三維大地電磁勘探技術(shù)是以面元為單位,多分量采集站為中心,多遠(yuǎn)參考、互參考和密集布點(diǎn)為特征來(lái)獲得高質(zhì)量的采集數(shù)據(jù)。野外施工時(shí),為了保持站點(diǎn)間同步地進(jìn)行數(shù)據(jù)采集,一般采用GPS秒脈沖信號(hào)或恒溫晶振的定時(shí)信號(hào)來(lái)同步各個(gè)采集站點(diǎn)。前者在惡劣的施工環(huán)境下常會(huì)因?yàn)楦鞣N干擾而發(fā)生跳變,同步效果并不理想。后者長(zhǎng)時(shí)間存在頻率漂移,同樣無(wú)法維持長(zhǎng)時(shí)間的同步采集。
為解決以上問(wèn)題,本文將GPS授時(shí)信號(hào)用于校準(zhǔn)各站點(diǎn)的壓控晶振,之后再使用晶振分頻得到定時(shí)信號(hào)來(lái)同步各采集站點(diǎn)。這樣不僅克服了GPS授時(shí)信號(hào)易受外界干擾的缺點(diǎn),也解決了晶振頻率隨時(shí)間漂移的問(wèn)題,能獲得較為理想的同步信號(hào)。為了使本地晶振長(zhǎng)時(shí)間地同步于GPS系統(tǒng),就需要不斷測(cè)量GPS授時(shí)信號(hào)與本地晶振的分頻信號(hào)的時(shí)間間隔,再根據(jù)測(cè)量數(shù)據(jù)來(lái)校準(zhǔn)和同步本地晶振。因此,時(shí)間間隔測(cè)量的準(zhǔn)確性是保證頻率校準(zhǔn)系統(tǒng)工作性能的關(guān)鍵。本文基于FPGA集成度高、高速和高可靠性的特點(diǎn),介紹了晶振頻率校準(zhǔn)系統(tǒng)在FPGA中的設(shè)計(jì)方法。系統(tǒng)的特點(diǎn)是使用FPGA內(nèi)部進(jìn)位邏輯構(gòu)造延遲線來(lái)實(shí)現(xiàn)時(shí)間間隔測(cè)量,大大提高了測(cè)量分辨率,同時(shí)使用FPGA嵌入式軟核處理器PicoBlaze對(duì)系統(tǒng)狀態(tài)進(jìn)行監(jiān)控,并對(duì)測(cè)量數(shù)據(jù)進(jìn)行濾波處理,充分發(fā)揮了FPGA的集成優(yōu)勢(shì)。
1 系統(tǒng)設(shè)計(jì)
1.1 系統(tǒng)實(shí)現(xiàn)方案
系統(tǒng)的原理如圖1所示,主要由GPS接收模塊、FPGA測(cè)控模塊、D/A轉(zhuǎn)換模塊和壓控恒溫晶振4部分組成。GPS接收模塊用于輸出標(biāo)準(zhǔn)的1-pps脈沖信號(hào),F(xiàn)PGA測(cè)控模塊用于測(cè)量本地晶振分頻信號(hào)與1-pps信號(hào)的時(shí)間間隔,并將所測(cè)值在PicoBlaze中進(jìn)行處理得到晶振輸出頻率相對(duì)于GPS系統(tǒng)的頻率偏差,最后將結(jié)果作為D/A轉(zhuǎn)換模塊的輸入得到修正本地晶振頻率的控制電壓。
1.2 測(cè)量原理
時(shí)間間隔在FPGA中的測(cè)量的原理如圖2所示,使用1-pps秒脈沖信號(hào)與本地晶振分頻得到的100 kHz信號(hào)進(jìn)行比對(duì),得到的時(shí)差即是待測(cè)的時(shí)間間隔。由于只采樣兩者的上升沿間的時(shí)間間隔,所以用100 kHz分頻信號(hào)代替1 Hz秒信號(hào)與1-pps比對(duì),可以減小每次的測(cè)量值,方便數(shù)據(jù)處理。需要注意的是晶振相對(duì)于1-pps的時(shí)差范圍必須在100 kHz信號(hào)的一個(gè)周期內(nèi),即該信號(hào)的頻率決定了測(cè)量量程的大小,可以根據(jù)實(shí)際測(cè)量需要來(lái)決定該信號(hào)的頻率。
