三角函數(shù)的計算是個復(fù)雜的主題,有計算機之前,人們通常通過查找三角函數(shù)表來計算任意角度的三角函數(shù)的值。這種表格在人們剛剛產(chǎn)生三角函數(shù)的概念的時候就已經(jīng)有了,它們通常是通過從已知值(比如sin(π/2)=1)開始并重復(fù)應(yīng)用半角和和差公式而生成。
現(xiàn)在有了計算機,三角函數(shù)表便推出了歷史的舞臺。但是像我這樣的喜歡刨根問底的人,不禁要問計算機又是如何計算三角函數(shù)值的呢。最容易想到的辦法就是利用級數(shù)展開,比如泰勒級數(shù)來逼近三角函數(shù),只要項數(shù)取得足夠多就能以任意的精度來逼近函數(shù)值。除了泰勒級數(shù)逼近之外,還有其他許多的逼近方法,比如切比雪夫逼近、最佳一致逼近和Padé逼近等。
所有這些逼近方法本質(zhì)上都是用多項式函數(shù)來近似我們要計算的三角函數(shù),計算過程中必然要涉及到大量的浮點運算。在缺乏硬件乘法器的簡單設(shè)備上(比如沒有浮點運算單元的單片機),用這些方法來計算三角函數(shù)會非常的費時。為了解決這個問題,J. Volder于1959年提出了一種快速算法,稱之為CORDIC(COordinate Rotation DIgital Computer) 算法,這個算法只利用移位和加減運算,就能計算常用三角函數(shù)值,如Sin,Cos,Sinh,Cosh等函數(shù)。 J. Walther在1974年在這種算法的基礎(chǔ)上進一步改進,使其可以計算出多種超越函數(shù),更大的擴展了Cordic 算法的應(yīng)用。因為Cordic 算法只用了移位和加法,很容易用純硬件來實現(xiàn),因此我們常能在FPGA運算平臺上見到它的身影。不過,大多數(shù)的軟件程序員們都沒有聽說過這種算法,也更不會主動的去用這種算法。其實,在嵌入式軟件開發(fā),尤其是在沒有浮點運算指令的嵌入式平臺(比如定點型DSP)上做開發(fā)時,還是會遇上可以用到Cordic 算法的情況的,所以掌握基本的Cordic算法還是有用的。
從二分查找法說起
先從一個例子說起,知道平面上一點在直角坐標(biāo)系下的坐標(biāo)(X,Y)=(100,200),如何求的在極坐標(biāo)系下的坐標(biāo)(ρ,θ)。用計算器計算一下可知答案是(223.61,63.435)。
圖 1 直角坐標(biāo)系到極坐標(biāo)系的轉(zhuǎn)換
?
可能有讀者會問,計算中用到了 sin 函數(shù)和 cos 函數(shù),這些值又是怎么計算呢。很簡單,我們只用到很少的幾個特殊點的sin 函數(shù)和 cos 函數(shù)的值,提前計算好存起來,用時查表。
下面給出上面方法的C 語言實現(xiàn)。
? ? ? ?
#include
#include?
double my_atan2(double x, double y);
int main(void)
{
double z = my_atan2(100.0, 200.0);
printf("\n z = %f \n", z);
return 0;
}
double my_atan2(double x, double y)
{
const double sine[] = {0.7071067811865,0.3826834323651,0.1950903220161,0.09801714032956,
0.04906767432742,0.02454122852291,0.01227153828572,0.006135884649154,0.003067956762966
,0.001533980186285,7.669903187427045e-4,3.834951875713956e-4,1.917475973107033e-4,
9.587379909597735e-5,4.793689960306688e-5,2.396844980841822e-5
};
const double cosine[] = {0.7071067811865,0.9238795325113,0.9807852804032,0.9951847266722,
0.9987954562052,0.9996988186962,0.9999247018391,0.9999811752826,0.9999952938096,
0.9999988234517,0.9999997058629,0.9999999264657,0.9999999816164,0.9999999954041,
0.999999998851,0.9999999997128
};
int i = 0;
double x_new, y_new;
double angleSum = 0.0;
double angle = 45.0;
for(i = 0; i < 15; i++)
{
if(y > 0)
{
x_new = x * cosine[i] + y * sine[i];
y_new = y * cosine[i] - x * sine[i];
x = x_new;
y = y_new;
angleSum += angle;
}
else
{
x_new = x * cosine[i] - y * sine[i];
y_new = y * cosine[i] + x * sine[i];
x = x_new;
y = y_new;
angleSum -= angle;
}
printf("Debug: i = %d angleSum = %f, angle = %f\n", i, angleSum, angle);
angle /= 2;
}
return angleSum;
}
程序運行的輸出結(jié)果如下:
Debug: i = 0 angleSum = 45.000000, angle = 45.000000
Debug: i = 1 angleSum = 67.500000, angle = 22.500000
Debug: i = 2 angleSum = 56.250000, angle = 11.250000
Debug: i = 3 angleSum = 61.875000, angle = 5.625000
Debug: i = 4 angleSum = 64.687500, angle = 2.812500
Debug: i = 5 angleSum = 63.281250, angle = 1.406250
