電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>人工智能>基于神經(jīng)架構(gòu)搜索的網(wǎng)絡(luò)模型

基于神經(jīng)架構(gòu)搜索的網(wǎng)絡(luò)模型

收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

評論

查看更多

相關(guān)推薦

漸進式神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索技術(shù)

我們提出一種學(xué)習(xí)卷積神經(jīng)網(wǎng)絡(luò)(CNN)結(jié)構(gòu)的新方法,該方法比現(xiàn)有的基于強化學(xué)習(xí)和進化算法的技術(shù)更有效。使用了基于序列模型的優(yōu)化(SMBO)策略,在這種策略中,按照增加的復(fù)雜性對結(jié)構(gòu)進行搜索,同時學(xué)習(xí)代理模型(surrogate model)來引導(dǎo)在結(jié)構(gòu)空間中的搜索
2018-08-03 09:32:325215

探討神經(jīng)網(wǎng)絡(luò)基本架構(gòu):單元/神經(jīng)元、連接/權(quán)重/參數(shù)、偏置項

WarrenMcCulloch 和 Walter Pitts 于 1943 年首次建立的神經(jīng)網(wǎng)絡(luò)模型。他們的模型完全基于數(shù)學(xué)和算法,由于缺乏計算資源,模型無法測試。 后來,在 1958 年,F(xiàn)rank Rosenblatt 創(chuàng)建了第一個可以進行模式識別的模型,改變了現(xiàn)狀。即感知器。但是他
2020-10-08 00:12:006620

神經(jīng)網(wǎng)絡(luò)模型用于解決什么樣的問題 神經(jīng)網(wǎng)絡(luò)模型有哪些

神經(jīng)網(wǎng)絡(luò)模型是一種機器學(xué)習(xí)模型,可以用于解決各種問題,尤其是在自然語言處理領(lǐng)域中,應(yīng)用十分廣泛。具體來說,神經(jīng)網(wǎng)絡(luò)模型可以用于以下幾個方面: 語言模型建模:神經(jīng)網(wǎng)絡(luò)模型可以通過學(xué)習(xí)歷史文本數(shù)據(jù)來預(yù)測
2023-08-03 16:37:093435

神經(jīng)網(wǎng)絡(luò)教程(李亞非)

  第1章 概述  1.1 人工神經(jīng)網(wǎng)絡(luò)研究與發(fā)展  1.2 生物神經(jīng)元  1.3 人工神經(jīng)網(wǎng)絡(luò)的構(gòu)成  第2章人工神經(jīng)網(wǎng)絡(luò)基本模型  2.1 MP模型  2.2 感知器模型  2.3 自適應(yīng)線性
2012-03-20 11:32:43

神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索有什么優(yōu)勢?

近年來,深度學(xué)習(xí)的繁榮,尤其是神經(jīng)網(wǎng)絡(luò)的發(fā)展,顛覆了傳統(tǒng)機器學(xué)習(xí)特征工程的時代,將人工智能的浪潮推到了歷史最高點。然而,盡管各種神經(jīng)網(wǎng)絡(luò)模型層出不窮,但往往模型性能越高,對超參數(shù)的要求也越來越嚴格
2019-09-11 11:52:14

神經(jīng)網(wǎng)絡(luò)解決方案讓自動駕駛成為現(xiàn)實

汽車制造業(yè)進入神經(jīng)網(wǎng)絡(luò)領(lǐng)域所習(xí)得的經(jīng)驗不斷推動技術(shù)的發(fā)展,并因此開發(fā)出了更先進的網(wǎng)絡(luò)架構(gòu)及更復(fù)雜的拓撲,如每級多層拓撲、多入/多出及全卷積網(wǎng)絡(luò)。新推出的重要網(wǎng)絡(luò)類型不僅可用來識別物體,也可用來識別場景
2017-12-21 17:11:34

AutoML和神經(jīng)架構(gòu)搜索介紹

AutoMl及NAS概述:更有效地設(shè)計神經(jīng)網(wǎng)絡(luò)模型工具
2019-09-04 06:37:40

BP神經(jīng)網(wǎng)絡(luò)PID控制電機模型仿真

求一個simulink的蓄電池用BP神經(jīng)網(wǎng)絡(luò)PID控制電機加速勻速減速運動的模型仿真
2020-02-22 02:17:03

Keras之ML~P:基于Keras中建立的回歸預(yù)測的神經(jīng)網(wǎng)絡(luò)模型

Keras之ML~P:基于Keras中建立的回歸預(yù)測的神經(jīng)網(wǎng)絡(luò)模型(根據(jù)200個數(shù)據(jù)樣本預(yù)測新的5+1個樣本)——回歸預(yù)測
2018-12-20 10:43:06

Keras之ML~P:基于Keras中建立的簡單的二分類問題的神經(jīng)網(wǎng)絡(luò)模型

Keras之ML~P:基于Keras中建立的簡單的二分類問題的神經(jīng)網(wǎng)絡(luò)模型(根據(jù)200個數(shù)據(jù)樣本預(yù)測新的5個樣本)——概率預(yù)測
2018-12-20 10:44:40

Keras可視化神經(jīng)網(wǎng)絡(luò)架構(gòu)的4種方法

我們在使用卷積神經(jīng)網(wǎng)絡(luò)或遞歸神經(jīng)網(wǎng)絡(luò)或其他變體時,通常都希望對模型架構(gòu)可以進行可視化的查看,因為這樣我們可以 在定義和訓(xùn)練多個模型時,比較不同的層以及它們放置的順序?qū)Y(jié)果的影響。還有可以更好地理
2022-11-02 14:55:04

