)進(jìn)展,發(fā)展趨勢與展望
2021-03-11 10:10:3716

一種改進(jìn)的深度神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索方法

為提升網(wǎng)絡(luò)結(jié)構(gòu)的尋優(yōu)能力,提岀一種改進(jìn)的深度神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索方法。針對(duì)網(wǎng)絡(luò)結(jié)構(gòu)間距難以度量的問題,結(jié)合神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)搜索方案,設(shè)計(jì)基于圖的深度神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)間距度量方式。對(duì)少量步數(shù)訓(xùn)練和充分訓(xùn)練
2021-03-16 14:05:463

分析總結(jié)基于深度神經(jīng)網(wǎng)絡(luò)的圖像語義分割方法

隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展及其在語義分割領(lǐng)域的廣泛應(yīng)用,語義分割效果得到顯著提升。對(duì)基于深度神經(jīng)網(wǎng)絡(luò)的圖像語義分割方法進(jìn)行分析與總結(jié),根據(jù)網(wǎng)絡(luò)訓(xùn)練方式的不同,將現(xiàn)有的圖像語義分割分為全監(jiān)督學(xué)習(xí)圖像
2021-03-19 14:14:0621

綜述深度神經(jīng)網(wǎng)絡(luò)的解釋方法及發(fā)展趨勢

、醫(yī)藥、交通等髙風(fēng)險(xiǎn)決策領(lǐng)域?qū)?b class="flag-6" style="color: red">深度神經(jīng)網(wǎng)絡(luò)可解釋性提岀的強(qiáng)烈要求,對(duì)卷積神經(jīng)網(wǎng)絡(luò)、循環(huán)神經(jīng)網(wǎng)絳生成對(duì)抗網(wǎng)絡(luò)等典型網(wǎng)絡(luò)的解釋方法進(jìn)行分析梳理,總結(jié)并比較現(xiàn)有的解釋方法,同時(shí)結(jié)合目前深度神經(jīng)網(wǎng)絡(luò)的發(fā)展趨勢,對(duì)其
2021-03-21 09:48:2318

綜述深度學(xué)習(xí)的卷積神經(jīng)網(wǎng)絡(luò)模型應(yīng)用及發(fā)展

上逐步提高。由于可以自動(dòng)學(xué)習(xí)樣本數(shù)據(jù)的特征表示,卷積神經(jīng)網(wǎng)絡(luò)已經(jīng)廣泛應(yīng)用于圖像分類、目標(biāo)檢測、語乂分割以及自然語言處理等領(lǐng)域。首先分析了典型卷積神經(jīng)網(wǎng)絡(luò)模型為提髙其性能増加網(wǎng)絡(luò)深度以及寬度的模型結(jié)構(gòu),分析了采用注
2021-04-02 15:29:0420

基于卷積神經(jīng)網(wǎng)絡(luò)的雷達(dá)目標(biāo)檢測方法綜述

基于卷積神經(jīng)網(wǎng)絡(luò)的雷達(dá)目標(biāo)檢測方法綜述
2021-06-23 14:43:0161

基于深度神經(jīng)網(wǎng)絡(luò)的多領(lǐng)域?qū)崟r(shí)目標(biāo)檢測算法

基于深度神經(jīng)網(wǎng)絡(luò)的目標(biāo)檢測器不斷發(fā)展,并用于多種應(yīng)用,每個(gè)應(yīng)用都有自己的一組要求。安全關(guān)鍵型的應(yīng)用程序需要高精度和可靠性,而低延遲的任務(wù)需要節(jié)約資源的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)。
2022-11-04 17:27:041060

什么是神經(jīng)網(wǎng)絡(luò)?什么是卷積神經(jīng)網(wǎng)絡(luò)?

