在確定了算力的基礎(chǔ)上,盡量最大化硬件的計(jì)算和帶寬性能。經(jīng)歷了一年多的理論學(xué)習(xí),開始第一次神經(jīng)網(wǎng)絡(luò)算法優(yōu)化的嘗試。之所以從一個(gè)FPGA開發(fā)者轉(zhuǎn)向算法的學(xué)習(xí),有幾個(gè)原因: 第一是神經(jīng)網(wǎng)絡(luò)在AI芯片上的部署離不開算法的優(yōu)化。一個(gè)
2020-09-29 11:36:094386 率先開發(fā)PyTorch的Facebook推出了開源社區(qū)項(xiàng)目Glow(Graph Lowering神經(jīng)網(wǎng)絡(luò)編譯器),其目的是提供優(yōu)化,提高一系列硬件平臺(tái)上的神經(jīng)網(wǎng)絡(luò)性能。
2020-08-05 14:32:561421 優(yōu)化神經(jīng)網(wǎng)絡(luò)訓(xùn)練方法有哪些?
2022-09-06 09:52:36
神經(jīng)網(wǎng)絡(luò)50例
2012-11-28 16:49:56
神經(jīng)網(wǎng)絡(luò)Matlab程序
2009-09-15 12:52:24
大家有知道labview中神經(jīng)網(wǎng)絡(luò)和SVM的工具包是哪個(gè)嗎?求分享一下,有做這方面的朋友也可以交流一下,大家共同進(jìn)步
2017-10-13 11:41:43
神經(jīng)網(wǎng)絡(luò)基本介紹
2018-01-04 13:41:23
第1章 概述 1.1 人工神經(jīng)網(wǎng)絡(luò)研究與發(fā)展 1.2 生物神經(jīng)元 1.3 人工神經(jīng)網(wǎng)絡(luò)的構(gòu)成 第2章人工神經(jīng)網(wǎng)絡(luò)基本模型 2.1 MP模型 2.2 感知器模型 2.3 自適應(yīng)線性
2012-03-20 11:32:43
將神經(jīng)網(wǎng)絡(luò)移植到STM32最近在做的一個(gè)項(xiàng)目需要用到網(wǎng)絡(luò)進(jìn)行擬合,并且將擬合得到的結(jié)果用作控制,就在想能不能直接在單片機(jī)上做神經(jīng)網(wǎng)絡(luò)計(jì)算,這樣就可以實(shí)時(shí)計(jì)算,不依賴于上位機(jī)。所以要解決的主要是兩個(gè)
2022-01-11 06:20:53
神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介
2012-08-05 21:01:08
學(xué)習(xí)技術(shù)無疑為其指明了道路。以知名品牌為首的汽車制造業(yè)正在深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)技術(shù)上進(jìn)行投資,并向先進(jìn)的計(jì)算企業(yè)、硅谷等技術(shù)引擎及學(xué)術(shù)界看齊。在中國(guó),百度一直在此技術(shù)上保持領(lǐng)先。百度計(jì)劃在 2019 年將
2017-12-21 17:11:34
基于深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)算法
2019-05-16 17:25:05
CV之YOLOv3:深度學(xué)習(xí)之計(jì)算機(jī)視覺神經(jīng)網(wǎng)絡(luò)Yolov3-5clessses訓(xùn)練自己的數(shù)據(jù)集全程記錄(第二次)——Jason niu
2018-12-24 11:52:25
神經(jīng)網(wǎng)絡(luò)的發(fā)展可以追溯到二戰(zhàn)時(shí)期,那時(shí)候先輩們正想著如何用人類的方式去存儲(chǔ)和處理信息,于是他們開始構(gòu)建計(jì)算系統(tǒng)。由于當(dāng)時(shí)計(jì)算機(jī)機(jī)器和技術(shù)的發(fā)展限制,這一技術(shù)并沒有得到廣泛的關(guān)注和應(yīng)用。幾十年來
2018-06-05 10:11:50
MATLAB神經(jīng)網(wǎng)絡(luò)
2013-07-08 15:17:13
Matlab神經(jīng)網(wǎng)絡(luò)工具箱是什么?Matlab神經(jīng)網(wǎng)絡(luò)工具箱在同步中的應(yīng)用有哪些?
