1.介紹
雙光學(xué)頻率梳(簡稱雙光梳)[1]的概念在光頻梳被提出后不久被引入[2-4]。在時域上,雙光梳可以理解為兩個相干光脈沖序列,它們的重復(fù)頻率有輕微的偏移。自問世以來,雙光梳光源及其應(yīng)用一直一個重要研究課題[5]。雙光梳光源與早期用于泵浦探測測量的激光系統(tǒng)有許多相似之處。特別是,利用兩種不同重復(fù)頻率對超快現(xiàn)象進行采樣的想法,早在20世紀80年代就已經(jīng)通過等效時間采樣概念的演示進行了探索[6,7]。在這種情況下,通過frep/frep的因子,超快動態(tài)過程在時域中被縮小到更慢的等效時間。這里frep是采樣頻率,是采樣頻率與激發(fā)重頻的差值。這個概念很快通過一對相互穩(wěn)定的鎖模激光器實現(xiàn),通常被稱為異步光采樣(ASOPS)[8]。雙光梳方法和ASOPS激光系統(tǒng)的一個顯著區(qū)別是兩個脈沖序列鎖在一起的相位和定時的精度。因為雙光梳鎖模的發(fā)明,特別是在一個自由運行的激光腔產(chǎn)生兩個光頻梳,這個邊界已經(jīng)變得模糊。這種激光器最初是在光纖[9]和固態(tài)[10,11]增益材料中實現(xiàn)的,隨后出現(xiàn)了大量的激光腔多路復(fù)用方法[12]。由于脈沖在同一腔內(nèi)循環(huán),它們經(jīng)歷類似的干擾,導(dǎo)致相關(guān)的噪聲特性,這對于實際應(yīng)用[13]來說已經(jīng)足夠了。類似地,與電子鎖定異步光采樣ASOPS系統(tǒng)相比,由于共腔結(jié)構(gòu)和鎖模激光器振蕩器的優(yōu)秀無源穩(wěn)定性,有降低時間抖動的潛力[14,15]。此外,由于這些系統(tǒng)顯著降低了復(fù)雜性(一個振蕩器,沒有復(fù)雜的鎖定電子設(shè)備),它們可以在雙光梳激光器通常無法達到的新應(yīng)用領(lǐng)域?qū)崿F(xiàn)實際測量。另一方面,自由運行的激光器容易受到相對光學(xué)相位漂移和兩個脈沖序列之間重復(fù)頻率差異的影響,這必須加以考慮。
迄今為止,單腔雙頻梳激光器的運行通常是在激光設(shè)計或性能上的折衷。例如,將無源雙折射晶體插入腔中[10],用雙折射增益元件對偏腔線[16],分割激光增益帶寬[17],或利用環(huán)形腔的雙向運行[9,11]。最近,在高功率鎖模薄片激光器結(jié)構(gòu)中也研究了涉及獨立腔端鏡的空間分離模概念[18,19]。然而,在這些最新的實現(xiàn)中,并不是所有的內(nèi)腔組件都是共享的以便降低常規(guī)噪聲抑制。
在這篇文章中,我們提出了一種激光腔多路復(fù)用的新方法,通過在表面插入一個具有兩個獨立角度的單片器件,例如雙棱鏡,使空間分離模式存在。因此,通過在適當(dāng)?shù)奈恢冒惭b雙棱鏡,可以將對單光頻梳操作最優(yōu)的空腔適應(yīng)為雙光頻梳空腔。利用這種方法,在80 MHz重復(fù)頻率,在脈沖小于140fs的情況下,我們從單個固體激光器腔中獲得了2.4 W的平均功率。兩個光頻梳的重復(fù)頻率差可在[- 450Hz, 600Hz]范圍內(nèi)調(diào)節(jié)。表征得到脈沖之間的相對時序噪聲為僅為光周期的一小部分:在[20 Hz至100 kHz]的綜合帶寬下為2.2 fs。這是迄今為止報告的在這個頻率范圍內(nèi)自由運行的雙梳激光器中最低的相對時間噪聲。此外,我們在多路復(fù)用元件上應(yīng)用壓電反饋來抵消低頻環(huán)境干擾和漂移,因此我們可以在超過5小時內(nèi)實現(xiàn)標(biāo)準偏差為70um的重復(fù)頻率差穩(wěn)定性。
