【導(dǎo)讀】本系列文章的第 1 部分至第 4 部分詳細介紹了開關(guān)電源穩(wěn)壓器引起的傳導(dǎo)發(fā)射和輻射發(fā)射,包括噪聲產(chǎn)生機制、測量要求、頻率范圍、適用的測試限值、傳播模式和寄生效應(yīng)。在第 5 部分中,我將基于這一理論基礎(chǔ)介紹抑制電磁干擾 (EMI) 的實用電路技術(shù)。
一般來說,電路原理圖和印刷電路板 (PCB) 對于實現(xiàn)出色的 EMI 性能至關(guān)重要。第 3 部分重點強調(diào)通過謹慎的元器件選型和 PCB 布局盡量減小“功率回路”寄生電感的重要性。電源轉(zhuǎn)換器集成電路 (IC) 的封裝技術(shù)及其提供的 EMI 特定功能對此產(chǎn)生了巨大的影響。如第 2 部分所述,必須使用差模 (DM) 濾波方可將輸入紋波電流的幅值充分降低至滿足 EMI 合規(guī)性要求的水平。與此同時,如果需要抑制約 10MHz 以上的發(fā)射,通常使用共模 (CM) 濾波。在高頻條件下,使用屏蔽也可以獲得優(yōu)異的結(jié)果。 本文主要介紹這些方面的內(nèi)容,專門聚焦于帶有集成功率 MOSFET 和控制器的轉(zhuǎn)換器解決方案,提供抑制 EMI 的實例和應(yīng)用指導(dǎo)。一般來說,轉(zhuǎn)換器應(yīng)在合理范圍內(nèi)超出傳導(dǎo) EMI 一定的裕度,為達到輻射限值預(yù)留空間。幸運的是,多數(shù)減少傳導(dǎo)發(fā)射的步驟對于抑制輻射 EMI 同樣有效。
了解 EMI 的相關(guān)挑戰(zhàn) DC/DC 轉(zhuǎn)換器中的 EMI 主要由其快速開關(guān)的電壓和電流特性所致。與轉(zhuǎn)換器的不連續(xù)輸入或輸出電流相關(guān)的 EMI 相對容易處理,但更大的問題是開關(guān)電壓 dv/dt 和電流 di/dt 中的諧波成分,以及與開關(guān)波形相關(guān)的振鈴。 圖 1 所示為存在噪聲的同步降壓轉(zhuǎn)換器的開關(guān) (SW) 電壓波形。振鈴頻率范圍為 50MHz 至 200MHz,具體取決于寄生效應(yīng)。此類高頻成分可以通過近場耦合傳播到輸入電源線、周邊元器件或輸出總線(如 USB 電纜)。體二極管反向恢復(fù)存在類似的問題,隨著恢復(fù)電流流入寄生回路電感,振鈴電壓升高。
圖 1:同步降壓轉(zhuǎn)換器在 MOSFET 導(dǎo)通和關(guān)斷開關(guān)轉(zhuǎn)換期間的開關(guān)節(jié)點電壓波形和等效電路 圖 2 的原理圖標識了降壓轉(zhuǎn)換器電路的兩條重要回路。最大限度縮減電源回路的面積至關(guān)重要,原因是該參數(shù)與寄生電感和相關(guān) H 場傳播成正比。主要設(shè)計目標是通過減小寄生電感最大程度提升寄生 LC 諧振電路的諧振頻率。此舉可以降低存儲的無功能量總值,減少開關(guān)電壓峰值過沖。