Debug: i = 6 angleSum = 63.984375, angle = 0.703125
Debug: i = 7 angleSum = 63.632813, angle = 0.351563
Debug: i = 8 angleSum = 63.457031, angle = 0.175781
Debug: i = 9 angleSum = 63.369141, angle = 0.087891
Debug: i = 10 angleSum = 63.413086, angle = 0.043945
Debug: i = 11 angleSum = 63.435059, angle = 0.021973
Debug: i = 12 angleSum = 63.424072, angle = 0.010986
Debug: i = 13 angleSum = 63.429565, angle = 0.005493
Debug: i = 14 angleSum = 63.432312, angle = 0.002747
z = 63.432312
減少乘法運算
現(xiàn)在已經(jīng)有點 Cordic 算法的樣子了,但是我們看到?jīng)]次循環(huán)都要計算 4 次浮點數(shù)的乘法運算,運算量還是太大了。還需要進一步的改進。改進的切入點當(dāng)然還是坐標(biāo)變換的過程。我們將坐標(biāo)變換公式變一下形。
?
可以看出 cos(θ)可以從矩陣運算中提出來。我們可以做的再徹底些,直接把 cos(θ) 給省略掉。
省略cos(θ)后發(fā)生了什么呢,每次旋轉(zhuǎn)后的新坐標(biāo)點到原點的距離都變長了,放縮的系數(shù)是1/cos(θ)。不過沒有關(guān)系,我們求的是θ,不關(guān)心ρ的改變。這樣的變形非常的簡單,但是每次循環(huán)的運算量一下就從4次乘法降到了2次乘法了。
還是給出 C 語言的實現(xiàn):
double my_atan3(double x, double y)
{
const double tangent[] = {1.0,0.4142135623731,0.1989123673797,0.09849140335716,0.04912684976947,
0.02454862210893,0.01227246237957,0.006136000157623,0.003067971201423,
0.001533981991089,7.669905443430926e-4,3.83495215771441e-4,1.917476008357089e-4,
9.587379953660303e-5,4.79368996581451e-5,2.3968449815303e-5
};
int i = 0;
double x_new, y_new;
double angleSum = 0.0;
double angle = 45.0;
for(i = 0; i < 15; i++)
{
if(y > 0)
{
x_new = x + y * tangent[i];
y_new = y - x * tangent[i];
x = x_new;
y = y_new;
angleSum += angle;
}
else
{
x_new = x - y * tangent[i];
y_new = y + x * tangent[i];
x = x_new;
y = y_new;
angleSum -= angle;
}
printf("Debug: i = %d angleSum = %f, angle = %f, ρ = %f\n", i, angleSum, angle, hypot(x,y));
angle /= 2;
}
return angleSum;
}
計算的結(jié)果是:
Debug: i = 0 angleSum = 45.000000, angle = 45.000000, ρ = 316.227766
Debug: i = 1 angleSum = 67.500000, angle = 22.500000, ρ = 342.282467
Debug: i = 2 angleSum = 56.250000, angle = 11.250000, ρ = 348.988177
Debug: i = 3 angleSum = 61.875000, angle = 5.625000, ρ = 350.676782
Debug: i = 4 angleSum = 64.687500, angle = 2.812500, ρ = 351.099697
Debug: i = 5 angleSum = 63.281250, angle = 1.406250, ρ = 351.205473
Debug: i = 6 angleSum = 63.984375, angle = 0.703125, ρ = 351.231921
Debug: i = 7 angleSum = 63.632813, angle = 0.351563, ρ = 351.238533
Debug: i = 8 angleSum = 63.457031, angle = 0.175781, ρ = 351.240186
Debug: i = 9 angleSum = 63.369141, angle = 0.087891, ρ = 351.240599
Debug: i = 10 angleSum = 63.413086, angle = 0.043945, ρ = 351.240702
Debug: i = 11 angleSum = 63.435059, angle = 0.021973, ρ = 351.240728
Debug: i = 12 angleSum = 63.424072, angle = 0.010986, ρ = 351.240734
Debug: i = 13 angleSum = 63.429565, angle = 0.005493, ρ = 351.240736
Debug: i = 14 angleSum = 63.432312, angle = 0.002747, ρ = 351.240736
z = 63.432312
消除乘法運算
我們已經(jīng)成功的將乘法的次數(shù)減少了一半,還有沒有可能進一步降低運算量呢?還要從計算式入手。
第一次循環(huán)時,tan(45)=1,所以第一次循環(huán)實際上是不需要乘法運算的。第二次運算呢?
