一種高精度數(shù)字可調(diào)片上振蕩器設(shè)計
摘要:在傳統(tǒng)的電路基礎(chǔ)上對電流、電壓基準(zhǔn)電路進行補償,設(shè)計一種高精度數(shù)字可調(diào)CMOS片上振蕩器電路。利用電阻和PNP管相反的溫度系數(shù)產(chǎn)生的自偏置基準(zhǔn)電流電路PTAT,NTAT兩路電流,疊加得到一路與溫度無關(guān)的基準(zhǔn)電流上,實現(xiàn)了溫度補償;利用電阻網(wǎng)絡(luò)補償工藝產(chǎn)生高 PSRR帶隙基準(zhǔn)電路電壓的頻率誤差;數(shù)字修調(diào)寄存器粗調(diào)電流用以選擇頻率,微調(diào)電阻用以調(diào)節(jié)精度。經(jīng)流片測試表明,該振蕩器頻率2 MHz,4 MHz可選,2 MHz可調(diào)精度達±O.1%;4 MHz可調(diào)精度達±O.125%。
關(guān)鍵詞:溫度補償;工藝補償;高精度;數(shù)字可調(diào);振蕩器
0 引 言
??? 在DC/DC轉(zhuǎn)換器等開關(guān)電源芯片的設(shè)計中,振蕩器作為控制電路的核心功能模塊,決定整個系統(tǒng)的工作頻率,對DC/DC轉(zhuǎn)換器的頻率響應(yīng)、紋波大小、效率等諸多性能有重要的影響。其受工作電壓、溫度變化、系統(tǒng)噪聲和工藝容差的影響較大,要得到精準(zhǔn)的頻率,有必要對其進行補償。在分析常見電流型RC振蕩器的基礎(chǔ)上,針對影響振蕩器頻率的各個因素進行補償,設(shè)計了一種頻率2 MHz,4 MHz可選片上振蕩器電路,具有對頻率進行數(shù)字修調(diào)機制及溫度和工藝補償設(shè)計,并能有效地消除比較器延遲帶來的誤差,從而提供穩(wěn)定可調(diào)的時鐘信號。
1 振蕩器原理分析
??? 振蕩器的工作原理是通過恒定電流源對電容充電,MOS管對電容快速放電,以產(chǎn)生鋸齒波,再經(jīng)鎖存器產(chǎn)生周期脈沖信號,其結(jié)構(gòu)如圖1所示。基準(zhǔn)電流電路產(chǎn)生兩路電流,Ich1,Ich2在鎖存器的控制下給電容C1,C2充電,帶隙基準(zhǔn)電路為比較器提供基準(zhǔn)電壓Vbg,經(jīng)比較器與電容C1,C2的上極板電壓VC1,VC2比較,從而控制SR鎖存器狀態(tài)的轉(zhuǎn)換。
??? 具體轉(zhuǎn)換過程如下
式中:Ich為充電電流;Vbg為基準(zhǔn)電壓;C為充電電容。由式(1)知,振蕩器的頻率主要由Ich,Vbg,C決定。若Ich,Vbg對溫度和電源電壓的影響減小,則振蕩器的頻率只受工藝偏差對容差的影響,通過trim微調(diào)可以減小容值偏差。采用雙比較器結(jié)構(gòu)可以消除比較器對頻率穩(wěn)定性的影響。
2 振蕩器電路設(shè)計
2.1 與溫度無關(guān)的基準(zhǔn)電流電路
??? 圖2為基準(zhǔn)電流電路。利用電阻和PNP相反的溫度系數(shù)產(chǎn)生兩路電流,一路與溫度成正比的PTAT電流,另一路與溫度成反比的NTAT電流,兩路電流疊加得到與絕對溫度無關(guān)的基準(zhǔn)電流。
??? 如圖2所示,啟動電路由M2~M6組成,在電路上電瞬間,M3關(guān)斷,M4,M5導(dǎo)通且工作于線性區(qū),PMOS管M6的柵極被拉低至地電位,使得M6導(dǎo)通,整個電路開啟。電路穩(wěn)定工作后,由于M4,M5具有較大的導(dǎo)通電阻,M4,M5的導(dǎo)通使得M6的柵極電壓逐漸抬高,最終M6關(guān)閉,啟動電路脫離主電路,整個電路保持在正常的工作點。
M7~M10通過共源共柵連接,使得流過Q1,Q2的電流IQ1,IQ2相等。在此電路結(jié)構(gòu)中,Q1發(fā)射極基極電壓VQ1應(yīng)等于Q2發(fā)射極基極電壓VQ2與電阻兩端的電壓之和,即:
???
