1.電機(jī)工作的物理原理 ? ? ?
1.1麥克斯韋方程組
電機(jī)(elektrische Maschine)是一個(gè)對(duì)電磁能和機(jī)械能進(jìn)行不斷轉(zhuǎn)換的換能器,當(dāng)輸入電能,電機(jī)就可以源源不斷地輸出轉(zhuǎn)矩和機(jī)械能,即電動(dòng)機(jī);反之,如果外力不斷推動(dòng)電機(jī)軸,輸入機(jī)械能,電機(jī)就能反向從導(dǎo)線端源源不斷輸出電壓和電能,也即發(fā)電機(jī)。歷史上曾經(jīng)把靜態(tài)不動(dòng)的變壓器也算作電機(jī),但是后來逐漸演化成專指電動(dòng)機(jī)(Motor)和發(fā)電機(jī)(Generator)。電機(jī)的一個(gè)優(yōu)點(diǎn)是它們的損耗相對(duì)較小,因此它們實(shí)現(xiàn)了高效率。大型電機(jī)可以實(shí)現(xiàn)高達(dá)99%的效率。
談及電磁系統(tǒng),就繞不開麥克斯韋方程組,在宏觀世界乃至微觀世界都可以很有效地使用用麥克斯韋方程組來描述系統(tǒng)性質(zhì)。麥克斯韋方程組經(jīng)過對(duì)前人對(duì)電磁現(xiàn)象研究地總結(jié),有四條非常基本的方程,有微分形式和積分形式。現(xiàn)在來考察積分形式地麥克斯韋方程組:
(1.1)?
(1.2)?
上面兩式描述了場(chǎng)密度的通量,分別在一個(gè)封閉空間曲面內(nèi)流出電位移??的總和和磁感應(yīng)??的總和,根據(jù)高中所學(xué)知識(shí),電場(chǎng)可由點(diǎn)電荷激發(fā)產(chǎn)生,磁場(chǎng)不能由磁單極子激發(fā),而是延著路徑封閉,所以電場(chǎng)是有源的,磁場(chǎng)是無源的。所以總的電位移通量為總電荷量q,總磁通量為0。
(1.3)?
(1.4)?
上述兩式描述了場(chǎng)強(qiáng)度的旋量,分別在一個(gè)封閉空間曲線上沿著曲線路徑走一圈的總電場(chǎng)強(qiáng)度和總磁場(chǎng)強(qiáng)度的積分,對(duì)應(yīng)了激發(fā)出來的磁通變化率和電位移變化率(電流強(qiáng)度)。通過高斯公式和斯托克斯公式還可以將上述四個(gè)式子改寫為微分形式:
(1.5)?
(1.6)?
(1.7)?
(1.8)?
?為Nabla算子,與向量點(diǎn)乘計(jì)算散度,叉乘計(jì)算旋度,??為電荷體密度,??為電流密度。上述幾條式子基本可以描述所有一切電機(jī)系統(tǒng)中會(huì)發(fā)生的電磁行為。
1.2材料的極化和磁化
在一個(gè)外加電場(chǎng)中,物質(zhì)分子會(huì)因?yàn)闃O性受場(chǎng)強(qiáng)影響而發(fā)生取向變化,原有排布不均勻的各種大小分子團(tuán)形成的電疇會(huì)因?yàn)橥饧訄?chǎng),電荷分布取向趨同而發(fā)生極化。
(1.9)?
?為真空電容率,亦真空介電常數(shù),??為相對(duì)介電常數(shù),由材料本身性質(zhì)決定。(1.9)描述了外加電場(chǎng)和對(duì)應(yīng)極化強(qiáng)度??共同構(gòu)成的電位移密度。
在一個(gè)外加磁場(chǎng)里,同理可以得到對(duì)應(yīng)的磁疇和磁化強(qiáng)度??與電場(chǎng)不同的是引入了一個(gè)磁極化強(qiáng)度??,它描述了材料和真空環(huán)境下磁感應(yīng)強(qiáng)度的差值。
(1.10)?