圖 2:簡化的同步降壓轉(zhuǎn)換器原理圖(針對 EMI 標出了關(guān)鍵回路和走線) 在圖 2 所示的自舉電容回路中,高側(cè) MOSFET 的導(dǎo)通速度由一個標記為 RBOOT 的可選串聯(lián)自舉電阻進行控制。自舉電阻會改變驅(qū)動電流瞬變率,降低 MOSFET 導(dǎo)通期間的開關(guān)電壓和電流轉(zhuǎn)換率。另一種方法是在 SW 和 GND 之間添加一個緩沖電路。同理,該緩沖電路應(yīng)根據(jù)每次開關(guān)轉(zhuǎn)換時的瞬態(tài)電流尖峰,占用最小的回路面積。當(dāng)然,緩沖電路和柵極電阻會增加開關(guān)功率損耗,需要在效率和 EMI 之間進行權(quán)衡。如果效率和散熱性能同樣非常重要,則需要使用其他技術(shù)解決 EMI 相關(guān)的挑戰(zhàn)。 轉(zhuǎn)換器的 PCB 布局 表 1 至表 5 總結(jié)了通過優(yōu)化 PCB 布局及元器件排布削弱 DC/DC 轉(zhuǎn)換器 EMI 信號的基本準則。我將在本文的后續(xù)部分提供一項 PCB 布局案例研究,探討如何優(yōu)化降壓轉(zhuǎn)換器的 EMI 特性。 表 1:布線及元器件排布。
表 2:GND 平面設(shè)計。
表 3:輸入和輸出電容。
表 4.電感和開關(guān)節(jié)點布局。
表 5.EMI 管理。
EMI 輸入濾波器 圖 3 所示為典型的多級 EMI 輸入濾波器。低頻和高頻部分可提供 DM 噪聲衰減,也可選擇 p 級,通過 CM 扼流器提供 CM 衰減。標記為 CBULK 的電解電容具有固有的串聯(lián)電阻 (ESR),可用于設(shè)置所需阻尼,降低轉(zhuǎn)換器輸入的有效品質(zhì)因子,保持輸入濾波器的穩(wěn)定性。 DM 電感的自諧振頻率 (SRF) 限制濾波器第一級可實現(xiàn)的高頻 DM 衰減。濾波器第二級通常至關(guān)重要,其使用鐵氧體磁珠在高頻條件下提供附加的 DM 衰減,此時額定阻抗通常為 100MHz。標記為 CF1 和 CF2 的陶瓷電容可將噪聲分流到接地端。
圖 3:具有 DM 和 CM 級的三級 EMI 輸入濾波器 DM 濾波器的電感一般設(shè)置為削弱基波和低頻諧波的值。應(yīng)使用盡可能小的電感來滿足低頻濾波要求,因為匝數(shù)較多的大電感具有較高的等效并聯(lián)電容 (EPC),導(dǎo)致其 SRF 較高,影響其在高頻下的性能。 標記為 LCM 的 CM 扼流器針對 CM 電流提供較高的阻抗,其泄漏電感也可提供 DM 衰減。然而,在部分要求接地連接必須保持完好的應(yīng)用中,該元器件不適用,這些應(yīng)用需要更安靜的轉(zhuǎn)換器設(shè)計,CM 扼流器不再是首選。 為了演示 CM 扼流器的效果,圖 4 展示了德州儀器 (TI) LM53603,這是一款采用雙層 PCB 的 36V、3A DC/DC 轉(zhuǎn)換器解決方案 [7]。該器件的功率級位于頂層,EMI 輸入濾波器則放置于底部。如圖 4 中的布局所示,濾波器附近的接地平面覆銅區(qū)可借助過孔縫合提供屏蔽效果。此外,在濾波器級以下的所有層中插入敷銅層切口,可避免 VIN 和 GND 走線之間產(chǎn)生寄生電容,從而為噪聲電流提供繞過 CM 扼流器的路徑并讓步于濾波器的阻抗特性。
圖 4:DC/DC 轉(zhuǎn)換器原理圖和 PCB 布局實施方案 圖 5 所示為國際無線電干擾特別委員會 (CISPR) 25 針對圖 4 的轉(zhuǎn)換器設(shè)計在 150kHz 至 108MHz 之間進行的傳導(dǎo)發(fā)射測量。我們提供了使用與不使用 CM 扼流器兩種情況下的測量結(jié)果。使用 Rohde & Schwarz 的頻譜分析儀,所得檢測器掃描結(jié)果的峰值和平均值分別以黃色和藍色表示。紅色限值圖象為 5 類峰值和平均值限值(峰值限值通常比平均值限值高出 20dB)。