2021-04-26 06:42:29
請(qǐng)問:我在用labview做BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)故障診斷,在NI官網(wǎng)找到了機(jī)器學(xué)習(xí)工具包(MLT),但是里面沒有關(guān)于這部分VI的幫助文檔,對(duì)于”BP神經(jīng)網(wǎng)絡(luò)分類“這個(gè)范例有很多不懂的地方,比如
2017-02-22 16:08:08
習(xí)神經(jīng)神經(jīng)網(wǎng)絡(luò),對(duì)于神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)是如何一直沒有具體實(shí)現(xiàn)一下:現(xiàn)看到一個(gè)簡(jiǎn)單的神經(jīng)網(wǎng)絡(luò)模型用于訓(xùn)練的輸入數(shù)據(jù):對(duì)應(yīng)的輸出數(shù)據(jù):我們這里設(shè)置:1:節(jié)點(diǎn)個(gè)數(shù)設(shè)置:輸入層、隱層、輸出層的節(jié)點(diǎn)
2021-08-18 07:25:21
快速視頻采集處理和快速神經(jīng)網(wǎng)絡(luò)計(jì)算的算力要求,板載HDMI與USB接口、外置512M的DDR3內(nèi)存也符合作品進(jìn)行圖像處理并輸入輸出的硬件要求,充分發(fā)掘了PYNQ開發(fā)板的板載資源的應(yīng)用潛力,因此想借
2018-12-19 11:36:24
探索整個(gè)過程中資源利用的優(yōu)化使整個(gè)過程更加節(jié)能高效預(yù)計(jì)成果:1、在PYNQ上實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)2、對(duì)以往實(shí)現(xiàn)結(jié)構(gòu)進(jìn)行優(yōu)化3、為卷積神經(jīng)網(wǎng)絡(luò)網(wǎng)路在硬件上,特別是在FPGA實(shí)現(xiàn)提供一種優(yōu)化思路和方案
2018-12-19 11:37:22
學(xué)習(xí)和認(rèn)知科學(xué)領(lǐng)域,是一種模仿生物神經(jīng)網(wǎng)絡(luò)(動(dòng)物的中樞神經(jīng)系統(tǒng),特別是大腦)的結(jié)構(gòu)和功能的數(shù)學(xué)模型或計(jì)算模型,用于對(duì)函數(shù)進(jìn)行估計(jì)或近似。神經(jīng)網(wǎng)絡(luò)由大量的人工神經(jīng)元聯(lián)結(jié)進(jìn)行計(jì)算。大多數(shù)情況下人工神經(jīng)網(wǎng)絡(luò)
2019-03-03 22:10:19
采集處理和快速神經(jīng)網(wǎng)絡(luò)計(jì)算的算力要求,板載HDMI與USB接口、外置512M的DDR3內(nèi)存也滿足作品進(jìn)行圖像處理并輸入輸出的硬件平臺(tái)要求。作品將充分發(fā)掘PYNQ開發(fā)板的板載資源的應(yīng)用潛力,并以一輛小車
2019-03-02 23:10:52
元都會(huì)計(jì)算該樣本與自身攜帶的權(quán)向量之間的距離,距離短者獲勝,然后獲勝的神經(jīng)元及其鄰近神經(jīng)元的權(quán)向量將會(huì)進(jìn)行調(diào)整,以使得這些權(quán)向量與當(dāng)前輸入樣本的距離縮小,與ART很相似。圖5.11為SOM網(wǎng)絡(luò)結(jié)構(gòu)
2019-07-21 04:30:00
}或o koko_{k})的誤差神經(jīng)元偏倚的變化量:ΔΘ ΔΘ Delta Theta=學(xué)習(xí)步長(zhǎng)η ηeta × ×imes 乘以神經(jīng)元的誤差BP神經(jīng)網(wǎng)絡(luò)算法過程網(wǎng)絡(luò)的初始化:包括權(quán)重和偏倚的初始化計(jì)算
2019-07-21 04:00:00
、計(jì)算速度等方面的優(yōu)越性。基于這種算法,有人分別將其在數(shù)域和維數(shù)上做出了推廣。本文提出的方法,是基于余弦基神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)方法的一種改良,其基本思想首先是使設(shè)計(jì)頻響與理想頻響之間的全局誤差在通帶和阻帶范圍
2019-07-08 07:16:17