?為真空磁導(dǎo)率,??為相對(duì)磁導(dǎo)率,描述了材料允許磁場(chǎng)通過的能力。如果,則為抗磁性,材料阻礙磁場(chǎng)通過;如果??,則表現(xiàn)為順磁性,材料順應(yīng)磁場(chǎng)通過;??為鐵磁性,材料比如鐵鈷鎳會(huì)在磁化以后增強(qiáng)磁場(chǎng)且再移走磁場(chǎng)后保留一定強(qiáng)度磁場(chǎng),即所謂剩磁。在電機(jī)運(yùn)行的過程中會(huì)不斷出現(xiàn)磁化和退磁,所以也應(yīng)該注意對(duì)不同材料磁滯回線的考察。
圖1.1 磁滯回線
磁滯回線描述了外加磁場(chǎng)強(qiáng)??作用下一種磁性材料隨著場(chǎng)強(qiáng)增大而不斷增強(qiáng)其磁感應(yīng)強(qiáng)度,該磁感應(yīng)強(qiáng)度在達(dá)到磁飽和以后很難跟隨場(chǎng)強(qiáng)繼續(xù)增強(qiáng),當(dāng)外部磁場(chǎng)強(qiáng)慢慢減小至零,可以看到退磁曲線過零點(diǎn)時(shí),依然保有剩磁??,這個(gè)剩磁就明示了一般永磁體的制造原理,即定向磁化再逐步退磁。而當(dāng)施加反向磁場(chǎng)致使磁感應(yīng)強(qiáng)度歸零乃至反向增大,這個(gè)過零點(diǎn)稱為矯頑強(qiáng)度?
1.3電磁力
電機(jī)最大的價(jià)值就是實(shí)現(xiàn)電能到機(jī)械能的轉(zhuǎn)化,對(duì)外做功,執(zhí)行目標(biāo)運(yùn)動(dòng)。帶電粒子在磁場(chǎng)中運(yùn)動(dòng)受到垂直于運(yùn)動(dòng)方向的洛倫茲力,其宏觀表現(xiàn)就是安培力??,可以使用左手定則判斷方向,??為電流方向下導(dǎo)體在磁場(chǎng)中有效長(zhǎng)度。
圖1.2 用以判斷電流,磁感應(yīng)強(qiáng)度和受力方向的左手定則
靜電場(chǎng)里也有對(duì)應(yīng)的電場(chǎng)力??。而磁場(chǎng)和電場(chǎng)本身都是場(chǎng),對(duì)其中電荷或者電流元施加作用力時(shí),依賴于體積和場(chǎng)密度,因而可以用場(chǎng)的觀點(diǎn)來考察對(duì)應(yīng)的場(chǎng)力:
(1.11)?
(1.12)?
上述兩式依然保持了對(duì)稱性,電荷體密度?在一定體積內(nèi)由于電場(chǎng)場(chǎng)強(qiáng)產(chǎn)生了電能力密度??,電流密度??也在一定體積內(nèi)由于磁場(chǎng)場(chǎng)強(qiáng)產(chǎn)生了磁能力密度??(以上式(1.12)必須在材料各向同性和恒定電流情況下方可使用)這種表述方式啟發(fā)我們可以直接考察電磁場(chǎng)的能量和能量密度,這樣可以確定某一點(diǎn)的電磁勢(shì)能通過求梯度來獲得對(duì)應(yīng)的電磁力密度從而求得對(duì)應(yīng)考察物體受到的總的電磁力了。
1.4線圈模型
線圈是一個(gè)構(gòu)成電機(jī)模型的基本元素,它橋接了電機(jī)的電路模型和實(shí)物的物理模型。一段直線通電導(dǎo)體會(huì)在周圍產(chǎn)生環(huán)形磁場(chǎng)(根據(jù)式1.4),當(dāng)導(dǎo)體首尾閉合后,環(huán)形磁場(chǎng)在導(dǎo)體環(huán)中心形成豎直通過導(dǎo)體環(huán)的磁力線,比如螺線管。
圖1.3 螺線管和對(duì)應(yīng)磁力線分布情況
只考慮通電導(dǎo)體上的電流,(1.4)簡(jiǎn)化為:
(1.13)?