圖 5:CISPR 25 在使用 CM 扼流器 (a) 與不使用 CM 扼流器 (b) 情況下進行的傳導(dǎo) EMI 測量 金屬外殼屏蔽 另一種優(yōu)化高頻 EMI 性能的有效方式是添加金屬外殼屏蔽層,從而阻擋輻射電場。外殼通常由鋁制成,采用框架(敞開式)或封閉式設(shè)計實施方案。屏蔽外殼可覆蓋除 EMI 濾波器之外的所有功率級元器件,外殼與 PCB 上的 GND 相連,基本形成了一個帶有 PCB 接地平面的法拉第籠。 這使得從開關(guān)單元到 EMI 濾波器或長輸入線連接(也用作天線)的輻射噪聲耦合顯著減少。當(dāng)然,這會產(chǎn)生額外的元器件和裝配成本,導(dǎo)致散熱管理和散熱測試的難度增加。鋁電解電容的外殼也可以提供電場屏蔽,為實現(xiàn)此目的,可在電路板上針對性地放置該電容。 DC/DC 轉(zhuǎn)換器案例研究 圖 6 為 60V、1.5A 單片式集成同步降壓轉(zhuǎn)換器電路的原理圖,該電路通過多項功能實現(xiàn)最佳 EMI 性能。該原理圖還顯示了一個兩級 EMI 輸入濾波器級,旨在滿足汽車或噪聲敏感型工業(yè)應(yīng)用的 EMI 規(guī)范。為了幫助實現(xiàn)最佳的 PCB 布局,原理圖中將高電流走線(VIN、PGND、SW 連接)、噪聲敏感型網(wǎng)絡(luò) (FB) 和高 dv/dt 電路節(jié)點(SW、BOOT)突出顯示。
圖 6:采用 EMI 優(yōu)化型封裝和引腳布局的 DC/DC 轉(zhuǎn)換器。內(nèi)置一個兩級 EMI 輸入濾波器 a. 引腳布局設(shè)計 圖 6 所示的轉(zhuǎn)換器 IC 優(yōu)勢在于,其 VIN 和 PGND 采用對稱且均衡的引腳排布。該轉(zhuǎn)換器利用兩個并聯(lián)的輸入回路使寄生回路電感成功減半。上述回路在 PCB 布局中標記為“IN1”和“IN2”,如圖 7 所示。兩個外殼尺寸為 0402 或 0603 的小型電容(在圖 6 中分別標記為 CIN1 和 CIN3)放置在盡可能靠近 IC 的位置,最大限度減小輸入回路面積。兩個回路中的環(huán)流產(chǎn)生相反的磁矩,消除 H 場并降低有效電感。為了進一步降低寄生電感,PCB 第 2 層(緊靠頂層電源電路的下方)的 IN1 和 IN2 回路下方設(shè)有返回電流的連續(xù)接地平面,可使場效應(yīng)自行消除。 在電感兩側(cè)各使用一個陶瓷輸出電容(COUT1 和 COUT2)同樣能夠優(yōu)化輸出電流回路。在輸出端引出兩個并聯(lián)的接地返回路徑可以將返回電流分成兩部分,有助于減弱“地彈反射”效應(yīng)。
圖 7:僅部署在 PCB 頂層的功率級布局 SW 引腳位于 IC 中心,因此輻射電場會由 IC 兩側(cè)相鄰的 VIN 和 PGND 引腳屏蔽。GND 平面覆銅區(qū)可對將 IC 的 SW 引腳連接到電感端子的多邊形覆層施加屏蔽。SW 和 BOOT 的單層布局意味著 PCB 的底側(cè)不會有 dv/dt 較高的過孔。這樣可以避免在 EMI 測試期間,電場與基準接地平面耦合。 b. 封裝設(shè)計 與優(yōu)化的引腳排布類似,電源轉(zhuǎn)換器 IC 封裝設(shè)計也是改善 EMI 信號的關(guān)鍵屬性。例如,德州儀器 (TI) 的 HotRod? 封裝技術(shù)采用引線框上倒裝芯片 (FCOL) 的方式,規(guī)避了功率器件線焊導(dǎo)致封裝寄生電感過高的情況。如圖 8 所示,IC 以上下翻轉(zhuǎn)的形式放置,IC 上的銅柱(也稱為凸點或支柱)直接焊接到引線框架。這種構(gòu)造方法能夠提升密度并較薄的外型,因為每個引腳都與引線框架直接相連。從 EMI 角度來看,最重要的一點是,與傳統(tǒng)線焊封裝相比,HotRod 封裝降低了封裝的寄生電感。