這個(gè)網(wǎng)絡(luò)輸入和相應(yīng)的輸出來“訓(xùn)練”這個(gè)網(wǎng)絡(luò),網(wǎng)絡(luò)根據(jù)輸入和輸出不斷地調(diào)節(jié)自己的各節(jié)點(diǎn)之間的權(quán)值來滿足輸入和輸出。這樣,當(dāng)訓(xùn)練結(jié)束后,我們給定一個(gè)輸入,網(wǎng)絡(luò)便會(huì)根據(jù)自己已調(diào)節(jié)好的權(quán)值計(jì)算出一個(gè)輸出。這就是神經(jīng)網(wǎng)絡(luò)的簡(jiǎn)單原理。 神經(jīng)網(wǎng)絡(luò)原理下載-免費(fèi)
2008-06-19 14:40:42
人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決一些非線性,非平穩(wěn),復(fù)雜的實(shí)際問題。那有哪些辦法能實(shí)現(xiàn)人工神經(jīng)網(wǎng)絡(luò)呢?
2019-08-01 08:06:21
人工神經(jīng)網(wǎng)絡(luò)課件
2016-06-19 10:15:48
簡(jiǎn)單理解LSTM神經(jīng)網(wǎng)絡(luò)
2021-01-28 07:16:57
圖卷積神經(jīng)網(wǎng)絡(luò)
2019-08-20 12:05:29
AlexNet到MobileNetAlexnetAlexNet是首次把卷積神經(jīng)網(wǎng)絡(luò)引入計(jì)算機(jī)視覺領(lǐng)域并取得突破性成績(jī)的模型。AlexNet有Alex Krizhevsky、llya Sutskever
2018-05-08 15:57:47
全連接神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別
2019-06-06 14:21:42
請(qǐng)問用matlab編程進(jìn)行BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)時(shí),訓(xùn)練結(jié)果很多都是合適的,但如何確定最合適的?且如何用最合適的BP模型進(jìn)行外推預(yù)測(cè)?
2014-02-08 14:23:06
inference在設(shè)備端上做。嵌入式設(shè)備的特點(diǎn)是算力不強(qiáng)、memory小??梢酝ㄟ^對(duì)神經(jīng)網(wǎng)絡(luò)做量化來降load和省memory,但有時(shí)可能memory還吃緊,就需要對(duì)神經(jīng)網(wǎng)絡(luò)在memory使用上做進(jìn)一步優(yōu)化
2021-12-23 06:16:40
卷積神經(jīng)網(wǎng)絡(luò)為什么適合圖像處理?
2022-09-08 10:23:10
卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)在工程上經(jīng)歷了曲折的歷史,您為什么還會(huì)在意它呢? 對(duì)于這些非常中肯的問題,我們似乎可以給出相對(duì)簡(jiǎn)明的答案。
2019-07-17 07:21:50
分析了目前的特殊模型結(jié)構(gòu),最后總結(jié)并討論了卷積神經(jīng)網(wǎng)絡(luò)在相關(guān)領(lǐng)域的應(yīng)用,并對(duì)未來的研究方向進(jìn)行展望。卷積神經(jīng)網(wǎng)絡(luò)(convolutional neural network,CNN) 在計(jì)算機(jī)視覺[1-
2022-08-02 10:39:39
卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)點(diǎn)
2020-05-05 18:12:50
卷積神經(jīng)網(wǎng)絡(luò)的層級(jí)結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)的常用框架
2020-12-29 06:16:44
抽象人工智能 (AI) 的世界正在迅速發(fā)展,人工智能越來越多地支持以前無法實(shí)現(xiàn)或非常難以實(shí)現(xiàn)的應(yīng)用程序。本系列文章解釋了卷積神經(jīng)網(wǎng)絡(luò) (CNN) 及其在 AI 系統(tǒng)中機(jī)器學(xué)習(xí)中的重要性。CNN 是從
2023-02-23 20:11:10
什么是卷積神經(jīng)網(wǎng)絡(luò)?ImageNet-2010網(wǎng)絡(luò)結(jié)構(gòu)是如何構(gòu)成的?有哪些基本參數(shù)?