?磁動(dòng)勢(shì)(magnetische Durchfluchtung),是激發(fā)磁場(chǎng)強(qiáng)度的源頭,本質(zhì)為一段封閉導(dǎo)體上通過的總電流強(qiáng)度,單位為[A]。因?yàn)閷?shí)際操作時(shí)會(huì)把通電導(dǎo)線纏繞成線圈,所以導(dǎo)線電流是離散化的,(1.13)改寫為:
(1.14)?
?為線圈總纏繞數(shù),即匝數(shù)??梢娙绻褦?shù)越多,總電流就越大,磁動(dòng)勢(shì)就越大,能激發(fā)的磁場(chǎng)就越強(qiáng)。
電生磁,磁也能生電,一個(gè)處在時(shí)變磁場(chǎng)里的單匝線圈會(huì)在導(dǎo)線兩端感應(yīng)出電壓,此現(xiàn)象可由(1.3)描述,當(dāng)我們把線圈通過面積里的磁感應(yīng)強(qiáng)度求和即可得到總的磁通量
(1.15)?
可知磁感應(yīng)強(qiáng)度也可以理解為磁通密度,代入(1.3)可得
(1.16)?
?為感應(yīng)電動(dòng)勢(shì),考慮磁通變化兩種形式,一是變化線圈面積而是變化磁通密度,則有
(1.17)?
圖1.4.1形式變換的感應(yīng)電動(dòng)勢(shì)
圖1.4.2平移變換的感應(yīng)電動(dòng)勢(shì)
前一部分是形式變換的感應(yīng)電動(dòng)勢(shì)(transformatisch induzierte Spannung),后一部分是平移變換的感應(yīng)電動(dòng)勢(shì)(translatorisch induzierte Spannung)。前者磁通密度時(shí)變,后者有效線圈面積時(shí)變。這個(gè)感應(yīng)原理在高中物理時(shí)會(huì)被提及,也就是所謂的楞次定理。
當(dāng)一個(gè)線圈有好多匝數(shù)的時(shí)候,總的有效磁通正好是擴(kuò)大了線圈匝整數(shù)倍,于是引入磁鏈的概念。定義磁鏈??。注意,磁鏈和磁通一樣都是標(biāo)量。因?yàn)殡娏鞅旧碜兓材芤鸫磐ㄗ兓溱厔?shì)為阻礙磁通變化,可以做出定義
(1.18)?
(1.19)?
?為變化的電流強(qiáng)度,?為自感系數(shù),單位亨利[H],其大小和線圈體積形狀,匝數(shù),磁導(dǎo)率都有關(guān)系。電機(jī)中線圈都會(huì)為了提高磁導(dǎo)率而讓線圈中間加入鐵磁性材料,比如鐵芯,這樣線圈就會(huì)繞在鐵芯上,故而被稱為繞組(Wicklung)。
對(duì)于一段線性各相同性的材料來說,它的自感系數(shù)可由以下公式近似描述
(1.20)?
自感就是一個(gè)線圈自身電流變化感應(yīng)出阻遏電壓的現(xiàn)象,其趨勢(shì)為阻礙電流變化,當(dāng)兩個(gè)線圈靠近時(shí),他們彼此除了自己的自感,還會(huì)因?yàn)猷徑木€圈上電流變化而產(chǎn)生互感
(1.21)?
線性各相同性的材料的互感系數(shù)??用上式近似表達(dá),可見互感同時(shí)受到兩個(gè)線圈的匝數(shù)影響。
圖1.5 同時(shí)穿越線圈1(Spule 1)和線圈2(Spule 2)的磁場(chǎng)下的耦合感應(yīng)
忽略電阻,考察兩段臨近線圈的自感和互感情況,由圖1.5可列出電壓方程
(1.22)?
