高速模數(shù)轉(zhuǎn)換器(ADC)存在一些固有限制,使其偶爾會在其正常功能以外產(chǎn)生罕見的轉(zhuǎn)換錯誤。但是,很多實際采樣系統(tǒng)不容許存在高ADC轉(zhuǎn)換誤差率。因此,量化高速模數(shù)轉(zhuǎn)換誤差率(CER)的頻率和幅度非常重要。##高速ADC中的轉(zhuǎn)換誤差幅度很關(guān)鍵,有些誤差比其他誤差更重要。
2015-04-07 15:03:051905 常用的A/D轉(zhuǎn)換器主要存在:失調(diào)誤差、增益誤差和線性誤差。這里主要討論失調(diào)誤差和增益誤差。提出一種用于提高TMS320F2812ADC精度的方法,使得ADC精度得到有效提高。
2016-08-05 15:21:3721928 犯錯乃人之常情。但對于系統(tǒng)的模數(shù)轉(zhuǎn)換器(ADC),我們能夠提出什么樣的要求呢?我們將回顧轉(zhuǎn)換誤差率(CER)測試的范圍和高速ADC的分析。
2017-04-24 13:38:571356 許多實際高速采樣系統(tǒng),如電氣測試與測量設(shè)備、生命系統(tǒng)健康監(jiān)護、雷達和電子戰(zhàn)對抗等,不能接受較高的ADC轉(zhuǎn)換誤
2017-09-20 09:49:075895 模數(shù)轉(zhuǎn)換器 (ADC)有許多規(guī)格。根據(jù)應(yīng)用程序的要求,其中一些規(guī)范可能比其他規(guī)范更重要。DC 規(guī)范,例如偏移誤差、增益誤差、積分非線性 (INL) 和微分非線性 (DNL),在使用 ADC 將緩慢移動的信號(例如來自應(yīng)變儀和溫度的信號)數(shù)字化的儀器應(yīng)用中尤為重要傳感器。
2022-09-13 10:22:041519 在上一篇文章中,我們討論了失調(diào)誤差如何影響單極性 ADC 的傳遞函數(shù)??紤]到這一點,單極 ADC 的輸入只能接受正電壓。相比之下,雙極 ADC 的輸入可以處理正電壓和負電壓。在本文中,我們將探討雙極性和差分 ADC 中的失調(diào)和增益誤差規(guī)范;并了解失調(diào)誤差的單點校準。
2022-09-13 10:31:192782 通過示例了解用于補償模數(shù)轉(zhuǎn)換器 (ADC) 偏移和增益誤差的兩點校準方法和定點實現(xiàn)。
2022-11-24 09:50:096004 模數(shù)轉(zhuǎn)換器(ADC)有多種規(guī)格描述(specification)。根據(jù)應(yīng)用需求,其中一些規(guī)范可能比其他規(guī)范更重要。比如:在直流規(guī)格中,如失調(diào)誤差、增益誤差、積分非線性(INL)和差分非線性(DNL),在使用ADC對慢速移動信號(如應(yīng)變片和溫度傳感器的信號)進行數(shù)字化處理的儀器儀表應(yīng)用中尤為重要。
2022-11-29 10:04:16679 今天介紹一下 ADC 積分非線性(INL)誤差。
2022-12-30 14:25:28919 本篇文章列出了影響模數(shù)轉(zhuǎn)換精度的主要誤差。這些類型的誤差存在于所有模數(shù)轉(zhuǎn)換器中,轉(zhuǎn)換質(zhì)量將取決于它們的消除情況。STM32微控制器數(shù)據(jù)手冊的ADC特性部分規(guī)定了這些誤差 值。規(guī)定了STM32 ADC
2023-08-04 10:35:201199 ,用過STM32 ADC的人是不是想到了參考手冊中關(guān)于12位ADC轉(zhuǎn)換時間的公式:ST官方就如何保障或改善ADC精度寫了一篇應(yīng)用筆記AN2834。該應(yīng)用筆記旨在幫助用戶了解ADC誤差的產(chǎn)生以及如何提高
2021-07-09 07:30:00
,0.0625/0.024 = 2.6或±1.3 LSB。 ADC誤差分析影響轉(zhuǎn)換器性能的其它誤差來源有:CMRR、時鐘抖動、固有電 路板噪聲、耦合等等。所有這些誤差最終都決定了ADC如何有效 地表示信號
2018-08-03 06:51:07
實際分辨率受器件自身誤差和電路噪聲的影響很大。ADC信噪比要怎么分析?高速高分辨率ADC電路要怎么實現(xiàn)?