在介紹卷積神經(jīng)網(wǎng)絡(luò)之前,我們先回顧一下神經(jīng)網(wǎng)絡(luò)的基本知識(shí)。就目前而言,神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)算法的核心,我們所熟知的很多深度學(xué)習(xí)算法的背后其實(shí)都是神經(jīng)網(wǎng)絡(luò)
2023-02-23 09:14:442256

淺析三種主流深度神經(jīng)網(wǎng)絡(luò)

來源:青榴實(shí)驗(yàn)室 1、引子 深度神經(jīng)網(wǎng)絡(luò)(DNNs)最近在圖像分類或語音識(shí)別等復(fù)雜機(jī)器學(xué)習(xí)任務(wù)中表現(xiàn)出的優(yōu)異性能令人印象深刻。 在本文中,我們將了解深度神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識(shí)和三個(gè)最流行神經(jīng)網(wǎng)絡(luò):多層
2023-05-15 14:20:01550

三個(gè)最流行神經(jīng)網(wǎng)絡(luò)

在本文中,我們將了解深度神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識(shí)和三個(gè)最流行神經(jīng)網(wǎng)絡(luò):多層神經(jīng)網(wǎng)絡(luò)(MLP),卷積神經(jīng)網(wǎng)絡(luò)(CNN)和遞歸神經(jīng)網(wǎng)絡(luò)(RNN)。
2023-05-15 14:19:181096

淺析三種主流深度神經(jīng)網(wǎng)絡(luò)

來源:青榴實(shí)驗(yàn)室1、引子深度神經(jīng)網(wǎng)絡(luò)(DNNs)最近在圖像分類或語音識(shí)別等復(fù)雜機(jī)器學(xué)習(xí)任務(wù)中表現(xiàn)出的優(yōu)異性能令人印象深刻。在本文中,我們將了解深度神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識(shí)和三個(gè)最流行神經(jīng)網(wǎng)絡(luò):多層神經(jīng)網(wǎng)絡(luò)
2023-05-17 09:59:19946

卷積神經(jīng)網(wǎng)絡(luò)原理:卷積神經(jīng)網(wǎng)絡(luò)模型和卷積神經(jīng)網(wǎng)絡(luò)算法

卷積神經(jīng)網(wǎng)絡(luò)原理:卷積神經(jīng)網(wǎng)絡(luò)模型和卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種基于深度學(xué)習(xí)的人工神經(jīng)網(wǎng)絡(luò),是深度學(xué)習(xí)技術(shù)的重要應(yīng)用之
2023-08-17 16:30:30806

卷積神經(jīng)網(wǎng)絡(luò)的工作原理 卷積神經(jīng)網(wǎng)絡(luò)通俗解釋

。CNN可以幫助人們實(shí)現(xiàn)許多有趣的任務(wù),如圖像分類、物體檢測、語音識(shí)別、自然語言處理和視頻分析等。本文將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)的工作原理并用通俗易懂的語言解釋。 1.概述 卷積神經(jīng)網(wǎng)絡(luò)是一個(gè)由神經(jīng)元構(gòu)成的深度神經(jīng)網(wǎng)絡(luò),由輸入層、隱藏層和輸出層組成。在卷積神經(jīng)網(wǎng)絡(luò)中,
2023-08-21 16:49:242216

卷積神經(jīng)網(wǎng)絡(luò)深度神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn) 卷積神經(jīng)網(wǎng)絡(luò)深度神經(jīng)網(wǎng)絡(luò)的區(qū)別

深度神經(jīng)網(wǎng)絡(luò)是一種基于神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)算法,其主要特點(diǎn)是由多層神經(jīng)元構(gòu)成,可以根據(jù)數(shù)據(jù)自動(dòng)調(diào)整神經(jīng)元之間的權(quán)重,從而實(shí)現(xiàn)對(duì)大規(guī)模數(shù)據(jù)進(jìn)行預(yù)測和分類。卷積神經(jīng)網(wǎng)絡(luò)深度神經(jīng)網(wǎng)絡(luò)的一種,主要應(yīng)用于圖像和視頻處理領(lǐng)域。
2023-08-21 17:07:361869

淺析深度神經(jīng)網(wǎng)絡(luò)壓縮與加速技術(shù)

深度神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)的一種框架,它是一種具備至少一個(gè)隱層的神經(jīng)網(wǎng)絡(luò)。與淺層神經(jīng)網(wǎng)絡(luò)類似
2023-10-11 09:14:33363

已全部加載完成