圖 8:QFN 線焊封裝 (a) 和 HotRod FCOL (b) 封裝的結(jié)構(gòu)對比 HotRod 封裝不僅可以在開關(guān)換向(50MHz 至 200MHz 頻率范圍)期間減少振鈴,還可以降低導(dǎo)通和開關(guān)損耗。圖 9 所示為開關(guān)節(jié)點電壓振鈴隨之得到改善的情況。圖 8 所示為圖 6 中的轉(zhuǎn)換器在 150kHz 至 108MHz 下測得的傳導(dǎo)發(fā)射。測量結(jié)果符合 CISPR 25 5 類要求。
圖 9:使用傳統(tǒng)線焊封裝的轉(zhuǎn)換器 (a) 和 HotRod FCOL 轉(zhuǎn)換器 (b) 時的開關(guān)節(jié)點電壓波形
圖 10:CISPR 25 傳導(dǎo)發(fā)射測量結(jié)果,(a) 頻率范圍為 150kHz 至 30MHz,(b) 頻率范圍為 30MHz 至 108MHz 總結(jié) 在本文中,我討論了使用電源轉(zhuǎn)換器 IC 的 DC/DC 穩(wěn)壓器電路可以采用的 EMI 抑制技術(shù)。減弱 EMI 的 PCB 布局步驟包括盡量減小布局中的電流“熱回路”面積、避免阻斷電流路徑、采用具有內(nèi)部接地平面的四層 PCB 結(jié)構(gòu)實現(xiàn)屏蔽(屏蔽效果遠超雙層 PCB),以及通過盡量減小開關(guān)節(jié)點覆銅區(qū)域面積來降低電場輻射耦合。 轉(zhuǎn)換器封裝類型是一項重要的選擇標準,新一代器件的開關(guān)節(jié)點振鈴和引腳設(shè)計得到顯著提升,有助于實現(xiàn)最優(yōu)的電容放置方案。從輸入濾波的角度而言,抑制低頻噪聲(通常小于 10MHz)相對容易,使用傳統(tǒng)的 LC 濾波器級即可實現(xiàn)。然而,抑制高頻噪聲(10MHz 以上)通常需要額外使用 CM 扼流器和/或鐵氧體磁珠濾波器級。焊接到 PCB 接地平面的金屬外殼屏蔽層也能有效減輕高頻發(fā)射。 在本系列文章的下一部分中,我將探討使用控制器驅(qū)動分立式功率 MOSFET 的 DC/DC 穩(wěn)壓器電路適用的 EMI 抑制技術(shù)。根據(jù) EMI 進行分析,這些技術(shù)更具挑戰(zhàn)性。
————本文內(nèi)容選自電子元件技術(shù)網(wǎng)站,歡迎關(guān)注
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進行處理。