2021-04-14 06:16:30
的模擬數(shù)字轉(zhuǎn)換器將模擬信號轉(zhuǎn)換為表示一定比例電壓值的數(shù)字信號。stm32——ADC簡介STM32 擁有 1~3 個 ADC(STM32F101/102 系列只有 1 個 ADC),這些 ADC 可以獨立使用,也可以使用雙重模式(提高采樣率)。STM32 的 ADC 是 12 位逐次逼近型的模擬數(shù)字轉(zhuǎn)換器。
2021-07-23 07:20:50
,應(yīng)選用分辨率為多少位的A/D轉(zhuǎn)換器(設(shè)ADC的分辨率和精度一樣)?2. 設(shè)被測溫度變化范圍為01200,如果要求誤差不超過0.4,應(yīng)選用分辨率為多少位的A/D轉(zhuǎn)換器(設(shè)ADC的分辨率和精度一樣)?3....
2021-09-01 07:56:35
和采樣保持,如果選的參考源很好的話AD精度就會提高,外置的采樣保持器往往比AD內(nèi)部的采樣保持器要好。
我的問題是:ADC的所有誤差都有哪些?有沒有這種講所有誤差并且有公式的資料沒?我想計算下,再和實際的電路結(jié)果對比下,看看哪里可以改進。謝謝各位大牛!
2023-12-19 08:04:46
作者: Vinay Agarwal 在與使用模數(shù)轉(zhuǎn)換器 (ADC) 的系統(tǒng)設(shè)計人員進行交談時,我最常聽到的一個問題就是:“你的16位ADC的精度也是16位的嗎?”這個問題的答案取決于對分辨率和精度
2018-09-12 11:49:42
要么為 0.99388V,要么為 1.00612V。因此,轉(zhuǎn)換器規(guī)定的動態(tài)范圍為 60dB 或 9.67ENOB,假設(shè)其滿量程電壓為 10 V。轉(zhuǎn)換器有兩個放大器級、一個多路復(fù)用器和一個 ADC。本分析
2018-11-01 11:36:23
位數(shù)對模擬量進行量化而引起的誤差。實際上,要準確表示模擬量,ADC的位數(shù)需很大甚至無窮大。一個分辨率有限的ADC的階梯狀轉(zhuǎn)換特性曲線與具有無限分辨率的ADC轉(zhuǎn)換特性曲線(直線)之間的最大偏差即是量化誤差
2020-11-30 15:36:19
針對A/D轉(zhuǎn)換中可能出現(xiàn)的誤差,主要分為以下四種情況,漂移誤差、線型比例誤差、非線性誤差、非單調(diào)性誤差。還有那些能夠引起AD轉(zhuǎn)換出現(xiàn)比較大的誤差類別?