Qualcomm最新推出的神經(jīng)處理引擎

Processing Engine(NPE) SDK主要是幫助開發(fā)者在驍龍移動平臺的Caffe/Caffe2或TensorFlow上運行一個或者幾個被訓(xùn)練過的神經(jīng)網(wǎng)絡(luò)模型.幫助開發(fā)者節(jié)省時間并且優(yōu)化在驍龍設(shè)備上
2018-09-27 09:58:39

matlab實現(xiàn)神經(jīng)網(wǎng)絡(luò) 精選資料分享

習(xí)神經(jīng)神經(jīng)網(wǎng)絡(luò),對于神經(jīng)網(wǎng)絡(luò)的實現(xiàn)是如何一直沒有具體實現(xiàn)一下:現(xiàn)看到一個簡單的神經(jīng)網(wǎng)絡(luò)模型用于訓(xùn)練的輸入數(shù)據(jù):對應(yīng)的輸出數(shù)據(jù):我們這里設(shè)置:1:節(jié)點個數(shù)設(shè)置:輸入層、隱層、輸出層的節(jié)點
2021-08-18 07:25:21

《 AI加速器架構(gòu)設(shè)計與實現(xiàn)》+第一章卷積神經(jīng)網(wǎng)絡(luò)觀后感

《 AI加速器架構(gòu)設(shè)計與實現(xiàn)》+第一章卷積神經(jīng)網(wǎng)絡(luò)觀感 ? ?在本書的引言中也提到“一圖勝千言”,讀完第一章節(jié)后,對其進行了一些歸納(如圖1),第一章對常見的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)進行了介紹,舉例了一些結(jié)構(gòu)
2023-09-11 20:34:01

【AI學(xué)習(xí)】第3篇--人工神經(jīng)網(wǎng)絡(luò)

`本篇主要介紹:人工神經(jīng)網(wǎng)絡(luò)的起源、簡單神經(jīng)網(wǎng)絡(luò)模型、更多神經(jīng)網(wǎng)絡(luò)模型、機器學(xué)習(xí)的步驟:訓(xùn)練與預(yù)測、訓(xùn)練的兩階段:正向推演與反向傳播、以TensorFlow + Excel表達訓(xùn)練流程以及AI普及化教育之路。`
2020-11-05 17:48:39

【PYNQ-Z2試用體驗】神經(jīng)網(wǎng)絡(luò)基礎(chǔ)知識

學(xué)習(xí)和認知科學(xué)領(lǐng)域,是一種模仿生物神經(jīng)網(wǎng)絡(luò)(動物的中樞神經(jīng)系統(tǒng),特別是大腦)的結(jié)構(gòu)和功能的數(shù)學(xué)模型或計算模型,用于對函數(shù)進行估計或近似。神經(jīng)網(wǎng)絡(luò)由大量的人工神經(jīng)元聯(lián)結(jié)進行計算。大多數(shù)情況下人工神經(jīng)網(wǎng)絡(luò)
2019-03-03 22:10:19

【案例分享】ART神經(jīng)網(wǎng)絡(luò)與SOM神經(jīng)網(wǎng)絡(luò)

今天學(xué)習(xí)了兩個神經(jīng)網(wǎng)絡(luò),分別是自適應(yīng)諧振(ART)神經(jīng)網(wǎng)絡(luò)與自組織映射(SOM)神經(jīng)網(wǎng)絡(luò)。整體感覺不是很難,只不過一些最基礎(chǔ)的概念容易理解不清。首先ART神經(jīng)網(wǎng)絡(luò)是競爭學(xué)習(xí)的一個代表,競爭型學(xué)習(xí)
2019-07-21 04:30:00

【案例分享】基于BP算法的前饋神經(jīng)網(wǎng)絡(luò)

`BP神經(jīng)網(wǎng)絡(luò)首先給出只包含一個隱層的BP神經(jīng)網(wǎng)絡(luò)模型(兩層神經(jīng)網(wǎng)絡(luò)): BP神經(jīng)網(wǎng)絡(luò)其實由兩部分組成:前饋神經(jīng)網(wǎng)絡(luò)神經(jīng)網(wǎng)絡(luò)是前饋的,其權(quán)重都不回送到輸入單元,或前一層輸出單元(數(shù)據(jù)信息是單向
2019-07-21 04:00:00

人工神經(jīng)網(wǎng)絡(luò)實現(xiàn)方法有哪些?