2021-06-17 11:48:22
反饋神經(jīng)網(wǎng)絡(luò)算法
2020-04-28 08:36:58
我們可以對(duì)神經(jīng)網(wǎng)絡(luò)架構(gòu)進(jìn)行優(yōu)化,使之適配微控制器的內(nèi)存和計(jì)算限制范圍,并且不會(huì)影響精度。我們將在本文中解釋和探討深度可分離卷積神經(jīng)網(wǎng)絡(luò)在 Cortex-M 處理器上實(shí)現(xiàn)關(guān)鍵詞識(shí)別的潛力。關(guān)鍵詞識(shí)別
2021-07-26 09:46:37
為提升識(shí)別準(zhǔn)確率,采用改進(jìn)神經(jīng)網(wǎng)絡(luò),通過Mnist數(shù)據(jù)集進(jìn)行訓(xùn)練。整體處理過程分為兩步:圖像預(yù)處理和改進(jìn)神經(jīng)網(wǎng)絡(luò)推理。圖像預(yù)處理主要根據(jù)圖像的特征,將數(shù)據(jù)處理成規(guī)范的格式,而改進(jìn)神經(jīng)網(wǎng)絡(luò)推理主要用于輸出結(jié)果。 整個(gè)過程分為兩個(gè)步驟:圖像預(yù)處理和神經(jīng)網(wǎng)絡(luò)推理。需要提前安裝Tengine框架,
2021-12-23 08:07:33
最近在學(xué)習(xí)電機(jī)的智能控制,上周學(xué)習(xí)了基于單神經(jīng)元的PID控制,這周研究基于BP神經(jīng)網(wǎng)絡(luò)的PID控制。神經(jīng)網(wǎng)絡(luò)具有任意非線性表達(dá)能力,可以通過對(duì)系統(tǒng)性能的學(xué)習(xí)來實(shí)現(xiàn)具有最佳組合的PID控制。利用BP
2021-09-07 07:43:47
η ∈(0,1)代表學(xué)習(xí)速率?! ∮捎贐P 神經(jīng)網(wǎng)絡(luò)算法的收斂速度慢,優(yōu)化的目標(biāo)函數(shù)非常復(fù)雜,所以需要優(yōu)化學(xué)習(xí)速率。三層感知器的BP 學(xué)習(xí)算法權(quán)值調(diào)整計(jì)算公式為: 將每個(gè)加速度傳感器中每個(gè)軸的數(shù)據(jù)
2018-11-13 16:04:45
基于BP神經(jīng)網(wǎng)絡(luò)的辨識(shí)
2018-01-04 13:37:27
FPGA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)關(guān)鍵問題分析基于FPGA的ANN實(shí)現(xiàn)方法基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評(píng)估及局限性
2021-04-30 06:58:13
基于RBF神經(jīng)網(wǎng)絡(luò)的辨識(shí)
2018-01-04 13:38:52
現(xiàn)有的圖數(shù)據(jù)規(guī)模極大,導(dǎo)致時(shí)序圖神經(jīng)網(wǎng)絡(luò)的訓(xùn)練需要格外長(zhǎng)的時(shí)間,因此使用多GPU進(jìn)行訓(xùn)練變得成為尤為重要,如何有效地將多GPU用于時(shí)序圖神經(jīng)網(wǎng)絡(luò)訓(xùn)練成為一個(gè)非常重要的研究議題。本文提供了兩種方式來
2022-09-28 10:37:20
如何用stm32cube.ai簡(jiǎn)化人工神經(jīng)網(wǎng)絡(luò)映射?如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)?