2.諧振腔設(shè)計與振蕩器性能
圖1所示。(a)激光腔布局。泵浦使用一個980nm多模二極管。DM:泵浦/激光二色性,OC:激光輸出耦合器, 5.5%的激光透過率,泵浦光高透過率。增益介質(zhì)是摻雜4.5%的Yb:CaF2晶體 [20]。該腔采用具有介電介質(zhì)頂部涂層的多量子阱SESAM,獲得高飽和通量Fsat=142?J/cm2,調(diào)制深度?R=1.1%。(b)激光輸出功率和脈沖持續(xù)時間隨總泵浦功率的變化。
圖1(a)顯示了我們的自由運行雙光頻梳激光腔的布局。我們使用多模泵浦二極管和端泵浦腔結(jié)構(gòu),類似于我們之前報道的偏振復(fù)用雙梳狀激光器的配置[20,21]。然而,與過去的報道相反,在有源元件,即增益晶體和半導(dǎo)體飽和吸收鏡(SESAM)上的空間分離是通過插入一個具有高度反射涂層的雙棱鏡來獲得的。通過使用一個頂角179°的雙棱鏡,我們獲得了在增益介質(zhì)上模式分離1.6 mm和在SESAM上模式分離1 mm。圖1(b)顯示了掃描泵浦功率時單個光梳的性能。該孤子鎖模激光器的最大工作點對應(yīng)2.4 W平均輸出功率,脈沖持續(xù)時間分別為138 fs(comb1)和132 fs(comb2),激光器的光對光效率為40%。
我們得到了兩個光頻梳的自啟動鎖模。在最高輸出功率下的激光輸出診斷如圖2(a-b)所示,這表示基模鎖定是很干凈的。壓電致動器可以在短時間內(nèi)連續(xù)調(diào)節(jié)雙棱鏡的橫向位置,把其安裝在一個平移臺上,該平移臺可通過壓電致動器進行大范圍的任意步進調(diào)節(jié)。雙棱鏡的平移可以調(diào)整兩個光頻梳的重復(fù)頻率差,從-450 Hz到600 Hz,對激光輸出性能的影響可以忽略不計(圖2(c))。在較大的行程時,雙棱鏡頂點上的模削效應(yīng)導(dǎo)致輸出功率的降低。
圖2所示。(a)用光譜分析儀(分辨率設(shè)置為0.08 nm)測量對數(shù)尺度下的激光輸出光譜。(b)用微波頻譜分析儀分析快速光電二極管產(chǎn)生的光電流的歸一化功率譜密度。插圖顯示放大的兩個射頻梳的一次諧波。(c)雙棱鏡側(cè)面不同位置的重復(fù)頻率差異。
3.噪聲特性
接下來,我們評估了共腔方法獲得兩個脈沖序列與低相對時間抖動有效性。首先,我們進行相位噪聲特性,試圖獲得每個單獨的脈沖序列的絕對時間抖動。我們在一個快速光電二極管(DSC30S, Discovery Semiconductors Inc.)上檢測每個脈沖序列,并選擇帶有可調(diào)諧帶通濾波器的第6個重復(fù)頻率諧波。該信號通過信號源分析儀(SSA) (E5052B, Keysight)進行分析。得到的相位噪聲功率譜密度(PSD)和綜合時間抖動如圖3所示。從測量中我們看到,每一個單獨的脈沖序列的絕對時間抖動非常小,相位噪聲PSD看起來幾乎相同。為了測量兩個脈沖序列之間的絕對時間抖動的相關(guān)性,我們開發(fā)了一種基于梳齒跳動的相對時間抖動測量技術(shù),該技術(shù)使用了兩個單頻連續(xù)激光器[22]。這種相對時間抖動測量技術(shù)可以揭示任意重復(fù)頻率差下自由運行的雙梳激光的不相關(guān)噪聲。得到的不相關(guān)的相對時序抖動在圖3中用黑線表示。我們發(fā)現(xiàn)相對時間抖動平均比絕對時間抖動低25dB,這表明由于單腔結(jié)構(gòu),有很好的共相位噪聲抑制。集成的相對定時抖動為2.2 fs [20 Hz, 100 kHz]。這表明,即使在較長的數(shù)據(jù)采集時間內(nèi),也可以從自由運行的激光腔獲得亞周期相對定時抖動。
?