人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決一些非線性,非平穩(wěn),復(fù)雜的實際問題。那有哪些辦法能實現(xiàn)人工神經(jīng)網(wǎng)絡(luò)呢?
2019-08-01 08:06:21

人工神經(jīng)網(wǎng)絡(luò)算法的學(xué)習(xí)方法與應(yīng)用實例(pdf彩版)

的基本處理單元,它是神經(jīng)網(wǎng)絡(luò)的設(shè)計基礎(chǔ)。神經(jīng)元是以生物的神經(jīng)系統(tǒng)的神經(jīng)細胞為基礎(chǔ)的生物模型。在人們對生物神經(jīng)系統(tǒng)進行研究,以探討人工智能的機制時,把神經(jīng)元數(shù)學(xué)化,從而產(chǎn)生了神經(jīng)元數(shù)學(xué)模型。因此,要了解人工神經(jīng)模型就必須先了解生物神經(jīng)元模型。`
2018-10-23 16:16:02

什么是LSTM神經(jīng)網(wǎng)絡(luò)

簡單理解LSTM神經(jīng)網(wǎng)絡(luò)
2021-01-28 07:16:57

從AlexNet到MobileNet,帶你入門深度神經(jīng)網(wǎng)絡(luò)

通過堆疊卷積層使得模型更深更寬,同時借助GPU使得訓(xùn)練再可接受的時間范圍內(nèi)得到結(jié)果,推動了卷積神經(jīng)網(wǎng)絡(luò)甚至是深度學(xué)習(xí)的發(fā)展。下面是AlexNet的架構(gòu):AlexNet的特點有:1.借助擁有1500萬標簽
2018-05-08 15:57:47

使用全卷積網(wǎng)絡(luò)模型實現(xiàn)圖像分割

OpenCv-C++-深度神經(jīng)網(wǎng)絡(luò)(DNN)模塊-使用FCN模型實現(xiàn)圖像分割
2019-05-28 07:33:35

關(guān)于BP神經(jīng)網(wǎng)絡(luò)預(yù)測模型的確定?。?/a>

華人團隊打造專為GAN量身定制架構(gòu)搜索方案AutoGAN

生成對抗網(wǎng)絡(luò)(GAN)自其誕生以來一直盛行。它的一個最顯著的成功在于是用各種各樣的卷積結(jié)構(gòu)生成逼真的自然圖像。 近年來,人們對自動設(shè)計復(fù)雜的神經(jīng)網(wǎng)絡(luò)架構(gòu)產(chǎn)生了濃厚的興趣。神經(jīng)架構(gòu)搜索(NAS)已經(jīng)
2020-11-30 07:29:18

卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用

卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用轉(zhuǎn)載****地址:http://fcst.ceaj.org/CN/abstract/abstract2521.shtml深度學(xué)習(xí)是機器學(xué)習(xí)和人工智能研究的最新趨勢,作為一個
2022-08-02 10:39:39

卷積神經(jīng)網(wǎng)絡(luò)如何使用

卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)在工程上經(jīng)歷了曲折的歷史,您為什么還會在意它呢? 對于這些非常中肯的問題,我們似乎可以給出相對簡明的答案。
2019-07-17 07:21:50

卷積神經(jīng)網(wǎng)絡(luò)的層級結(jié)構(gòu)和常用框架

  卷積神經(jīng)網(wǎng)絡(luò)的層級結(jié)構(gòu)  卷積神經(jīng)網(wǎng)絡(luò)的常用框架
2020-12-29 06:16:44

卷積神經(jīng)網(wǎng)絡(luò)簡介:什么是機器學(xué)習(xí)?

模型。第 3 部分將研究使用專用 AI 微控制器測試模型的特定用例。什么是卷積神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)是系統(tǒng)或神經(jīng)元結(jié)構(gòu),使人工智能能夠更好地理解數(shù)據(jù),使其能夠解決復(fù)雜的問題。雖然有許多網(wǎng)絡(luò)類型,但本系
2023-02-23 20:11:10

可分離卷積神經(jīng)網(wǎng)絡(luò)在 Cortex-M 處理器上實現(xiàn)關(guān)鍵詞識別

/激活要調(diào)節(jié)模型,使之不超出微控制器的內(nèi)存和計算限制范圍,必須執(zhí)行超參數(shù)搜索。下表顯示了神經(jīng)網(wǎng)絡(luò)架構(gòu)及必須優(yōu)化的相應(yīng)超參數(shù)。神經(jīng)網(wǎng)絡(luò)超參數(shù)搜索空間首先執(zhí)行特征提取和神經(jīng)網(wǎng)絡(luò)模型超參數(shù)的窮舉搜索,然后執(zhí)行
2021-07-26 09:46:37

在STM32上驗證神經(jīng)網(wǎng)絡(luò)模型

STM32CubeMx.AI的使用歡迎使用Markdown編輯器在STM32論壇中看到這樣一個視頻:在視頻中,在STM32上驗證神經(jīng)網(wǎng)絡(luò)模型(HAR人體活動識別),一般需要STM32-F3/F4/L4/F7/L7系列高性能單片機,運行網(wǎng)絡(luò)模型一般需要3MB以上的閃存空間,單片機顯然不支持這...
2021-08-03 06:59:41

如何使用TensorFlow將神經(jīng)網(wǎng)絡(luò)模型部署到移動或嵌入式設(shè)備上

有很多方法可以將經(jīng)過訓(xùn)練的神經(jīng)網(wǎng)絡(luò)模型部署到移動或嵌入式設(shè)備上。不同的框架在各種平臺上支持Arm,包括TensorFlow、PyTorch、Caffe2、MxNet和CNTK,如Android
2023-08-02 06:43:57

如何利用SoPC實現(xiàn)神經(jīng)網(wǎng)絡(luò)速度控制器?

由于時變非線性和強耦合的控制系統(tǒng)還沒有精確的數(shù)學(xué)模型,因而傳統(tǒng)的依賴被控對象數(shù)學(xué)模型的控制策略及其控制系統(tǒng)的封閉式結(jié)構(gòu)很難對其實施有效控制。神經(jīng)網(wǎng)絡(luò)控制能夠很好地克服系統(tǒng)中模型參數(shù)的變化和非線性等
2019-08-12 06:25:35

如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?