Tan(22.5)=0.4142135623731,很不幸,第二次循環(huán)乘數(shù)是個很不整的小數(shù)。是否能對其改造一下呢?答案是肯定的。第二次選擇22.5度是因為二分查找法的查找效率最高。如果選用個在22.5到45度之間的值,查找的效率會降低一些。如果稍微降低一點查找的效率能讓我們有效的減少乘法的次數(shù),使最終的計算速度提高了,那么這種改進就是值得的。
我們發(fā)現(xiàn)tan(26.565051177078)=0.5,如果我們第二次旋轉(zhuǎn)采用26.565051177078度,那么乘數(shù)變?yōu)?.5,如果我們采用定點數(shù)運算的話(沒有浮點協(xié)處理器時為了加速計算我們會大量的采用定點數(shù)算法)乘以0.5就相當(dāng)于將乘數(shù)右移一位。右移運算是很快的,這樣第二次循環(huán)中的乘法運算也被消除了。
類似的方法,第三次循環(huán)中不用11.25度,而采用 14.0362434679265 度。
Tan(14.0362434679265)= 1/4
乘數(shù)右移兩位就可以了。剩下的都以此類推。
tan(45)= 1
tan(26.565051177078)= 1/2
tan(14.0362434679265)= 1/4
tan(7.1250163489018)= 1/8
tan(3.57633437499735)= 1/16
tan(1.78991060824607)= 1/32
tan(0.8951737102111)= 1/64
tan(0.4476141708606)= 1/128
tan(0.2238105003685)= 1/256
還是給出C語言的實現(xiàn)代碼,我們采用循序漸進的方法,先給出浮點數(shù)的實現(xiàn)(因為用到了浮點數(shù),所以并沒有減少乘法運算量,查找的效率也比二分查找法要低,理論上說這個算法實現(xiàn)很低效。不過這個代碼的目的在于給出算法實現(xiàn)的示意性說明,還是有意義的)。
double my_atan4(double x, double y)
{
const double tangent[] = {1.0, 1 / 2.0, 1 / 4.0, 1 / 8.0, 1 / 16.0,
1 / 32.0, 1 / 64.0, 1 / 128.0, 1 / 256.0, 1 / 512.0,
1 / 1024.0, 1 / 2048.0, 1 / 4096.0, 1 / 8192.0, 1 / 16384.0
};
const double angle[] = {45.0, 26.565051177078, 14.0362434679265, 7.1250163489018, 3.57633437499735,
1.78991060824607, 0.8951737102111, 0.4476141708606, 0.2238105003685, 0.1119056770662,
0.0559528918938, 0.027976452617, 0.01398822714227, 0.006994113675353, 0.003497056850704
};
int i = 0;
double x_new, y_new;
double angleSum = 0.0;
for(i = 0; i < 15; i++)
{
if(y > 0)
{
x_new = x + y * tangent[i];
y_new = y - x * tangent[i];
x = x_new;
y = y_new;
angleSum += angle[i];
}
else
{
x_new = x - y * tangent[i];
y_new = y + x * tangent[i];
x = x_new;
y = y_new;
angleSum -= angle[i];
}
printf("Debug: i = %d angleSum = %f, angle = %f, ρ = %f\n", i, angleSum, angle[i], hypot(x, y));
}
return angleSum;
}
程序運行的輸出結(jié)果如下:
Debug: i = 0 angleSum = 45.000000, angle = 45.000000, ρ = 316.227766
Debug: i = 1 angleSum = 71.565051, angle = 26.565051, ρ = 353.553391
Debug: i = 2 angleSum = 57.528808, angle = 14.036243, ρ = 364.434493
Debug: i = 3 angleSum = 64.653824, angle = 7.125016, ρ = 367.270602
Debug: i = 4 angleSum = 61.077490, angle = 3.576334, ρ = 367.987229
Debug: i = 5 angleSum = 62.867400, angle = 1.789911, ρ = 368.166866
Debug: i = 6 angleSum = 63.762574, angle = 0.895174, ρ = 368.211805
Debug: i = 7 angleSum = 63.314960, angle = 0.447614, ρ = 368.223042
Debug: i = 8 angleSum = 63.538770, angle = 0.223811, ρ = 368.225852
Debug: i = 9 angleSum = 63.426865, angle = 0.111906, ρ = 368.226554
Debug: i = 10 angleSum = 63.482818, angle = 0.055953, ρ = 368.226729
Debug: i = 11 angleSum = 63.454841, angle = 0.027976, ρ = 368.226773
Debug: i = 12 angleSum = 63.440853, angle = 0.013988, ρ = 368.226784
Debug: i = 13 angleSum = 63.433859, angle = 0.006994, ρ = 368.226787
Debug: i = 14 angleSum = 63.437356, angle = 0.003497, ρ = 368.226788
z = 63.437356
定點數(shù)算法e#
有了上面的準(zhǔn)備,我們可以來討論定點數(shù)算法了。所謂定點數(shù)運算,其實就是整數(shù)運算。我們用256 表示1度。這樣的話我們就可以精確到1/256=0.00390625 度了,這對于大多數(shù)的情況都是足夠精確的了。256 表示1度,那么45度就是 45*256 = 115200。其他的度數(shù)以此類推。
?