2021-10-11 08:05:42
原文鏈接:http://tecdat.cn/?p=5725 神經(jīng)網(wǎng)絡(luò)是一種基于現(xiàn)有數(shù)據(jù)創(chuàng)建預(yù)測(cè)的計(jì)算系統(tǒng)。如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)包括:輸入層:根據(jù)現(xiàn)有數(shù)據(jù)獲取輸入的層隱藏層:使用反向傳播優(yōu)化輸入變量權(quán)重的層,以提高模型的預(yù)測(cè)能力輸出層:基于輸入和隱藏層的數(shù)據(jù)輸出預(yù)測(cè)
2021-07-12 08:02:11
)第二步:使用Lattice sensAI 軟件編譯已訓(xùn)練好的神經(jīng)網(wǎng)絡(luò),定點(diǎn)化網(wǎng)絡(luò)參數(shù)。該軟件會(huì)根據(jù)神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)和預(yù)設(shè)的FPGA資源進(jìn)行分析并給出性能評(píng)估報(bào)告,此外用戶還可以在軟件中做
2020-11-26 07:46:03
處理的運(yùn)算量和數(shù)據(jù)吞吐量。圖像壓縮是信息傳輸和存儲(chǔ)系統(tǒng)的關(guān)鍵技術(shù),然而我們?cè)撊绾?b class="flag-6" style="color: red">進(jìn)行FPGA設(shè)計(jì),以實(shí)現(xiàn)給定的功能已經(jīng)成為神經(jīng)網(wǎng)絡(luò)應(yīng)用的關(guān)鍵呢?
2019-08-08 06:11:30
人工神經(jīng)網(wǎng)絡(luò)在AI中具有舉足輕重的地位,除了找到最好的神經(jīng)網(wǎng)絡(luò)模型和訓(xùn)練數(shù)據(jù)集之外,人工神經(jīng)網(wǎng)絡(luò)的另一個(gè)挑戰(zhàn)是如何在嵌入式設(shè)備上實(shí)現(xiàn)它,同時(shí)優(yōu)化性能和功率效率。 使用云計(jì)算并不總是一個(gè)選項(xiàng),尤其是當(dāng)
2021-11-09 08:06:27
FPGA的嵌入式應(yīng)用。某人工神經(jīng)網(wǎng)絡(luò)的FPGA處理器能夠?qū)?shù)據(jù)進(jìn)行運(yùn)算處理,為了實(shí)現(xiàn)集數(shù)據(jù)通信、操作控制和數(shù)據(jù)處理于一體的便攜式神經(jīng)網(wǎng)絡(luò)處理器,需要設(shè)計(jì)一種基于嵌入式ARM內(nèi)核及現(xiàn)場(chǎng)可編程門陣列FPGA的主從結(jié)構(gòu)處理系統(tǒng)滿足要求。
2019-09-20 06:15:20
《深度學(xué)習(xí)工程師-吳恩達(dá)》02改善深層神經(jīng)網(wǎng)絡(luò)--超參數(shù)優(yōu)化、batch正則化和程序框架 學(xué)習(xí)總結(jié)
2020-06-16 14:52:01
譯者|VincentLee來源 |曉飛的算法工程筆記脈沖神經(jīng)網(wǎng)絡(luò)(Spiking neural network, SNN)將脈沖神經(jīng)元作為計(jì)算單...
2021-07-26 06:23:59
有提供編寫神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)程序服務(wù)的嗎?
2011-12-10 13:50:46
求助地震波神經(jīng)網(wǎng)絡(luò)程序,共同交流??!