(1.23)?
由于耦合部分擁有同樣的材料參數(shù)和形狀所以產(chǎn)生的互感系數(shù)是相等的??,于是在倆線圈上分別產(chǎn)生的耦合磁鏈大小正比于對(duì)應(yīng)線圈上的電流強(qiáng)度
(1.24)?
1.5電路和磁路的歐姆定理
在中學(xué)的時(shí)候我們學(xué)習(xí)過歐姆定理,即一段導(dǎo)體的電阻為兩端電壓和電流之比,描述電阻材料本身也有公式,??為電導(dǎo)率,它正好為電阻率??的倒數(shù),描述了對(duì)電流的導(dǎo)通能力。除了應(yīng)用電阻,還可以使用電導(dǎo)??描述電壓電流之間的關(guān)系:
(1.25)?
(1.26)?
現(xiàn)在考察單位面積上的電流強(qiáng)度,即電流密度??(?為單位矢量),電流密度為矢量,方向指向電流方向??梢越Y(jié)合電壓公式??以及(1.25)改寫(1.26)為:
(1.27)?
上式描述了微觀時(shí)歐姆定理,即導(dǎo)體外加恒定場(chǎng)強(qiáng)下對(duì)應(yīng)的電流密度的變化。
圖1.6 整塊鐵芯的磁通和磁路
在一個(gè)磁路中,磁通(magnetische Fluss)也是一種流量,不同材料對(duì)磁通的阻礙程度也各不相同,因而可以類比電路的歐姆定理引入磁阻??的概念(單位[A/Vs]),由磁動(dòng)勢(shì)類比于電動(dòng)勢(shì),可以得到新的對(duì)應(yīng)關(guān)系
(1.28)?
?為磁通量通過一段磁路的有效長(zhǎng)度,??為對(duì)應(yīng)的磁通面積。上式與電阻公式很像。讓我們?cè)賹?duì)磁阻公式變形,可以繼續(xù)得到
(1.29)?
可見在單位上磁阻其實(shí)和電感系數(shù)是倒數(shù)。
繼續(xù)類比電導(dǎo)的概念,可得磁導(dǎo)??(magnetische Leitwert,單位[H]或者[Ωs])
(1.30)?
(1.31)?
在電路中我們對(duì)(1.26)求微元,得到微觀的歐姆定理,那么對(duì)應(yīng)到磁路的微觀歐姆定理是什么呢?我們可以繼續(xù)改寫式(1.31),注意到磁通本身就有磁通密度??,那么可得
(1.32)?
所以微觀磁路歐姆定理就是式(1.10),磁場(chǎng)強(qiáng)度下就是恒強(qiáng)磁場(chǎng)的磁化所得磁通密度。
對(duì)磁阻的計(jì)算分析可以用來實(shí)現(xiàn)對(duì)整個(gè)電機(jī)繞組極,鐵芯部分和中間氣隙部分的磁通的微元分析,可以實(shí)現(xiàn)對(duì)整個(gè)磁路進(jìn)行離散的有限元分析FEM(Finite-Elemente-Methode)。在磁路里也完全可以應(yīng)用電路的基爾霍夫定理進(jìn)行分析,十分直觀方便。
1.6小結(jié)
到現(xiàn)在,一些電機(jī)所需的基本物理知識(shí)基本上都覆蓋到了。
有讀者建議我應(yīng)該總結(jié)一個(gè)電磁對(duì)應(yīng)關(guān)系的表格,這樣便于記憶和理解,于是在此次修訂中在小結(jié)里給出附表。
表1.1 電磁場(chǎng)中電磁關(guān)系
表1.2 電路網(wǎng)絡(luò)中的電磁關(guān)系
表1.3 電路中的電磁關(guān)系
編輯:黃飛
評(píng)論
查看更多