EMC寄語:隨著時代的發(fā)展,越來越多的電子、電氣設(shè)備或系統(tǒng)產(chǎn)品都需要進行檢驗檢測,其中EMC測試是必備的檢驗檢測指標之一。但EMC測試項目費用較貴,EMC實驗室造價昂貴,絕大部分測量設(shè)備又需要采用進口設(shè)備,導(dǎo)致很少檢驗檢測機構(gòu)有能力建造EMC實驗室。產(chǎn)品的EMC性能是設(shè)計階段賦予的,一般電子產(chǎn)品設(shè)計時如果不考慮EMC因素,就會很容易導(dǎo)致EMC測試失敗,以致不能通過相關(guān)EMC法規(guī)的測試或認證。例如,產(chǎn)品設(shè)計研發(fā)工程師們根據(jù)需求,設(shè)計出效果良好的濾波電路,置入產(chǎn)品I/O(輸入/輸出)接口的前級,可使因傳導(dǎo)而進入系統(tǒng)的干擾噪聲消除在電路系統(tǒng)的入口處;設(shè)計出隔離電路(如變壓器隔離和光電隔離等)解決通過電源線、信號線和地線進入電路的傳導(dǎo)干擾,同時阻止因公共阻抗、長線傳輸而引起的干擾;設(shè)計出能量吸收回路,從而減少電路、器件吸收的噪聲能量;通過選擇元器件和合理安排的電路系統(tǒng),使干擾的影響減少。
EMC技能:整改小技巧
1、150kHz-1MHz,以差模為主,1MHz-5MHz,差模和共模共同起作用,5MHz 以后基本上是共模。差模干擾的分容性藕合和感性藕合。一般1MHz以上的干擾是共模,低頻段是差摸干擾。用一個電阻串個電容后再并到Y(jié)電容的引腳上,用示波器測電阻兩引腳的電壓可以估測共模干擾。2、保險過后加差模電感或電阻。3、小功率電源可采用PI型濾波器處理(建議靠近變壓器的電解電容可選用較大些)。4、前端的π型EMI零件中差模電感只負責(zé)低頻EMI,體積別選太大(DR8太大,能用電阻型式或DR6更好)否則幅射不好過,必要時可串磁珠,因為高頻會直接飛到前端不會跟著線走。5、傳導(dǎo)冷機時在0.15MHz-1MHz超標,熱機時就有7dB余量。主要原因是初級BULk電容DF值過大造成的,冷機時ESR比較大,熱機時ESR比較小,開關(guān)電流在ESR上形成開關(guān)電壓,它會壓在一個電流LN線間流動,這就是差模干擾。解決辦法是用ESR低的電解電容或者在兩個電解電容之間加一個差模電感。6、測試150kHz總超標的解決方案:加大X電容看一下能不能下來,如果下來了說明是差模干擾。如果沒有太大作用那么是共模干擾,或者把電源線在一個大磁環(huán)上繞幾圈, 下來了說明是共模干擾。如果干擾曲線后面很好,就減小Y電容,看一下布板是否有問題,或者就在前面加磁環(huán)。7、可以加大PFC輸入部分的單繞組電感的電感量。8、PWM線路中的元件將主頻調(diào)到60kHz左右。9、用一塊銅皮緊貼在變壓器磁芯上。10、共模電感的兩邊感量不對稱,有一邊匝數(shù)少一匝也可引起傳導(dǎo)150kHz-3MHz超標。11、一般傳導(dǎo)的產(chǎn)生有兩個主要的點:200kHz和20MHz左右,這幾個點也體現(xiàn)了電路的性能;200kHz左右主要是漏感產(chǎn)生的尖刺;20MHz左右主要是電路開關(guān)的噪聲。處理不好變壓器會增加大量的輻射,加屏蔽都沒用,輻射過不了。
12、將輸入BUCk電容改為低內(nèi)阻的電容。13、對于無Y-CAP電源,繞制變壓器時先繞初級,再繞輔助繞組并將輔助繞組密繞靠一邊,后繞次級。14、將共模電感上并聯(lián)一個幾k到幾十k電阻。15、將共模電感用銅箔屏蔽后接到大電容的地。16、在PCB設(shè)計時應(yīng)將共模電感和變壓器隔開一點以免互相干擾。17、保險套磁珠。18、三線輸入的將兩根進線接地的Y電容容量從2.2nF減小到471。19、對于有兩級濾波的可將后級0.22uFX電容去掉(有時前后X電容會引起震蕩) 。