2013-05-11 08:14:19
小女子做基于labview的蒸發(fā)過程中液位的控制,想使用神經(jīng)網(wǎng)絡(luò)pid控制,請(qǐng)問這個(gè)控制方法可以嗎?有誰(shuí)會(huì)神經(jīng)網(wǎng)絡(luò)pid控制么。。。叩謝
2016-09-23 13:43:16
求助大神 小的現(xiàn)在有個(gè)難題: 一組車重實(shí)時(shí)數(shù)據(jù) 對(duì)應(yīng)一個(gè)車重的最終數(shù)值(一個(gè)一維數(shù)組輸入對(duì)應(yīng)輸出一個(gè)數(shù)值) 這其中可能經(jīng)過均值、方差、去掉N個(gè)最大值、、、等等的計(jì)算 我的目的就是弄清楚這個(gè)中間計(jì)算過程 最近實(shí)在想不出什么好辦法就打算試試神經(jīng)網(wǎng)絡(luò) 請(qǐng)教大神用什么神經(jīng)網(wǎng)絡(luò)好求神經(jīng)網(wǎng)絡(luò)程序
2016-07-14 13:35:44
求高手,基于labview的BP神經(jīng)網(wǎng)絡(luò)算法的實(shí)現(xiàn)過程,最好有程序哈,謝謝!!
2012-12-10 14:55:50
多層感知機(jī) 深度神經(jīng)網(wǎng)絡(luò)in collaboration with Hsu Chung Chuan, Lin Min Htoo, and Quah Jia Yong. 與許忠傳,林敏濤和華佳勇合作
2021-07-12 06:35:22
最簡(jiǎn)單的神經(jīng)網(wǎng)絡(luò)
2019-09-11 11:57:36
的收斂速度和識(shí)別率【關(guān)鍵詞】:粒子群優(yōu)化;;模糊神經(jīng)網(wǎng)絡(luò);;語(yǔ)音識(shí)別【DOI】:CNKI:SUN:SSJS.0.2010-06-018【正文快照】:1引言語(yǔ)音識(shí)別是新一代智能計(jì)算機(jī)的重要組成部分,對(duì)它
2010-05-06 09:05:35
脈沖耦合神經(jīng)網(wǎng)絡(luò)(PCNN)在FPGA上的實(shí)現(xiàn),實(shí)現(xiàn)數(shù)據(jù)分類功能,有報(bào)酬。QQ470345140.
2013-08-25 09:57:14
為什么要用卷積神經(jīng)網(wǎng)絡(luò)?
2020-06-13 13:11:39
視覺任務(wù)中,并取得了巨大成功。然而,由于存儲(chǔ)空間和功耗的限制,神經(jīng)網(wǎng)絡(luò)模型在嵌入式設(shè)備上的存儲(chǔ)與計(jì)算仍然是一個(gè)巨大的挑戰(zhàn)。前面幾篇介紹了如何在嵌入式AI芯片上部署神經(jīng)網(wǎng)絡(luò):【嵌入式AI開發(fā)】篇五|實(shí)戰(zhàn)篇一:STM32cubeIDE上部署神經(jīng)網(wǎng)絡(luò)之pytorch搭建指紋識(shí)別模型.onnx...