先說AD轉(zhuǎn)換是怎么取值的,假設(shè)輸入信號0-3V
2024-01-30 14:19:21
(RF)模數(shù)轉(zhuǎn)換器(ADC),具有6.5 GHz輸入帶寬。AD9213支持高動態(tài)范圍頻率和需要寬瞬時帶寬和低轉(zhuǎn)換誤差率(CER)的時域應(yīng)用。AD9213具有16通道JESD204B接口,以支持最大帶寬
2020-03-02 09:18:31
在PSoC第一觸控套件上測試Delsig ADC,用0*6*VREF范圍,得到5%的增益誤差。在其他范圍內(nèi),誤差較小,但仍然不符合標準。是否有可能導(dǎo)致ES1或硅錯誤的錯誤配置? 以上來自于百度翻譯
2019-03-18 15:31:21
時,ADC 的 DC DR 就會減小至:將 (2) 和 (4) 組合起來,可重新計算出降低的分辨率或有效分辨率:同理,對于時間變化的輸入而言,ADC 的輸出包含動態(tài)誤差(即量化噪聲與失真)以及可降低 DR
2018-09-13 09:58:30
網(wǎng)絡(luò)測試 NetWork 分析儀
2024-03-14 22:30:52
芯片介紹與分析***ADC0809 是采用CMOS 工藝制造的雙列直插式單片8 位A/D 轉(zhuǎn)換器。(分辨率) 分辨率8 位,精度7 位,帶8 個模擬量輸入通道,有通道地址譯碼鎖存器,輸出帶三態(tài)數(shù)據(jù)鎖
2021-07-22 06:38:02
的修正方法,減去初始偏差 -64mv.得到被測電壓為:1576-(-64)=1640mv.為做對比,使用三位半精度數(shù)字萬用表電壓檔測試該5號電池,讀數(shù)為1609mv。則可以算出,以此萬用表為基準的誤差率
2021-12-11 12:54:01
ΔΣ (delta-sigma) ADC就是這種情況。如果量化噪聲可以忽略不計,則應(yīng)考慮ADC 的峰峰值輸入?yún)⒖荚肼晛?b class="flag-6" style="color: red">分析系統(tǒng)噪聲性能。量化誤差的頻率成分量化噪聲模型的一個含義是誤差與輸入不相關(guān)。為了更好地理
2022-12-22 15:17:41
應(yīng)用設(shè)計。此應(yīng)用筆記旨在幫助用戶如何設(shè)置正確軟、硬件使ADC達到準確的量測,也提供相關(guān)應(yīng)用上的注意事項。 2ADC的誤差來源及其誤差最小化方法本章列出了影響ADC轉(zhuǎn)換精度的主要誤差。這些類型的誤差存在于所有
2021-09-26 19:12:05
帶來的發(fā)熱現(xiàn)象,而且,高精密電子變壓箱通過低通濾波又抵消了波紋的影響,確保了檢定的準確,因此,有源大功率直流標準電阻器,是目前用于校準直流電阻測試儀比較理想的儀器。2、有源大功率電阻器檢定系統(tǒng)及誤差分析
2021-07-16 14:01:37
如何進行模數(shù)轉(zhuǎn)換器誤差分析? 轉(zhuǎn)換器內(nèi)部何種程度才會導(dǎo)致這些誤差的出現(xiàn)?
2021-03-07 07:44:47
網(wǎng)絡(luò)分析儀校準的目的是消除測試的系統(tǒng)誤差。校準的思路是通過對標準件的測試得到網(wǎng)絡(luò)分析儀系統(tǒng)誤差項的具體數(shù)值,然后通過計算對被測件測試結(jié)果進行修正處理,消除其中誤差成份,得到被測件真實值。
2019-08-12 07:41:15
Miguel Usach典型DPD應(yīng)用模數(shù)轉(zhuǎn)換器(ADC)中集成的緩沖器和放大器通常是斬波型。有關(guān)這種斬波實現(xiàn)的例子,可參見AD7124-8和AD7779數(shù)據(jù)手冊。需要這種斬波技術(shù)來最大程度地降低
2018-10-16 10:09:58
轉(zhuǎn)換,這些都是對小幅度信號測量精度要求較高的例子。考慮到所有這些測試場景,全新4系列MSO的核心是12位模數(shù)轉(zhuǎn)換器(ADC),它提供的垂直分辨率是傳統(tǒng)8位ADC的16倍。與一些示波器供應(yīng)商不同,它們
2020-02-13 10:14:35
器ADC100性能優(yōu)良,具有高精度、低功耗、操作便捷的特性。其分辨率達22 bit,滿刻度誤差僅為1ppm/℃,最大線性誤差2ppm,而功耗僅為400mW,同時具備內(nèi)部時鐘及校準功能。該產(chǎn)品操作簡便