原文鏈接:http://tecdat.cn/?p=5725 神經(jīng)網(wǎng)絡(luò)是一種基于現(xiàn)有數(shù)據(jù)創(chuàng)建預(yù)測的計算系統(tǒng)。如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)包括:輸入層:根據(jù)現(xiàn)有數(shù)據(jù)獲取輸入的層隱藏層:使用反向傳播優(yōu)化輸入變量權(quán)重的層,以提高模型的預(yù)測能力輸出層:基于輸入和隱藏層的數(shù)據(jù)輸出預(yù)測
2021-07-12 08:02:11

如何設(shè)計BP神經(jīng)網(wǎng)絡(luò)圖像壓縮算法?

稱為BP神經(jīng)網(wǎng)絡(luò)。采用BP神經(jīng)網(wǎng)絡(luò)模型能完成圖像數(shù)據(jù)的壓縮處理。在圖像壓縮中,神經(jīng)網(wǎng)絡(luò)的處理優(yōu)勢在于:巨量并行性;信息處理和存儲單元結(jié)合在一起;自組織自學(xué)習(xí)功能。與傳統(tǒng)的數(shù)字信號處理器DSP
2019-08-08 06:11:30

求BP神經(jīng)網(wǎng)絡(luò)PID控制電機加速勻速減速運動的simulink的仿真模型

求一個simulink的蓄電池用BP神經(jīng)網(wǎng)絡(luò)PID控制電機加速勻速減速運動的模型仿真
2020-02-22 02:15:50

用matlab編程進行BP神經(jīng)網(wǎng)絡(luò)預(yù)測時如何確定最合適的,BP模型

請問用matlab編程進行BP神經(jīng)網(wǎng)絡(luò)預(yù)測時,訓(xùn)練結(jié)果很多都是合適的,但如何確定最合適的?且如何用最合適的BP模型進行外推預(yù)測?
2014-02-08 14:19:12

粒子群優(yōu)化模糊神經(jīng)網(wǎng)絡(luò)在語音識別中的應(yīng)用

針對模糊神經(jīng)網(wǎng)絡(luò)訓(xùn)練采用BP算法比較依賴于網(wǎng)絡(luò)的初始條件,訓(xùn)練時間較長,容易陷入局部極值的缺點,利用粒子群優(yōu)化算法(PSO)的全局搜索性能,將PSO用于模糊神經(jīng)網(wǎng)絡(luò)的訓(xùn)練過程.由于基本PSO算法存在
2010-05-06 09:05:35

請問Labveiw如何調(diào)用matlab訓(xùn)練好的神經(jīng)網(wǎng)絡(luò)模型呢?

我在matlab中訓(xùn)練好了一個神經(jīng)網(wǎng)絡(luò)模型,想在labview中調(diào)用,請問應(yīng)該怎么做呢?或者labview有自己的神經(jīng)網(wǎng)絡(luò)工具包嗎?
2018-07-05 17:32:32

輕量化神經(jīng)網(wǎng)絡(luò)的相關(guān)資料下載

原文鏈接:【嵌入式AI部署&基礎(chǔ)網(wǎng)絡(luò)篇】輕量化神經(jīng)網(wǎng)絡(luò)精述--MobileNet V1-3、ShuffleNet V1-2、NasNet深度神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用在圖像分類、物體檢測等機器
2021-12-14 07:35:25

人工神經(jīng)網(wǎng)絡(luò)導(dǎo)論

人工神經(jīng)網(wǎng)絡(luò)導(dǎo)論依照簡明易懂、便于軟件實現(xiàn)、鼓勵探索的原則介紹人工神經(jīng)網(wǎng)絡(luò)。內(nèi)容包括:智能系統(tǒng)描述模型、人工神經(jīng)網(wǎng)絡(luò)方法的特點;基本人工神經(jīng)元模型,人工神經(jīng)
2009-01-13 14:58:5755

基于模糊模式識別的超圓神經(jīng)網(wǎng)絡(luò)模型

模糊模式識別是模糊集理論研究中的重要方向,神經(jīng)網(wǎng)絡(luò)是數(shù)據(jù)挖掘中的一種常用方法。超圓神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)時間和網(wǎng)絡(luò)模型理解性都優(yōu)于BP 神經(jīng)網(wǎng)絡(luò),它能以較少的數(shù)據(jù)量 蘊涵
2009-06-01 16:46:5320

神經(jīng)網(wǎng)絡(luò)模型講義

神經(jīng)網(wǎng)絡(luò)模型講義:在本講義中,我們將著重講述一些數(shù)學(xué)建模中常用的算法,包括神經(jīng)網(wǎng)絡(luò)算法、遺傳算法、模擬退火算法和模糊數(shù)學(xué)方法。用這些算法可以較容易地解決一些
2009-09-15 12:30:508

基于遺傳神經(jīng)網(wǎng)絡(luò)的入侵檢測

入侵檢測系統(tǒng)是目前網(wǎng)絡(luò)安全領(lǐng)域的研究熱點,本文針對入侵檢測系統(tǒng)存在的高漏報率和誤報率,提出一種基于遺傳神經(jīng)網(wǎng)絡(luò)的入侵檢測模型,該模型基于遺傳算法的全局搜索和B
2010-01-27 15:41:0723