圖2中T是待測(cè)的時(shí)間間隔,τ1是計(jì)數(shù)時(shí)鐘周期,M是計(jì)數(shù)器在1-pps信號(hào)到來(lái)時(shí)的計(jì)數(shù)值,N是計(jì)數(shù)器在100 Hz信號(hào)到來(lái)時(shí)的計(jì)數(shù)值,nτ2是由于1-pps脈沖上升沿和計(jì)數(shù)時(shí)鐘上升沿不一致所引起的測(cè)量誤差,這部分誤差由內(nèi)插延遲線來(lái)測(cè)量。由于100 kHz信號(hào)由晶振分頻得到,它和計(jì)數(shù)時(shí)鐘同步,所以不會(huì)產(chǎn)生測(cè)量誤差。因此,待測(cè)的時(shí)間間隔可以表示為:
1.3 延遲線模塊的設(shè)計(jì)
為了在短時(shí)間內(nèi)校準(zhǔn)本地晶體振蕩器,使之與GPS系統(tǒng)同步,必須提高時(shí)間間隔的測(cè)量分辨率,在設(shè)計(jì)中使用了時(shí)間內(nèi)插技術(shù)。其基本原理是利用多個(gè)延時(shí)單元構(gòu)造延遲線,待測(cè)信號(hào)在延遲線中的傳播信息便可以用來(lái)進(jìn)行時(shí)間間隔測(cè)量。延遲線的實(shí)現(xiàn)主要依賴于內(nèi)插延遲單元延時(shí)的均勻性,內(nèi)插延遲單元的單位延時(shí)決定了時(shí)間間隔測(cè)量系統(tǒng)的分辨率。在FPGA中實(shí)現(xiàn)時(shí)間內(nèi)插,關(guān)鍵是在其結(jié)構(gòu)的基礎(chǔ)上利用內(nèi)部已有資源構(gòu)造出延遲線
在XILINX公司FPGA的單元結(jié)構(gòu)中,為了實(shí)現(xiàn)快速的數(shù)學(xué)運(yùn)算設(shè)置了許多專用的進(jìn)位邏輯資源。這些進(jìn)位邏輯的延時(shí)很小,而且它們之間可以相互連接組成進(jìn)位線,可以使用這種專用的進(jìn)位線作為延遲線來(lái)實(shí)現(xiàn)時(shí)間內(nèi)插。如圖3所示,設(shè)計(jì)中使用了Spartan-3系列的FPGA中專用的進(jìn)位邏輯逐個(gè)連接組成延遲線,一個(gè)進(jìn)位邏輯由查找表(LUT)、專用選通器(MUXCY)和專用異或門(XORCY)三部分構(gòu)成。其總體結(jié)構(gòu)上類似一個(gè)多位二進(jìn)制加法器,兩個(gè)輸入的各位分別被置為1和0,進(jìn)位信號(hào)沒(méi)來(lái)時(shí)加法器各位均為1。當(dāng)進(jìn)位信號(hào)到來(lái)時(shí)就會(huì)沿著進(jìn)位線一級(jí)一級(jí)地傳輸,加法器每一位輸出值的變化就代表著信號(hào)的延遲信息,時(shí)鐘前沿到達(dá)時(shí)就可以將這些信息鎖存入觸發(fā)器中。圖4是在一個(gè)時(shí)鐘周期的仿真中延遲線單元輸出經(jīng)過(guò)的延遲單元的個(gè)數(shù),進(jìn)行直線擬合后的結(jié)果為:
所以延遲線單元的測(cè)量分辨率約為1/8.257 4=0.121 ns.