圖3所示。(a)使用信號分析儀測量每個脈沖序列的絕對(紅色和藍色)時序噪聲。使用[22]中描述的方法測量的兩個脈沖序列之間的相對時序抖動(黑色)。(b)時序噪聲曲線積分得到的時序抖動。
我們開發(fā)了這種激光器用于等效時間采樣應(yīng)用,如泵浦探測光譜和皮秒超聲[20]。因此,我們還沒有詳細研究該光源如何適用于需要長期相對光學(xué)相位穩(wěn)定性的高分辨率雙梳光譜。在50毫秒的采集周期內(nèi),可以觀測到一些射頻梳齒結(jié)構(gòu)。然而,精確的雙光梳光譜學(xué)應(yīng)用仍然依賴于用一個或多個連續(xù)波激光器跟蹤光學(xué)相位波動,例如通過自適應(yīng)采樣方法,如[23]中的展示。從圖3可以觀察到,在700 Hz和1600 Hz附近有幾個噪聲峰值,這可能是由機械共振引起的,因此可以通過仔細的光學(xué)機械優(yōu)化來消除。然而,這些共振降低了兩個脈沖序列之間的相位相干性。由于較大的光帶寬和相對較低的80 MHz的重頻,混疊條件要求在500 Hz以下的重頻差范圍內(nèi)使用。在這樣的低頻率下,機械噪聲比如來自上述諧振,將影響相互相位相干性。更適合自由運轉(zhuǎn)雙光梳光譜的結(jié)構(gòu)包括更高的重頻和重頻差異,如[13,22],在此機制中提出的技術(shù)探索將是未來工作的主題。在這篇文章中,我們著重于將這種新光源應(yīng)用于泵浦探測光譜的應(yīng)用,在這里,激光的峰值功率可以用來直接激發(fā)非線性過程。80MHz的重頻可以實現(xiàn)12.5 ns的大延遲掃描范圍,超低的相對定時抖動可以用于精確的時間軸校準。
激光相對強度噪聲(RIN)是任何快速采樣應(yīng)用的關(guān)鍵參數(shù)之一。我們在以下高動態(tài)范圍測量配置中分析了我們的激光器的RIN。我們使用一個光電二極管,每個光頻梳的平均梳齒功率同時設(shè)定為10mW。為了獲得RIN光譜,我們使用SSA進行基帶測量。首先,我們用一個低噪聲跨阻抗放大器(DLPCA-200, Femto)測量低頻分量(<200 kHz)。為了測量更高頻率的分量,我們用一個偏置TEE (BT45R, SHF通信技術(shù)AG)分割信號的交流和直流部分。交流部分用低噪聲電壓放大器(DUPVA-1-70, Femto)放大。將兩個測量值拼接在一起,得到每個光頻梳的完整RIN譜,如圖4所示。我們發(fā)現(xiàn)每個光梳的綜合RIN值< 3.1х10-5 [1 Hz, 1 MHz]。
?
圖4所示各光梳的相對強度噪聲譜。根據(jù)光電二極管的規(guī)格和測量的輸入功率計算散粒噪聲極限
4.等效時間采樣應(yīng)用
為了使激光器應(yīng)用于泵浦探測光譜應(yīng)用,我們將它與一個光參量振蕩器(OPO)的一個輸出光束耦合。OPO能夠?qū)崿F(xiàn)波長的多色泵浦探測測量。此外,由于OPO是同步泵浦,兩個脈沖序列之間的相對時間保持不變。我們用ppln晶體(HC Photonics)設(shè)計了一個信號諧振在1600nm的OPO。用2 W輸出的comb1泵浦可獲得876 mW的信號光。同時,我們還產(chǎn)生了OPO信號的二次諧波,以獲得800 nm的光,測量脈沖周期為151 fs,平均功率為390 mW。從振蕩器輸出的comb2可輕松倍頻獲得526 nm的光,使該激光源成為各種波長下理想的光譜學(xué)工具。
為了在環(huán)境發(fā)生變化時也能獲得重頻差的長期穩(wěn)定性,我們實現(xiàn)了一個慢反饋閉環(huán)。comb1和comb2的部分功率發(fā)送到基于BBO的光學(xué)互相關(guān)器。我們使用一個頻率計數(shù)器,通過計算互相關(guān)信號之間的時間來跟蹤重頻差的波動,類似于[20,21]中使用的方法。為此,我們使用了一個定制的FPGA模塊,該模塊能以100Hz或更高的采集速率下獲取comb1和comb2的重頻差,精度優(yōu)于10-6。記錄的重頻差信號在計算機上處理,通過調(diào)節(jié)施加到壓電致動器上的電壓來對復(fù)用元件進行校正。電壓信號以大約?frep的速率更新。