2019-06-27 06:05:02
的分析。取決于采樣速率和所需的目標限值,ADC CER測量過程可能需要數(shù)周或數(shù)月時間。為實現(xiàn)高置信度(CL),出現(xiàn)首次錯誤之后常常還需要進行測試(Redd,2000)。對于那些要求低轉(zhuǎn)換誤差率的系統(tǒng),需要
2018-10-19 09:58:12
模數(shù)轉(zhuǎn)換器(ADC)有多種規(guī)格描述(specification)。根據(jù)應(yīng)用需求,其中一些規(guī)范可能比其他規(guī)范更重要。比如:在直流規(guī)格中,如失調(diào)誤差、增益誤差、積分非線性(INL)和差分非線性(DNL
2022-12-14 17:02:36
分辨率和采樣速率是選擇模數(shù)轉(zhuǎn)換器(ADC)時要考慮的兩個重要因素。為了充分理解這些,必須在一定程度上理解量子化和奈奎斯特準則等概念?! 》直?b class="flag-6" style="color: red">率和采樣率可能是選擇模數(shù)轉(zhuǎn)換器(ADC)時要考慮的兩個
2023-02-16 18:10:34
高速模數(shù)轉(zhuǎn)換器(ADC)存在一些固有限制,使其偶爾會在其正常功能以外產(chǎn)生罕見的轉(zhuǎn)換錯誤。但是,很多實際采樣系統(tǒng)不容許存在高ADC轉(zhuǎn)換誤差率。因此,量化高速模數(shù)轉(zhuǎn)換誤差率(CER)的頻率和幅度非常重要
2023-12-20 07:02:15
,具有 12 位分辨率的 ADC可以解析 2 12中的 1部分(4096 中的 1 部分)。換句話說,12 位 ADC可以檢測小至滿量程值的 0.0244% 的電壓。然而,這并不意味著轉(zhuǎn)換誤差(ADC
2023-02-08 14:53:32
現(xiàn)實中,所有的儀器都不可能是理想的,ENOB通常是低于其A/D轉(zhuǎn)換分辨率的。由圖表 1數(shù)字示波器系統(tǒng)架構(gòu)圖可知,前端采集電路及ADC采樣電路對ENOB有較大影響。實際工作時,偏置誤差、非線性誤差、增益
2019-05-29 17:43:49
在與使用模數(shù)轉(zhuǎn)換器(ADC)的系統(tǒng)設(shè)計人員進行交談時,我最常聽到的一個問題就是:
“你的16位ADC的精度也是16位的嗎?”
這個問題的答案取決于對分辨率和精度概念的基本理解。盡管是兩個完全
2023-12-20 06:55:22
ADC的轉(zhuǎn)換率與實際轉(zhuǎn)化率有什么不同?ADSCARSAR與ADC SAR SEQ的區(qū)別是什么?謝謝您。
2019-10-24 10:39:29
數(shù)據(jù)轉(zhuǎn)換器中的噪聲與誤差之間有什么關(guān)系,在設(shè)計中該如何考慮這兩者,比如說我在設(shè)計時應(yīng)該考慮ADC的失調(diào)和增益誤差,還是考慮ADC的SNR?
2023-12-07 08:06:19
– 1GSPS)和寬帶ADC (>1GSPS),提供面向所有高速轉(zhuǎn)換應(yīng)用的解決方案。附件是咱們工程師親自整理的6個文檔,趕快下載吧~附件小于10的15次方分之一_一種用于測量ADC轉(zhuǎn)換誤差率的測試方法
2018-08-17 06:55:58
許多實際高速采樣系統(tǒng),如電氣測試與測量設(shè)備、生命系統(tǒng)健康監(jiān)護、雷達和電子戰(zhàn)對抗等,不能接受較高的ADC轉(zhuǎn)換誤差率。這些系統(tǒng)要在很寬的噪聲頻譜上尋找極其罕見或極小的信號。誤報警可能會引起系統(tǒng)故障。因此,我們必須能夠量化高速ADC轉(zhuǎn)換誤差率的頻率和幅度。
2019-07-18 08:14:16
一,KL25 16位ADC最高轉(zhuǎn)換率基本知識要將16位ADC的轉(zhuǎn)換率配置為最高,首先需要選擇最高的ADC模塊轉(zhuǎn)換時鐘頻率,16位ADC模塊轉(zhuǎn)換時鐘范圍可以在KL25的datasheet中查看到: 圖
2015-02-06 15:16:56
方案要進行 ADC 這些眾多指標的驗證,基本的方法是給 ADC 的輸入端輸入一個理想的信號,然后對 ADC 轉(zhuǎn)換以后的數(shù)據(jù)進行采集和分析,因此,ADC 的性能測試需要多臺儀器的配合并用軟件對測試結(jié)果進行