2021-12-14 07:35:25
專門針對(duì)Arm嵌入式設(shè)備優(yōu)化的神經(jīng)網(wǎng)絡(luò)推理引擎Tengine + HCL,不同人群的量身定制
2021-01-15 08:00:42
越大,“彩票”越能成功優(yōu)化。因此,這些彩票允許“修剪”稀疏神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)與更復(fù)雜、“密集”網(wǎng)絡(luò)等同的準(zhǔn)確性,從而減少總體計(jì)算負(fù)擔(dān)和電力消耗。圖1。神經(jīng)網(wǎng)絡(luò)發(fā)現(xiàn)稀疏子網(wǎng)絡(luò),與原始的稠密訓(xùn)練模型具有同等的精度
2022-03-17 19:15:13
,非局部運(yùn)算將某一處位置的響應(yīng)作為輸入特征映射中所有位置的特征的加權(quán)和來進(jìn)行計(jì)算。我們將非局部運(yùn)算作為一個(gè)高效、簡(jiǎn)單和通用的模塊,用于獲取深度神經(jīng)網(wǎng)絡(luò)的長(zhǎng)時(shí)記憶。我們提出的非局部運(yùn)算是計(jì)算機(jī)視覺中經(jīng)
2018-11-12 14:52:50
針對(duì)稀疏信號(hào)的重構(gòu)問題,提出了一種基于反饋神經(jīng)網(wǎng)絡(luò)(RNN)的優(yōu)化算法。首先,需要對(duì)信號(hào)進(jìn)行稀疏表示,將數(shù)學(xué)模型化為優(yōu)化問題;接著,基于L范數(shù)是非凸且不可微的函數(shù),并且該優(yōu)化問題是NP難的,因此在
2017-11-28 17:16:580 神經(jīng)網(wǎng)絡(luò)(neural network,縮寫NN)或類神經(jīng)網(wǎng)絡(luò),是一種模仿生物神經(jīng)網(wǎng)絡(luò)(動(dòng)物的中樞神經(jīng)系統(tǒng),特別是大腦)的結(jié)構(gòu)和功能的數(shù)學(xué)模型或計(jì)算模型,用于對(duì)函數(shù)進(jìn)行估計(jì)或近似。神經(jīng)網(wǎng)絡(luò)由大量的人
2018-09-18 22:40:01517 神經(jīng)網(wǎng)絡(luò)可以指向兩種,一個(gè)是生物神經(jīng)網(wǎng)絡(luò),一個(gè)是人工神經(jīng)網(wǎng)絡(luò)。生物神經(jīng)網(wǎng)絡(luò):一般指生物的大腦神經(jīng)元,細(xì)胞,觸點(diǎn)等組成的網(wǎng)絡(luò),用于產(chǎn)生生物的意識(shí),幫助生物進(jìn)行思考和行動(dòng)。
2018-11-24 09:25:3222033 神經(jīng)網(wǎng)絡(luò)控制,即基于神經(jīng)網(wǎng)絡(luò)控制或簡(jiǎn)稱神經(jīng)控制,是指在控制系統(tǒng)中采用神經(jīng)網(wǎng)絡(luò)這一工具對(duì)難以精確描述的復(fù)雜的非線性對(duì)象進(jìn)行建模,或充當(dāng)控制器,或優(yōu)化計(jì)算,或進(jìn)行推理,或故障診斷等,亦即同時(shí)兼有上述某些
2021-05-27 15:02:1112 掌握連續(xù)Hopfield神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)和運(yùn)行機(jī)制,理解連續(xù)Hopfield神經(jīng)網(wǎng)絡(luò)用于優(yōu)化計(jì)算的基本原理,掌握連續(xù)Hopfield神經(jīng)網(wǎng)絡(luò)用于優(yōu)化計(jì)算的一般步驟。
2021-05-31 17:02:2543 基于進(jìn)化計(jì)算的神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)與實(shí)現(xiàn)說明。
2021-06-01 09:25:114 關(guān)注.然而,由于深度卷積神經(jīng)網(wǎng)絡(luò)普遍規(guī)模龐大、計(jì)算度復(fù)雜,限制了其在實(shí)時(shí)要求高和資源受限環(huán)境下的應(yīng)用.對(duì)卷積神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)進(jìn)行優(yōu)化以壓縮并加速現(xiàn)有網(wǎng)絡(luò)有助于深度學(xué)習(xí)在更大范圍的推廣應(yīng)用,目前已成為深度