為了驗證兩組多色脈沖序列的相對長期穩(wěn)定性,我們用另一種光學(xué)互相關(guān)裝置測量重頻差,如圖5(a)所示。我們將OPO倍頻輸出(800 nm,comb1)與直接激光輸出(1052 nm,comb2)相互關(guān)聯(lián)。在超過5小時的時間窗口中,我們發(fā)現(xiàn)重頻差波動標(biāo)準差為70uhz,如圖5(b)所示。
圖5所示。(a)帶兩個光學(xué)交叉相關(guān)器(XCORR)的多色等效時間采樣裝置。XCORR 1用于向激光提供慢反饋,XCORR 2用于執(zhí)行環(huán)外測量。(b)使用XCORR 2的長期重頻差穩(wěn)定性。設(shè)置為300Hz。
5.結(jié)論
我們展示了一種新穎的激光腔復(fù)用方法,該方法允許在同一振蕩器中存在兩個空間分離的準共徑腔模式。我們可以實現(xiàn)同步的模式鎖定,每路輸出脈寬少于140 fs,平均功率超過2.4 W。我們還描述了綜合帶寬20 Hz到100 kHz范圍內(nèi)的相對定時抖動在亞周期范圍內(nèi)。我們進一步將這種強大的固態(tài)激光器與OPO耦合,以獲得泵浦探測采樣應(yīng)用的多色光輸出配置。為了消除任何可能改變重復(fù)頻率差的緩慢環(huán)境漂移,我們在雙棱鏡位置上實現(xiàn)了一個基于緩慢交叉校正的反饋環(huán)路,使我們獲得了長期性能良好的雙光梳。因此,我們的系統(tǒng)結(jié)合了這兩種方法的優(yōu)點:共腔雙光梳激光器的高被動穩(wěn)定性和簡單性,以及對鎖定激光系統(tǒng)漂移的免疫性。我們的結(jié)果證明了新的激光腔多路復(fù)用方法的實用性,并顯示其在泵浦探測和等效時間采樣應(yīng)用中的巨大潛力。
關(guān)于生產(chǎn)商K2Photonics:
K2Photonics是瑞士蘇黎士聯(lián)邦理工學(xué)院量子電子學(xué)研究所旗下公司旗下衍生公司。其把最新的基于單腔雙光梳激光器研究的最新成果進行商業(yè)化,為泵浦探測和異步光采樣ASOPS等應(yīng)用客戶提供理想光源。上海昊量光電作為K2Photonics的中國代理,為您提供專業(yè)的選型以及技術(shù)服務(wù)。對于單腔雙光梳激光器有興趣或者任何問題,都歡迎通過電話、電子郵件或者微信與我們聯(lián)系。
關(guān)于昊量光電:
昊量光電? 您的光電超市!
上海昊量光電設(shè)備有限公司致力于引進國外先進性與創(chuàng)新性的光電技術(shù)與可靠產(chǎn)品!與來自美國、歐洲、日本等眾多知名光電產(chǎn)品制造商建立了緊密的合作關(guān)系。代理品牌均處于相關(guān)領(lǐng)域的發(fā)展前沿,產(chǎn)品包括各類激光器、光電調(diào)制器、光學(xué)測量設(shè)備、精密光學(xué)元件等,所涉足的領(lǐng)域涵蓋了材料加工、光通訊、生物醫(yī)療、科學(xué)研究、國防及前沿的細分市場比如為量子光學(xué)、生物顯微、物聯(lián)傳感、精密加工、先進激光制造等。
我們的技術(shù)支持團隊可以為國內(nèi)前沿科研與工業(yè)領(lǐng)域提供完整的設(shè)備安裝,培訓(xùn),硬件開發(fā),軟件開發(fā),系統(tǒng)集成等優(yōu)質(zhì)服務(wù),助力中國智造與中國創(chuàng)造! 為客戶提供適合的產(chǎn)品和提供完善的服務(wù)是我們始終秉承的理念!
審核編輯:湯梓紅
評論
查看更多