2018-04-03 10:39:35
當(dāng)今許多應(yīng)用都要求高速采樣模數(shù)轉(zhuǎn)換器(ADC)具有12位或以上的分辨率,以便用戶能夠進行更精確的系統(tǒng)測量。然而,更高分辨率也意味著系統(tǒng)對噪聲更加敏感。系統(tǒng)分辨率每提高一位,例如從12位提高到13位
2019-12-11 18:12:18
當(dāng)今許多應(yīng)用都要求高速采樣模數(shù)轉(zhuǎn)換器(ADC)具有12位或以上的分辨率,以便用戶能夠進行更精確的系統(tǒng)測量。然而,更高分辨率也意味著系統(tǒng)對噪聲更加敏感。系統(tǒng)分辨率每提高一位,例如從12位提高到13位
2019-12-25 18:03:49
高速模數(shù)轉(zhuǎn)換器的轉(zhuǎn)換誤差率解密
2021-04-06 06:15:12
Bit Error Rate Testing (BERT)_Chinese.avi
分析儀的比特誤差率測試視頻,中文哦。
2008-09-09 10:24:0130 ADC中的ABC理解ADC誤差對系統(tǒng)性能的影響
2009-04-16 23:33:4014 教室測試中UGR 測量值的誤差分析
1、使用照度計測試的部分,主要包括教室工作面及黑板的照度平均值和均勻度。2、教室照明的功率密度,這部分主要是使用功率計進行
2010-04-14 15:30:476 摘要:本文對集成電路動態(tài)參數(shù)測試中的各種誤差進行詳細的分析.并提出了一種簡單的誤差補償方法。按照本方法設(shè)計的測試儀具有較高的性能價格比。關(guān)鍵詞:動態(tài)參數(shù)測量
2010-05-15 08:51:0821 在數(shù)據(jù)采集系統(tǒng)中,模數(shù)轉(zhuǎn)換器(ADC)的誤差對系統(tǒng)性能的影響是至關(guān)重要的。本文主要以MAX1324為例,從直流特性、誤差源、溫度效應(yīng)及交流特性等方面,詳細討論了ADC誤差對系統(tǒng)
2010-08-03 11:19:370 ADC中的ABC:理解ADC誤差對系統(tǒng)性能的影響 The ABCs of ADCs: Understanding How ADC Errors Affect System Performance
2009-07-22 13:01:284610 A/D轉(zhuǎn)換器測試技術(shù)及發(fā)現(xiàn)ADC中丟失的代碼
A/D轉(zhuǎn)換器的量化噪聲、丟失位、諧波失真以及其他非線性失真特性都可以通過分析轉(zhuǎn)換器輸出的頻譜分量來判定。
2010-01-04 16:03:17857 軟誤差率(SER)問題是于上個世紀70年代后期作為一項存儲器數(shù)據(jù)課題而受到人們的廣泛關(guān)注的,當(dāng)時DRAM開始呈現(xiàn)出隨機故障的征兆。隨著工藝幾何尺寸的不斷縮小,引起失調(diào)所
2010-08-31 17:38:242067 采用一種巧妙的方法規(guī)避了在ADC有效位測試中,由信號源帶來的誤差。
2016-03-22 18:09:047 經(jīng)驗公式發(fā)現(xiàn)系統(tǒng)FDD誤差率計算方法的改進_陳燕雷
2017-03-15 08:00:000 在任何設(shè)計中,信號鏈精度分析都可能是一項非常重要的任務(wù),必須充分了解。在本系列的第二部分中,我們討論了在整個信號鏈累積起來并且最終會影響到轉(zhuǎn)換器的多種誤差。請記住,轉(zhuǎn)換器是信號鏈的瓶頸,最終決定
2017-11-15 18:09:302235 參數(shù)時,若測量精度極為重要,那么這些內(nèi)容對于理解如何 正確指定一個ADC有著重要作用。最后,本文將討論一個簡單的 誤差分析,幫助為設(shè)計選擇正確的轉(zhuǎn)換器。
2017-11-17 05:02:0110370 時,這意味著該裝置不存在疊加誤差或“疊加保持”。對于一個具有很少或沒有疊加誤差的DAC,任何給定碼的線性誤差都與T有關(guān)。o在某些不同的代碼中的線性誤差。這允許您確定最壞情況的線性誤差,以及發(fā)生錯誤的數(shù)字代碼,通過一個非常簡單的測試。
2018-05-18 17:56:149 犯錯乃人之常情。但對于系統(tǒng)的模數(shù)轉(zhuǎn)換器(ADC),我們能夠提出什么樣的要求呢?