2022-02-14 11:02:59755 識(shí)別等領(lǐng)域取得了突飛猛進(jìn)的發(fā)展,其強(qiáng)大的特征學(xué)習(xí)能力引起了國(guó)內(nèi)外專家學(xué)者廣泛關(guān)注.然而,由于深度卷積神經(jīng)網(wǎng)絡(luò)普遍規(guī)模龐大、計(jì)算度復(fù)雜,限制了其在實(shí)時(shí)要求高和資源受限環(huán)境下的應(yīng)用.對(duì)卷積神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)進(jìn)行優(yōu)化以壓縮并加速現(xiàn)有網(wǎng)絡(luò)有助于深度學(xué)習(xí)在更大范圍的推廣應(yīng)用,目前已
2022-03-07 16:42:07876 在介紹卷積神經(jīng)網(wǎng)絡(luò)之前,我們先回顧一下神經(jīng)網(wǎng)絡(luò)的基本知識(shí)。就目前而言,神經(jīng)網(wǎng)絡(luò)是深度學(xué)習(xí)算法的核心,我們所熟知的很多深度學(xué)習(xí)算法的背后其實(shí)都是神經(jīng)網(wǎng)絡(luò)。
2023-02-23 09:14:442256 神經(jīng)網(wǎng)絡(luò)是一個(gè)具有相連節(jié)點(diǎn)層的計(jì)算模型,其分層結(jié)構(gòu)與大腦中的神經(jīng)元網(wǎng)絡(luò)結(jié)構(gòu)相似。神經(jīng)網(wǎng)絡(luò)可通過數(shù)據(jù)進(jìn)行學(xué)習(xí),因此,可訓(xùn)練其識(shí)別模式、對(duì)數(shù)據(jù)分類和預(yù)測(cè)未來事件。
2023-07-26 18:28:411623 一。其主要應(yīng)用領(lǐng)域在計(jì)算機(jī)視覺和自然語(yǔ)言處理中,最初是由Yann LeCun等人在20世紀(jì)80年代末和90年代初提出的。隨著近年來計(jì)算機(jī)硬件性能的提升和深度學(xué)習(xí)技術(shù)的發(fā)展,CNN在很多領(lǐng)域取得了重大的進(jìn)展和應(yīng)用。 一、卷積神經(jīng)網(wǎng)絡(luò)模型 (一)卷積層(Convolutional Layer) 卷積神經(jīng)網(wǎng)絡(luò)最
2023-08-17 16:30:30806 積神經(jīng)網(wǎng)絡(luò)計(jì)算公式 神經(jīng)網(wǎng)絡(luò)是一種類似于人腦的神經(jīng)系統(tǒng)的計(jì)算模型,它是一種可以用來進(jìn)行模式識(shí)別、分類、預(yù)測(cè)等任務(wù)的強(qiáng)大工具。在深度學(xué)習(xí)領(lǐng)域,深度神經(jīng)網(wǎng)絡(luò)已成為最為重要的算法之一。在本文中,我們將重點(diǎn)
2023-08-21 16:49:35985 深度神經(jīng)網(wǎng)絡(luò)是一種基于神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)算法,其主要特點(diǎn)是由多層神經(jīng)元構(gòu)成,可以根據(jù)數(shù)據(jù)自動(dòng)調(diào)整神經(jīng)元之間的權(quán)重,從而實(shí)現(xiàn)對(duì)大規(guī)模數(shù)據(jù)進(jìn)行預(yù)測(cè)和分類。卷積神經(jīng)網(wǎng)絡(luò)是深度神經(jīng)網(wǎng)絡(luò)的一種,主要應(yīng)用于圖像和視頻處理領(lǐng)域。
2023-08-21 17:07:361869 人工神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別? 人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network, ANN)是一種模仿人腦神經(jīng)元網(wǎng)絡(luò)結(jié)構(gòu)和功能的計(jì)算模型,也被稱為神經(jīng)網(wǎng)絡(luò)(Neural
2023-08-22 16:45:182941 于傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)模型,卷積神經(jīng)網(wǎng)絡(luò)具有以下優(yōu)點(diǎn)。 1. 局部連接和權(quán)值共享:卷積神經(jīng)網(wǎng)絡(luò)通過設(shè)置局部連接和權(quán)值共享的結(jié)構(gòu),有效地減少了神經(jīng)網(wǎng)絡(luò)的參數(shù)數(shù)量。此設(shè)計(jì)使得模型更加稀疏,并且能夠更好地處理高維數(shù)據(jù)。對(duì)于圖像來說,局部連接能夠捕捉到像素之間的空間相
2023-12-07 15:37:252282
評(píng)論
查看更多