20、對于π型濾波電路有一個BUCk電容躺倒放在PCB上且靠近變壓器此電容對傳導(dǎo)150kHz-2MHz的L通道有干擾,改良方法是將此電容用銅泊包起來屏蔽接到地,或者用一塊小的PCB將此電容與變壓器和PCB隔開?;蛘邔⒋穗娙萘⑵饋?, 也可以用一個小電容代替。21、對于π型濾波電路有一個BUCk電容躺倒放在PCB上且靠近變壓器此電容對傳導(dǎo)150kHz-2MHz的L通道有干擾,改良方法是將此電容用一個1uF/400V或者說0.1uF/400V電容代替, 將另外一個電容加大。22、將共模電感前加一個小的幾百uH差模電感。23、將開關(guān)管和散熱器用一段銅箔包繞起來,并且銅箔兩端短接在一起,再用一根銅線連接到地。24、將共模電感用一塊銅皮包起來再連接到地。25、將開關(guān)管用金屬套起來連接到地。26、加大X2電容只能解決150kHz左右的頻段,不能解決20MHz以上的頻段,只有在電源輸入加以一級鎳鋅鐵氧體黑色磁環(huán),電感量約50uH-1mH。27、在輸入端加大X電容。28、加大輸入端共模電感。29、將輔助繞組供電二極管反接到地。30、將輔助繞組供電濾波電容改用瘦長型電解電容或者加大容量。31、加大輸入端濾波電容。32、150kHz-300kHz和20MHz-30MHz這兩處傳導(dǎo)都不過,可在共模電路前加一個差模電路。也可以看看接地是否有問題,該接地的地方一定要加強接牢,主板上的地線一定要理順,不同的地線之間走線一定要順暢不要互相交錯的。33、在整流橋上并電容,當(dāng)考慮共模成分時,應(yīng)該鄰角并電容,當(dāng)考慮差模成分時,應(yīng)該對角并電容。34、加大輸入端差模電感。
2、產(chǎn)品電磁兼容騷擾源有:
1、設(shè)備開關(guān)電源的開關(guān)回路:騷擾源主頻幾十kHz到百余kHz,高次諧波可延伸到數(shù)十MHz。 2、設(shè)備直流電源的整流回路:工頻線性電源工頻整流噪聲頻率上限可延伸到數(shù)百kHz;開關(guān)電源高頻整流噪聲頻率上限可延伸到數(shù)十MHz。 3、電動設(shè)備直流電機的電刷噪聲:噪聲頻率上限可延伸到數(shù)百MHz。 4、電動設(shè)備交流電機的運行噪聲:高次諧波可延伸到數(shù)十MHz。 5、變頻調(diào)速電路的騷擾發(fā)射:開關(guān)調(diào)速回路騷擾源頻率從幾十kHz到幾十MHz。 6、設(shè)備運行狀態(tài)切換的開關(guān)噪聲:由機械或電子開關(guān)動作產(chǎn)生的噪聲頻率上限可延伸到數(shù)百MHz。7、智能控制設(shè)備的晶振及數(shù)字電路電磁騷擾:騷擾源主頻幾十kHz到幾十MHz,高次諧波可延伸到數(shù)百MHz。8、微波設(shè)備的微波泄漏:騷擾源主頻數(shù)GHz。 9、電磁感應(yīng)加熱設(shè)備的電磁騷擾發(fā)射:騷擾源主頻幾十kHz,高次諧波可延伸到數(shù)十MHz。 10電視電聲接收設(shè)備的高頻調(diào)諧回路的本振及其諧波:騷擾源主頻數(shù)十MHz到數(shù)百MHz,高次諧波可延伸到數(shù)GHz。11、信息技術(shù)設(shè)備及各類自動控制設(shè)備的數(shù)字處理電路:騷擾源主頻數(shù)十MHz到數(shù)百MHz(經(jīng)內(nèi)部倍頻主頻可達數(shù)GHz),高次諧波可延伸到十幾GHz。
編輯:黃飛
評論
查看更多