2019-04-16 15:03:211543 許多實際高速采樣系統(tǒng),如電氣測試與測量設(shè)備、生命系統(tǒng)健康監(jiān)護、雷達和電子戰(zhàn)對抗等,不能接受較高的ADC轉(zhuǎn)換誤差率。這些系統(tǒng)要在很寬的噪聲頻譜上尋找極其罕見或極小的信號。誤報警可能會引起系統(tǒng)故障。因此,我們必須能夠量化高速 ADC轉(zhuǎn)換誤差率的頻率和幅度。
2020-10-22 10:41:000 在此我們簡要總結(jié)一下ADC的各種指標如何理解,以及從硬件到軟件都有哪些可以采用的手段來提高ADC的轉(zhuǎn)換精度。1.ADC指標除了分辨率,速度,輸入范圍這些基本指標外,衡量一個ADC好壞通常會用到以下這些指標:失調(diào)誤差,增益誤差,微分非線性,積分非線性,信噪比,信納比,有效位數(shù),總諧波失真
2020-12-24 13:55:343122 AN-1276: ADF7023和ADF7023-J的嵌入式數(shù)據(jù)包誤差率測試
2021-03-18 22:22:1612 AN-215: Flash型ADC測試指南第一部分Flash型ADC是高速轉(zhuǎn)換的基礎(chǔ)
2021-03-19 04:33:456 AN-1392: 如何計算集成斬波放大器的ADC轉(zhuǎn)換器的失調(diào)誤差和輸入阻抗
2021-03-20 15:06:0810 電子發(fā)燒友網(wǎng)為你提供高速ADC的誤差分析資料下載的電子資料下載,更有其他相關(guān)的電路圖、源代碼、課件教程、中文資料、英文資料、參考設(shè)計、用戶指南、解決方案等資料,希望可以幫助到廣大的電子工程師們。
2021-03-27 08:45:383 本技術(shù)簡介對 ADC 中的增益誤差和失調(diào)誤差進行了簡要介紹。它還介紹了一種在帶有 Arm? Cortex?-M0+內(nèi)核的 SAM 系列單片機(MCU)中校準增益誤差和失調(diào)誤差的方法。在 SAM
2021-04-01 10:14:4342 電子發(fā)燒友網(wǎng)為你提供如何量化高速ADC轉(zhuǎn)換誤差率的頻率和幅度資料下載的電子資料下載,更有其他相關(guān)的電路圖、源代碼、課件教程、中文資料、英文資料、參考設(shè)計、用戶指南、解決方案等資料,希望可以幫助到廣大的電子工程師們。
2021-04-10 08:44:2316 在第一篇ADC精度帖子中,我們確定了模數(shù)轉(zhuǎn)換器 (ADC) 的分辨率和精度間的差異。現(xiàn)在我們深入研究一下對ADC總精度產(chǎn)生影響的因素,通常是指總不可調(diào)整誤差 (TUE)。
2022-02-06 09:02:004151 許多實際高速采樣系統(tǒng),如電氣測試與測量設(shè)備、生命系統(tǒng)健康監(jiān)護等,不能接受較高的ADC轉(zhuǎn)換誤差率。這些系統(tǒng)要在很寬的噪聲頻譜上尋找極其罕見或極小的信號。誤報警可能會引起系統(tǒng)故障。因此,我們必須能夠量化高速ADC轉(zhuǎn)換誤差率的頻率和幅度。
2022-01-03 09:09:001852 偏移誤差是第一次實際轉(zhuǎn)換和第一次理想轉(zhuǎn)換之間的偏離。第一次轉(zhuǎn)換發(fā)生在數(shù)字ADC輸出從0變?yōu)?時。理想情況下,當(dāng)模擬輸入介于0.5 LSB和1.5 LSB之間時,數(shù)字輸出應(yīng)為1。
2022-09-23 14:34:154063 了解積分非線性 (INL) 規(guī)范及其與模數(shù)轉(zhuǎn)換器 (ADC) 誤差的關(guān)系。 失調(diào)誤差、增益誤差和INL這三個參數(shù)決定了ADC的精度。失調(diào)和增益誤差可以校準出來,這使得INL成為主要的誤差貢獻者