嵌入自聯(lián)想神經(jīng)網(wǎng)絡(luò)的高斯混合模型說話人辨認

該文提出了一種嵌入自聯(lián)想神經(jīng)網(wǎng)絡(luò)的高斯混合模型,它充分利用了神經(jīng)網(wǎng)絡(luò)和高斯混合模型各自的優(yōu)點,以最大似然概率(ML)為準則,把它們作為一個整體來進行訓(xùn)練。訓(xùn)練過程中
2010-03-05 16:27:1215

基于NARMAX模型的小波神經(jīng)網(wǎng)絡(luò)實現(xiàn)

提出了一種基于NARMAX模型的小波神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)確定和權(quán)系數(shù)估計算法.采用NARMAX模型和雙正交小波函數(shù)來構(gòu)造小波神經(jīng)網(wǎng)絡(luò),識別人臉圖像,實驗結(jié)果表明用本文構(gòu)造的小波神經(jīng)網(wǎng)絡(luò)
2011-09-27 17:31:1928

算法大全_神經(jīng)網(wǎng)絡(luò)模型

算法大全第19章_神經(jīng)網(wǎng)絡(luò)模型,有需要的下來看看。
2016-01-14 17:49:090

人工神經(jīng)網(wǎng)絡(luò)模型及其應(yīng)用

人工神經(jīng)網(wǎng)絡(luò)模型及其應(yīng)用-復(fù)旦大學(xué)出版社-張立明。
2016-04-12 11:08:100

基于HMM和小波神經(jīng)網(wǎng)絡(luò)混合模型的Web信息抽取_李少天

基于HMM和小波神經(jīng)網(wǎng)絡(luò)混合模型的Web信息抽取_李少天
2017-03-19 11:38:260

基于人工神經(jīng)網(wǎng)絡(luò)和粒子群算法的風(fēng)能預(yù)測模型_廖輝英

基于人工神經(jīng)網(wǎng)絡(luò)和粒子群算法的風(fēng)能預(yù)測模型_廖輝英
2017-03-16 10:19:420

BP神經(jīng)網(wǎng)絡(luò)模型與學(xué)習(xí)算法

BP神經(jīng)網(wǎng)絡(luò)模型與學(xué)習(xí)算法
2017-09-08 09:42:4810

神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)之M-P模型

M-P模型的來源,所謂M-P模型,其實是按照生物神經(jīng)元的結(jié)構(gòu)和工作原理構(gòu)造出來的一個抽象和簡化了的模型。我們可以概括出生物神經(jīng)網(wǎng)絡(luò)的假定特點:1.每個神經(jīng)元都是一個多輸入單輸出的信息處理單元; 2.
2017-11-16 16:05:015950

基于卷積神經(jīng)網(wǎng)絡(luò)的圖像標注模型

,構(gòu)建一個多標簽學(xué)習(xí)的卷積神經(jīng)網(wǎng)絡(luò)( CNN-MLL)模型,然后利用圖像標注詞間的相關(guān)性對網(wǎng)絡(luò)模型輸出結(jié)果進行改善。通過在IAPR TC-12標準圖像標注數(shù)據(jù)集上對比了其他傳統(tǒng)方法,實驗得出,基于采用均方誤差函數(shù)的卷積神經(jīng)網(wǎng)絡(luò)( CN
2017-12-07 14:30:504

25種人工神經(jīng)網(wǎng)絡(luò)模型matlab源碼下載

經(jīng)典的人工神經(jīng)網(wǎng)絡(luò)模型,MATLAB源碼呈現(xiàn)
2018-05-07 11:46:2613

什么是神經(jīng)架構(gòu)搜索?機器學(xué)習(xí)自動化真能普及大眾嗎?

到底什么是神經(jīng)架構(gòu)搜索?這是讓機器學(xué)習(xí)普及的關(guān)鍵嗎?這篇文章將重點解決這一問題。而在下篇文章中,我們會詳細了解谷歌的AutoML。神經(jīng)架構(gòu)搜索是AutoML的一部分,在其剛剛出現(xiàn)時同樣受到了熱烈的追捧。
2018-07-19 15:36:305418

一種新的高效神經(jīng)架構(gòu)搜索方法,解決了當前網(wǎng)絡(luò)變換方法的局限性

不從頭開始進行神經(jīng)架構(gòu)搜索,而是使用現(xiàn)有的網(wǎng)絡(luò)作為起點,通過網(wǎng)絡(luò)變換(Network Transformation)的方式來探索架構(gòu)空間。具體的,他們使用了Net2Net操作(一類 function-preserving的網(wǎng)絡(luò)變換操作)來探索架構(gòu)空間。
2018-07-24 10:06:446867

一種利用強化學(xué)習(xí)來設(shè)計mobile CNN模型的自動神經(jīng)結(jié)構(gòu)搜索方法

具體來說,我們提出一種用于設(shè)計移動端的CNN模型的自動神經(jīng)結(jié)構(gòu)搜索方法,稱之為Platform-Aware神經(jīng)結(jié)構(gòu)搜索。圖1是Platform-Aware神經(jīng)結(jié)構(gòu)搜索方法的總體視圖,它與以前的方法
2018-08-07 14:10:033610