1.4 計(jì)數(shù)器模塊的設(shè)計(jì)
圖5簡(jiǎn)單描述了計(jì)數(shù)器模塊的基本構(gòu)造。在計(jì)數(shù)器模塊的設(shè)計(jì)中,使用了Spartan-3系列的數(shù)字時(shí)鐘管理器,主要目的是將晶振時(shí)鐘信號(hào)倍頻后作為計(jì)數(shù)器的工作時(shí)鐘,保證時(shí)鐘周期小于延遲線的總延時(shí)。根據(jù)時(shí)序仿真所確定的延遲線單元的測(cè)量分辨率及長(zhǎng)度參數(shù),將晶振頻率倍頻為200 MHz。
時(shí)鐘前沿附近計(jì)數(shù)器輸出為亞穩(wěn)態(tài),如果1-pps信號(hào)恰好在這個(gè)時(shí)刻到達(dá),便會(huì)將錯(cuò)誤的計(jì)數(shù)值鎖存。為了解決這個(gè)問(wèn)題,模塊中使用數(shù)字時(shí)鐘管理器輸出相位差為180°的兩路時(shí)鐘,分別驅(qū)動(dòng)兩個(gè)計(jì)數(shù)器同時(shí)工作,這樣無(wú)論任何時(shí)刻都能保證其中之一的輸出為正確值,之后再對(duì)兩者進(jìn)行判斷選擇。選擇信號(hào)由延遲線單元提供,通過(guò)統(tǒng)計(jì)1-pps信號(hào)經(jīng)過(guò)延遲單元的個(gè)數(shù)來(lái)確定1-pps信號(hào)與時(shí)鐘前沿的時(shí)差,然后輸出select信號(hào)。
兩個(gè)計(jì)數(shù)器進(jìn)行循環(huán)計(jì)數(shù),每個(gè)計(jì)數(shù)器都連接著兩組寄存器,其中一組將GPS秒脈沖信號(hào)作為工作時(shí)鐘;另一組的時(shí)鐘信號(hào)與對(duì)應(yīng)計(jì)數(shù)器的時(shí)鐘相連接,且其使能端與100 kHz分頻信號(hào)相連。當(dāng)GPS秒脈沖和100 kHz信號(hào)到來(lái)時(shí),便會(huì)將計(jì)數(shù)值送入相應(yīng)的寄存器組。這樣可以充分利用FPGA的全局時(shí)鐘資源,使相應(yīng)的寄存器組都使用同一時(shí)鐘,保證寄存器觸發(fā)的同步性。此外,使用循環(huán)計(jì)數(shù)的方式也解決了傳統(tǒng)起停型計(jì)數(shù)器由于啟動(dòng)和停止信號(hào)不滿足建立保持時(shí)間而造成計(jì)數(shù)器輸出錯(cuò)誤的問(wèn)題。當(dāng)1-pps信號(hào)與100 kHz信號(hào)的前沿都到達(dá)后,中斷單元將輸出中斷信號(hào),用于通知PicoBlaze軟核讀取測(cè)量結(jié)果。
1.5 PicoBlaze軟核設(shè)計(jì)
PicoBlaze是XILINX公司設(shè)計(jì)的8位微控制器軟核,可以嵌入到Cool Runner II、Virtex-E、Virtex-II(Pro) 和 Spartan3(E)的CPLD以及FPGA中,設(shè)計(jì)靈活方便。PicoBlaze的端口總線提供8位地址(PORT_ID)和讀寫選通信號(hào),最多可以實(shí)現(xiàn)256個(gè)輸入和輸出端口。接口設(shè)計(jì)如圖6所示,PicoBlaze用來(lái)接收延遲線模塊和計(jì)數(shù)器模塊輸出的結(jié)果,同時(shí)讀取異步串行控制器(UART)的數(shù)據(jù)和狀態(tài)信息。其中異步串行控制器直接調(diào)用XILINX的IP核,與外部GPS模塊進(jìn)行串行通信。
此外,為了實(shí)現(xiàn)對(duì)測(cè)量數(shù)據(jù)的存儲(chǔ)以方便數(shù)據(jù)處理,PicoBlaze連接了一個(gè)FIFO數(shù)據(jù)緩沖,用于暫存未處理的測(cè)量數(shù)據(jù)。如圖7所示,PicoBlaze每個(gè)讀寫操作需要兩個(gè)時(shí)鐘周期,此期間地址總線一直處于有效狀態(tài),而讀寫使能信號(hào)僅在第二個(gè)時(shí)鐘周期開始有效,所以地址總線上可以連接適當(dāng)?shù)倪壿嬰娐愤M(jìn)行地址解碼。