2023-01-27 10:42:001394 關(guān)于模數(shù)轉(zhuǎn)換器(ADC),了解雙極性ADC和差分ADC中的失調(diào)誤差和增益誤差以及失調(diào)誤差單點校準。 在上一篇文章中,我們討論了如何 失調(diào)誤差可能會影響單極性ADC的傳遞函數(shù)。 考慮到這一點,單極
2023-01-27 16:57:005130 了解ADC的失調(diào)和增益誤差規(guī)格,如ADC傳遞函數(shù),并了解ADC失調(diào)誤差和ADC增益誤差的示例。 模數(shù)轉(zhuǎn)換器 (ADC) 有很多規(guī)格。 根據(jù)應(yīng)用要求,其中一些規(guī)范可能比其他規(guī)范更重要。 直流規(guī)格
2023-01-27 17:03:001387 在任何設(shè)計中,信號鏈精度分析都是一項艱巨的任務(wù)。在本系列的第2部分中,討論了許多誤差,這些誤差會在整個信號鏈中累積,最終被轉(zhuǎn)換器看到。請記住,轉(zhuǎn)換器是信號鏈的瓶頸,最終決定信號的表示精度。因此,選擇
2023-02-28 15:51:34248 犯錯是人之常情。但是,對于您系統(tǒng)的模數(shù)轉(zhuǎn)換器(ADC),可以提出哪些要求?我們將回顧高速ADC的轉(zhuǎn)換錯誤率(CER)測試和分析范圍。ADC CER測量過程可能需要數(shù)周或數(shù)月才能完成,具體取決于采樣
2023-02-28 15:54:34421 單片機中ADC采集都存在哪些誤差?
2023-09-18 16:31:071871 電子發(fā)燒友網(wǎng)站提供《HPM系列MCU 高精度ADC之誤差分析和設(shè)計指南.pdf》資料免費下載
2023-09-19 15:45:340 電子發(fā)燒友網(wǎng)站提供《基于Arm Cortex-M0+的MCU上的ADC增益誤差和失調(diào)誤差校準.pdf》資料免費下載
2023-09-25 10:08:470 直方圖測試是確定模數(shù)轉(zhuǎn)換器(ADC)靜態(tài)參數(shù)的最流行方法之一。
2023-10-17 15:58:05758 失調(diào)誤差是如何影響單極性ADC傳遞函數(shù)的? 失調(diào)誤差是一個影響ADC傳遞函數(shù)的重要因素。在單極性ADC中,失調(diào)誤差會導(dǎo)致ADC傳遞函數(shù)的非線性等問題。因此,關(guān)于失調(diào)誤差對單極性ADC傳遞函數(shù)
2023-10-24 10:20:13262 的影響。 一、ADC失調(diào)誤差的計算 先來了解什么是ADC失調(diào)誤差。ADC(Analog-to-Digital Converter)將模擬信號轉(zhuǎn)換為數(shù)字信號,其中一個重要參數(shù)是ADC轉(zhuǎn)換精度。ADC失調(diào)誤差就是ADC轉(zhuǎn)換精度不準確的現(xiàn)象。 ADC失調(diào)誤差又可以分為偏置誤差和增益誤差兩種。其中,偏置誤
2023-10-25 11:50:35320 模數(shù)轉(zhuǎn)換器(ADC)是數(shù)字電子系統(tǒng)中重要組成部分,用于捕獲外部世界的模擬信號,將它們轉(zhuǎn)化為數(shù)字信號0\1, 以供計算機進行處理分析。德思特提供完整的ADC測試解決方案,能夠測試8-24位的ADC芯片,功能測試涵蓋幾乎所有典型的性能參數(shù)測試。
2023-11-20 13:25:31235 電子發(fā)燒友網(wǎng)站提供《ADC中可能貢獻誤差率的基本因素.pdf》資料免費下載
2023-11-28 09:06:380 RA2 MCU ADC轉(zhuǎn)換時間測試方法
2023-05-24 08:07:46131 AD轉(zhuǎn)換器(Analog-to-Digital Converter,簡稱ADC)是將模擬信號轉(zhuǎn)換為數(shù)字信號的設(shè)備。它是電子產(chǎn)品中十分常見的部件,廣泛應(yīng)用于各種通信、測量和控制系統(tǒng)中。然而,盡管
2024-01-09 11:02:48455
評論
查看更多