自動神經(jīng)結(jié)構(gòu)搜索方法實現(xiàn)高效率卷積神經(jīng)網(wǎng)絡(luò)設(shè)計

一種自動神經(jīng)結(jié)構(gòu)搜索方法,用于設(shè)計資源有限的移動端CNN模型
2018-08-07 14:12:305002

深度神經(jīng)決策樹:深度神經(jīng)網(wǎng)絡(luò)和樹模型結(jié)合的新模型

近日,來自愛丁堡大學(xué)的研究人員提出了一種結(jié)合深度神經(jīng)網(wǎng)絡(luò)和樹模型的新型模型——深度神經(jīng)決策樹(Deep Neural Decision Trees, DNDT)。
2018-08-19 09:14:4411858

卷積神經(jīng)網(wǎng)絡(luò)CNN架構(gòu)分析 - LeNet

之前在網(wǎng)上搜索了好多好多關(guān)于CNN的文章,由于網(wǎng)絡(luò)上的文章很多斷章取義或者描述不清晰,看了很多youtobe上面的教學(xué)視頻還是沒有弄懂,最后經(jīng)過痛苦漫長的煎熬之后對于神經(jīng)網(wǎng)絡(luò)和卷積有了粗淺的了解
2018-10-02 07:41:01544

神經(jīng)架構(gòu)搜索的算法,可以使被AI優(yōu)化過的AI設(shè)計過程加速240多倍

首先,他們減少了運行神經(jīng)架構(gòu)搜索的GPU內(nèi)存負載。標準神經(jīng)架構(gòu)搜索可以同時檢查網(wǎng)絡(luò)神經(jīng)層之間所有可能的連接。而韓松團隊的算法每次只在CPU的內(nèi)存中保存一條路徑。這個技巧可以只用十分之一的內(nèi)存完成對所有參數(shù)空間的搜索,從而使搜索能夠覆蓋更多的網(wǎng)絡(luò)配置而不會耗盡芯片上的空間。
2019-04-10 14:20:052824

MIT研發(fā)“神經(jīng)架構(gòu)搜索”算法,將AI優(yōu)化的AI設(shè)計過程加速240倍或更多

麻省理工學(xué)院(MIT)的一個研究小組將展示一種所謂的“ 神經(jīng)架構(gòu)搜索”算法 ,該算法可以將AI優(yōu)化的AI設(shè)計過程加速240倍或更多。
2019-04-15 16:49:033039

神經(jīng)架構(gòu)搜索詳解

近期谷歌大腦團隊發(fā)布了一項新研究:只靠神經(jīng)網(wǎng)絡(luò)架構(gòu)搜索出的網(wǎng)絡(luò),不訓(xùn)練,不調(diào)參,就能直接執(zhí)行任務(wù)。
2019-07-07 10:49:404730

機器學(xué)習(xí)全靠調(diào)參?谷歌大腦新研究:神經(jīng)網(wǎng)絡(luò)構(gòu)建超強網(wǎng)絡(luò)

只靠神經(jīng)網(wǎng)絡(luò)架構(gòu)搜索出的網(wǎng)絡(luò),不訓(xùn)練,不調(diào)參,就能直接執(zhí)行任務(wù)。
2019-08-06 14:18:373039

神經(jīng)網(wǎng)絡(luò)神經(jīng)網(wǎng)絡(luò)控制的學(xué)習(xí)課件免費下載

本文檔的主要內(nèi)容詳細介紹的是神經(jīng)網(wǎng)絡(luò)神經(jīng)網(wǎng)絡(luò)控制的學(xué)習(xí)課件免費下載包括了:1生物神經(jīng)元模型,2人工神經(jīng)元模型,3人工神經(jīng)網(wǎng)絡(luò)模型,4神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)方法
2021-01-20 11:20:057

一種改進的深度神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索方法

為提升網(wǎng)絡(luò)結(jié)構(gòu)的尋優(yōu)能力,提岀一種改進的深度神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索方法。針對網(wǎng)絡(luò)結(jié)構(gòu)間距難以度量的問題,結(jié)合神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)搜索方案,設(shè)計基于圖的深度神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)間距度量方式。對少量步數(shù)訓(xùn)練和充分訓(xùn)練
2021-03-16 14:05:463

一種基于多視圖架構(gòu)的深度卷積神經(jīng)網(wǎng)絡(luò)模型

由于藏匿物體的大小、形狀和位置未知,且樣本類別不均衡,常用的深度學(xué)習(xí)方法存在誤報率較高的問題。為此,構(gòu)建一種基于多視圖架構(gòu)的深度卷積神經(jīng)網(wǎng)絡(luò)模型。通過殘差連接卷積神經(jīng)網(wǎng)絳對特征進行提取,使用基于稠密
2021-03-17 10:53:185

以進化算法為搜索策略實現(xiàn)神經(jīng)架構(gòu)搜索的方法

自動化深度學(xué)習(xí)是目前深度學(xué)習(xí)領(lǐng)域的研究熱點,神經(jīng)架構(gòu)搜索算法是實現(xiàn)自動化深度學(xué)習(xí)的主要方法之一,該類算法可以通過對搜索空間、搜索策略或優(yōu)化策略進行不同定義來自動設(shè)計神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)。闡述進化算法和進化
2021-03-22 14:37:0615