序號
?
度數(shù)
?
×256
?
取整
?
1
?
45.0
?
11520
?
11520
?
2
?
26.565051177078
?
6800.65310133196
?
6801
?
3
?
14.0362434679265
?
3593.27832778918
?
3593
?
4
?
7.1250163489018
?
1824.00418531886
?
1824
?
5
?
3.57633437499735
?
915.541599999322
?
916
?
6
?
1.78991060824607
?
458.217115710994
?
458
?
7
?
0.8951737102111
?
229.164469814035
?
229
?
8
?
0.4476141708606
?
114.589227740302
?
115
?
9
?
0.2238105003685
?
57.2954880943458
?
57
?
10
?
0.1119056770662
?
28.647853328949
?
29
?
11
?
0.0559528918938
?
14.3239403248137
?
14
?
12
?
0.027976452617
?
7.16197186995294
?
7
?
13
?
0.01398822714227
?
3.58098614841984
?
4
?
14
?
0.006994113675353
?
1.79049310089035
?
2
?
15
?
0.003497056850704
?
0.8952465537802
?
1
?
?
C 代碼如下:
int my_atan5(int x, int y)
{
const int angle[] = {11520, 6801, 3593, 1824, 916, 458, 229, 115, 57, 29, 14, 7, 4, 2, 1};
int i = 0;
int x_new, y_new;
int angleSum = 0;
x *= 1024;// 將 X Y 放大一些,結(jié)果會更準(zhǔn)確
y *= 1024;
for(i = 0; i < 15; i++)
{
if(y > 0)
{
x_new = x + (y >> i);
y_new = y - (x >> i);
x = x_new;
y = y_new;
angleSum += angle[i];
}
else
{
x_new = x - (y >> i);
y_new = y + (x >> i);
x = x_new;
y = y_new;
angleSum -= angle[i];
}
printf("Debug: i = %d angleSum = %d, angle = %d\n", i, angleSum, angle[i]);
}
return angleSum;
}
計算結(jié)果如下:
Debug: i = 0 angleSum = 11520, angle = 11520
Debug: i = 1 angleSum = 18321, angle = 6801
Debug: i = 2 angleSum = 14728, angle = 3593
Debug: i = 3 angleSum = 16552, angle = 1824
Debug: i = 4 angleSum = 15636, angle = 916
Debug: i = 5 angleSum = 16094, angle = 458
Debug: i = 6 angleSum = 16323, angle = 229
Debug: i = 7 angleSum = 16208, angle = 115
Debug: i = 8 angleSum = 16265, angle = 57
Debug: i = 9 angleSum = 16236, angle = 29
Debug: i = 10 angleSum = 16250, angle = 14
Debug: i = 11 angleSum = 16243, angle = 7
Debug: i = 12 angleSum = 16239, angle = 4
Debug: i = 13 angleSum = 16237, angle = 2
Debug: i = 14 angleSum = 16238, angle = 1
z = 16238
16238/256=63.4296875度,精確的結(jié)果是63.4349499度,兩個結(jié)果的差為0.00526,還是很精確的。
到這里 CORDIC 算法的最核心的思想就介紹完了。當(dāng)然,這里介紹的只是CORDIC算法最基本的內(nèi)容,實際上,利用CORDIC 算法不光可以計算 atan 函數(shù),其他的像 Sin,Cos,Sinh,Cosh 等一系列的函數(shù)都可以計算,不過那些都不在本文的討論范圍內(nèi)了。另外,每次旋轉(zhuǎn)時到原點的距離都會發(fā)生變化,而這個變化是確定的,因此可以在循環(huán)運算結(jié)束后以此補償回來,這樣的話我們就同時將(ρ,θ)都計算出來了。
想進一步深入學(xué)習(xí)的可以閱讀 John Stephen Walther 于2000年發(fā)表在 Journal of VLSI signal processing systems for signal, image and video technology上的綜述性文章“The Story of Unified Cordic”。
評論
查看更多