設(shè)計(jì)中使用四路選通器分別連接計(jì)數(shù)器模塊、延遲線模塊和FIFO緩沖的輸出,其中因計(jì)數(shù)器模塊中采用16位的計(jì)數(shù)器循環(huán)計(jì)數(shù),為了與PicoBlaze輸入匹配,須將計(jì)數(shù)值分兩部分接到選通器。異步串行控制器的輸出和狀態(tài)信息分別接到三路選通器,剩余一路連接四路選通器的輸出。由于UART和PicoBlaze使用的時(shí)鐘頻率和測(cè)量部分不同,為了提高數(shù)據(jù)傳輸?shù)目煽啃裕谶x通器之間增加了流水線寄存器。
系統(tǒng)運(yùn)行時(shí)PicoBlaze將對(duì)UART狀態(tài)進(jìn)行查詢,當(dāng)檢測(cè)到有GPS串碼數(shù)據(jù)時(shí)便開始讀取其串碼信息。GPS串碼信息用于分析當(dāng)前GPS的狀態(tài),如果檢測(cè)GPS模塊已經(jīng)鎖定衛(wèi)星,則系統(tǒng)開始進(jìn)行測(cè)量和校準(zhǔn)工作。
2 測(cè)量數(shù)據(jù)處理
根據(jù)測(cè)量到的時(shí)間間隔數(shù)據(jù),按照公式:
可以計(jì)算出晶振信號(hào)相對(duì)于GPS的頻率偏差,其中T1和T2分別是測(cè)量部分相隔采樣時(shí)間τ前后輸出的時(shí)間間隔測(cè)量值。根據(jù)頻率偏差的大小,再結(jié)合晶振的壓控靈敏度,便可以實(shí)現(xiàn)對(duì)晶振的輸出頻率進(jìn)行控制和修正。但GPS信號(hào)在傳輸過(guò)程中容易受到外界影響,GPS模塊輸出的1-pps信號(hào)是一個(gè)波動(dòng)信號(hào),其短期穩(wěn)定性較差。圖8的黑色曲線是使用本系統(tǒng)測(cè)量得到的本地晶振相對(duì)于GPS系統(tǒng)的時(shí)間間隔曲線,使用這些數(shù)據(jù)計(jì)算得到的頻率偏差也會(huì)受到影響而發(fā)生波動(dòng),所以不能直接使用。
從式(4)可以看出,計(jì)算頻率偏差僅僅需要窗口的端點(diǎn)處的測(cè)量值而不受窗口內(nèi)的測(cè)量值影響。在實(shí)際應(yīng)用時(shí),計(jì)算量很小而且簡(jiǎn)單,方便使用PicoBlaze軟核處理器來(lái)實(shí)現(xiàn)。PicoBlaze連接的FIFO數(shù)據(jù)緩沖用來(lái)存儲(chǔ)滑動(dòng)窗口中的測(cè)量數(shù)據(jù)。當(dāng)存儲(chǔ)達(dá)到預(yù)設(shè)的窗口長(zhǎng)度時(shí),將從FIFO中順序讀取出先前的測(cè)量值,配合當(dāng)前測(cè)量值,根據(jù)式(3)計(jì)算出頻率偏差。圖8的白色曲線是添加濾波處理后系統(tǒng)輸出的時(shí)間間隔,對(duì)比可以看出濾波對(duì)抖動(dòng)和較大的跳變點(diǎn)都有很好的抑制作用。
本文介紹的晶振頻率校準(zhǔn)系統(tǒng)利用GPS模塊輸出的標(biāo)準(zhǔn)秒脈沖信號(hào)對(duì)本地晶振頻率進(jìn)行校準(zhǔn)。本設(shè)計(jì)基于FPGA內(nèi)部進(jìn)位邏輯資源實(shí)現(xiàn)了高分辨率的時(shí)間間隔測(cè)量單元,并配合滑動(dòng)平均濾波法利用PicoBlaze處理器對(duì)測(cè)量的時(shí)間間隔數(shù)據(jù)進(jìn)行實(shí)時(shí)處理。不僅能夠準(zhǔn)確地測(cè)量本地晶振分頻信號(hào)與GPS秒脈沖信號(hào)之間的時(shí)間間隔,而且降低了GPS秒脈沖波動(dòng)對(duì)測(cè)量結(jié)果的干擾,為校準(zhǔn)晶振頻率提供可靠的修正數(shù)據(jù)。此外,系統(tǒng)測(cè)控部分完全在FPGA中實(shí)現(xiàn),利于提高測(cè)量分辨率,減小系統(tǒng)體積,提高系統(tǒng)運(yùn)行的穩(wěn)定性。本系統(tǒng)不僅可以用于大地電磁三維采集站,還可以在其他對(duì)頻率準(zhǔn)確度有要求的儀器中使用。
評(píng)論
查看更多