緊湊的卷積神經(jīng)網(wǎng)絡(luò)模型研究綜述

近年來卷積神經(jīng)網(wǎng)絡(luò)在廣泛的應(yīng)用中取得了優(yōu)秀的表現(xiàn),但巨大的資源消耗量使得其應(yīng)用于移動端和嵌入式設(shè)備成為了挑戰(zhàn)。為了解決此類問題,需要對網(wǎng)絡(luò)模型在大小、速度和準確度方面做出平衡。首先,從模型是否預(yù)先
2021-04-12 14:26:269

神經(jīng)網(wǎng)絡(luò)模型原理

神經(jīng)網(wǎng)絡(luò)模型原理介紹說明。
2021-04-21 09:40:467

基于卷積神經(jīng)網(wǎng)絡(luò)模型的Hi-C數(shù)據(jù)分辨率

基于卷積神經(jīng)網(wǎng)絡(luò)模型的Hi-C數(shù)據(jù)分辨率
2021-06-16 11:25:3132

基于浙江省月度電力需求的神經(jīng)網(wǎng)絡(luò)模型

基于浙江省月度電力需求的神經(jīng)網(wǎng)絡(luò)模型
2021-06-18 11:20:395

基于BP神經(jīng)網(wǎng)絡(luò)優(yōu)化的光伏發(fā)電預(yù)測模型

基于BP神經(jīng)網(wǎng)絡(luò)優(yōu)化的光伏發(fā)電預(yù)測模型
2021-06-27 16:16:2635

基于BP神經(jīng)網(wǎng)絡(luò)的胰島素評價模型

基于BP神經(jīng)網(wǎng)絡(luò)的胰島素評價模型
2021-07-02 11:20:2234

基于果蠅算法的混合小波神經(jīng)網(wǎng)絡(luò)交通流預(yù)測模型

基于果蠅算法的混合小波神經(jīng)網(wǎng)絡(luò)交通流預(yù)測模型
2021-07-05 16:52:5740

基于樹的方法和神經(jīng)網(wǎng)絡(luò)方法

模型神經(jīng)網(wǎng)絡(luò),像一枚硬幣的兩面。在某些情況下,樹模型的性能甚至優(yōu)于神經(jīng)網(wǎng)絡(luò)。
2022-07-27 16:17:01838

卷積神經(jīng)網(wǎng)絡(luò)的發(fā)展及各模型的優(yōu)缺點

在CV領(lǐng)域,我們需要熟練掌握最基本的知識就是各種卷積神經(jīng)網(wǎng)絡(luò)CNN的模型架構(gòu),不管我們在圖像分類或者分割,目標檢測,NLP等,我們都會用到基本的CNN網(wǎng)絡(luò)架構(gòu)。
2023-01-29 15:15:431249

如何構(gòu)建神經(jīng)網(wǎng)絡(luò)

神經(jīng)網(wǎng)絡(luò)是模擬人體生物神經(jīng)元原理構(gòu)建的,比較基礎(chǔ)的有M-P模型,它按照生物 神經(jīng)元的結(jié)構(gòu)和工作原理構(gòu)造出來的一個抽象和簡化的模型。
2023-02-24 16:06:521080

卷積神經(jīng)網(wǎng)絡(luò)原理:卷積神經(jīng)網(wǎng)絡(luò)模型和卷積神經(jīng)網(wǎng)絡(luò)算法

卷積神經(jīng)網(wǎng)絡(luò)原理:卷積神經(jīng)網(wǎng)絡(luò)模型和卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種基于深度學(xué)習(xí)的人工神經(jīng)網(wǎng)絡(luò),是深度學(xué)習(xí)技術(shù)的重要應(yīng)用之
2023-08-17 16:30:30806

卷積神經(jīng)網(wǎng)絡(luò)模型有哪些?卷積神經(jīng)網(wǎng)絡(luò)包括哪幾層內(nèi)容?

卷積神經(jīng)網(wǎng)絡(luò)模型有哪些?卷積神經(jīng)網(wǎng)絡(luò)包括哪幾層內(nèi)容? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是深度學(xué)習(xí)領(lǐng)域中最廣泛應(yīng)用的模型之一,主要應(yīng)用于圖像、語音
2023-08-21 16:41:521305

卷積神經(jīng)網(wǎng)絡(luò)模型原理 卷積神經(jīng)網(wǎng)絡(luò)模型結(jié)構(gòu)

卷積神經(jīng)網(wǎng)絡(luò)模型原理 卷積神經(jīng)網(wǎng)絡(luò)模型結(jié)構(gòu)? 卷積神經(jīng)網(wǎng)絡(luò)是一種深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò),是在圖像、語音、文本和視頻等方面的任務(wù)中最有效的神經(jīng)網(wǎng)絡(luò)之一。它的總體思想是使用在輸入數(shù)據(jù)之上的一系列過濾器來捕捉
2023-08-21 16:41:58604

卷積神經(jīng)網(wǎng)絡(luò)模型訓(xùn)練步驟

卷積神經(jīng)網(wǎng)絡(luò)模型訓(xùn)練步驟? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)是一種常用的深度學(xué)習(xí)算法,廣泛應(yīng)用于圖像識別、語音識別、自然語言處理等諸多領(lǐng)域。CNN
2023-08-21 16:42:00885

卷積神經(jīng)網(wǎng)絡(luò)算法流程 卷積神經(jīng)網(wǎng)絡(luò)模型工作流程

卷積神經(jīng)網(wǎng)絡(luò)算法流程 卷積神經(jīng)網(wǎng)絡(luò)模型工作流程? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種廣泛應(yīng)用于目標跟蹤、圖像識別和語音識別等領(lǐng)域的深度學(xué)習(xí)模型
2023-08-21 16:50:191316

常見的卷積神經(jīng)網(wǎng)絡(luò)模型 典型的卷積神經(jīng)網(wǎng)絡(luò)模型

常見的卷積神經(jīng)網(wǎng)絡(luò)模型 典型的卷積神經(jīng)網(wǎng)絡(luò)模型 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)是深度學(xué)習(xí)中最流行的模型之一,其結(jié)構(gòu)靈活,處理圖像、音頻、自然語言
2023-08-21 17:11:411646

圖像識別卷積神經(jīng)網(wǎng)絡(luò)模型

圖像識別卷積神經(jīng)網(wǎng)絡(luò)模型 隨著計算機技術(shù)的快速發(fā)展和深度學(xué)習(xí)的迅速普及,圖像識別卷積神經(jīng)網(wǎng)絡(luò)模型已經(jīng)成為當今最受歡迎和廣泛使用的模型之一。卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural
2023-08-21 17:11:45486

cnn卷積神經(jīng)網(wǎng)絡(luò)模型 卷積神經(jīng)網(wǎng)絡(luò)預(yù)測模型 生成卷積神經(jīng)網(wǎng)絡(luò)模型

cnn卷積神經(jīng)網(wǎng)絡(luò)模型 卷積神經(jīng)網(wǎng)絡(luò)預(yù)測模型 生成卷積神經(jīng)網(wǎng)絡(luò)模型? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò),最初被廣泛應(yīng)用于計算機
2023-08-21 17:11:47681

卷積神經(jīng)網(wǎng)絡(luò)模型搭建

卷積神經(jīng)網(wǎng)絡(luò)模型搭建 卷積神經(jīng)網(wǎng)絡(luò)模型是一種深度學(xué)習(xí)算法。它已經(jīng)成為了計算機視覺和自然語言處理等各種領(lǐng)域的主流算法,具有很大的應(yīng)用前景。本篇文章將詳細介紹卷積神經(jīng)網(wǎng)絡(luò)模型的搭建過程,為讀者提供一份
2023-08-21 17:11:49543

卷積神經(jīng)網(wǎng)絡(luò)一共有幾層 卷積神經(jīng)網(wǎng)絡(luò)模型三層

卷積神經(jīng)網(wǎng)絡(luò)一共有幾層 卷積神經(jīng)網(wǎng)絡(luò)模型三層? 卷積神經(jīng)網(wǎng)絡(luò) (Convolutional Neural Networks,CNNs) 是一種在深度學(xué)習(xí)領(lǐng)域中發(fā)揮重要作用的模型。它是一種有層次結(jié)構(gòu)
2023-08-21 17:11:533338

卷積神經(jīng)網(wǎng)絡(luò)模型的優(yōu)缺點

卷積神經(jīng)網(wǎng)絡(luò)模型的優(yōu)缺點? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種從圖像、視頻、聲音和一系列多維信號中進行學(xué)習(xí)的深度學(xué)習(xí)模型。它在計算機視覺、語音識別
2023-08-21 17:15:191881

神經(jīng)網(wǎng)絡(luò)模型的工作原理、種類及優(yōu)缺點

神經(jīng)網(wǎng)絡(luò)模型(Neural Network Model)是指一種數(shù)學(xué)模型,可以模擬和學(xué)習(xí)人腦神經(jīng)元之間的信號傳遞過程,用于解決各種問題,如分類、回歸、圖像識別、自然語言處理等。神經(jīng)網(wǎng)絡(luò)模型可以根據(jù)輸入數(shù)據(jù)和參數(shù)不斷調(diào)整自身結(jié)構(gòu)和參數(shù),從而提高模型的準確性和泛化能力。
2023-08-23 18:25:481709

神經(jīng)網(wǎng)絡(luò)模型的工作原理和作用

神經(jīng)網(wǎng)絡(luò)模型是一種計算模型,基于人類神經(jīng)系統(tǒng)的處理和學(xué)習(xí)機制,模仿大腦神經(jīng)元的工作方式,對輸入數(shù)據(jù)進行分析處理,實現(xiàn)分類、識別和預(yù)測等任務(wù)。神經(jīng)網(wǎng)絡(luò)模型在人工智能領(lǐng)域中得到了廣泛應(yīng)用,比如圖像識別、語音識別、自然語言處理等領(lǐng)域,成為了人工智能的重要組成部分。
2023-08-28 18:21:35730

構(gòu)建神經(jīng)網(wǎng)絡(luò)模型的常用方法 神經(jīng)網(wǎng)絡(luò)模型的常用算法介紹

神經(jīng)網(wǎng)絡(luò)模型是一種通過模擬生物神經(jīng)元間相互作用的方式實現(xiàn)信息處理和學(xué)習(xí)的計算機模型。它能夠?qū)斎霐?shù)據(jù)進行分類、回歸、預(yù)測和聚類等任務(wù),已經(jīng)廣泛應(yīng)用于計算機視覺、自然語言處理、語音處理等領(lǐng)域。下面將就神經(jīng)網(wǎng)絡(luò)模型的概念和工作原理,構(gòu)建神經(jīng)網(wǎng)絡(luò)模型的常用方法以及神經(jīng)網(wǎng)絡(luò)模型算法介紹進行詳細探討。
2023-08-28 18:25:27582

已全部加載完成