??? 假設(shè)m/n為Q2與Q1發(fā)射極面積之比,則可得電阻R與支路電流IPTAT關(guān)系如下:
??
式中:VT為熱電壓VTkT/q;R為多晶電阻。VT的正溫度系數(shù)與R的負(fù)溫度系數(shù)使得IPTAT正比于絕對溫度。Q3支路在提供一個負(fù)溫度系數(shù)pcas 電壓的同時,將M19的柵極電壓箝制在固定電位,使得R1兩端的電壓VR1=VQ1=Veb1,則R1支路電流INTAT可表示為:
??
??? 設(shè):(ω/l)17/(ω/l)18=k,則:
??
??? 調(diào)節(jié)R,R1,k,使得эI/эt=0,可以得到一路與溫度無關(guān)的電流I。電流I1為另一路鏡像。這種以熱電壓為基準(zhǔn)的自偏置電路對振蕩器的頻率進行了很好的溫度補償。共源共柵電流鏡具有較大電源抑制比,使得電流受電源電壓影響小。此電路既用作基準(zhǔn)電流電路,也是芯片內(nèi)部其他電路的偏置電路。
2.2 與溫度無關(guān)的基準(zhǔn)電壓
??? 基準(zhǔn)電壓電路如圖3所示。運放由自偏置基準(zhǔn)電流電路提供偏置電流,將A,B兩點箝制在相等電位上,假設(shè)A,B兩點電壓分別為VA,VB,有:
??
??? 輸出電壓Vbg可表示為:
???
??? 假設(shè)m1/n1為Q5與Q4發(fā)射極面積比,利用式(7)、式(8)消去電流可得:
??
??? 將式(9)對溫度求偏導(dǎo)數(shù)有:
??
??? 調(diào)節(jié)Rtrim,R5,R6使得эVbg/эt=0,可以得到零溫度系數(shù)的基準(zhǔn)電壓Vbg,達到溫度補償?shù)哪康摹?/P>
2.3 比較器RS鎖存器設(shè)計
??? 如果考慮比較器、鎖存器和開關(guān)管S1,S2的傳輸延時td,則振蕩器的頻率可以表示為:
???
??? 由上式可知,經(jīng)精確補償電流和電壓后,只有通過減小傳輸延時td來減低傳輸延時對振蕩器頻率的影響。比較器采用全差分結(jié)構(gòu),以獲得較高的速率和高電源電壓抑制比。使用小尺寸器件可減小開關(guān)的傳輸延遲,另外比較器遲滯效應(yīng)也會給振蕩器頻率帶來一定誤差。假設(shè)由于比較器遲滯帶來上升延遲t1、下降延遲t2,則周期誤差為:
??
??? 采用兩個比較器的對稱結(jié)構(gòu),保持Ich1=Ich2,Cl=C2,使得基準(zhǔn)電流對電容充放電的時間相同,有t1=t2。因此雙比較器對稱結(jié)構(gòu)設(shè)計可有效消除傳輸延遲的頻率偏差,提高振蕩器的精度。RS鎖存器由兩個NOR組成。
2.4 數(shù)字修調(diào)設(shè)計
??? 在振蕩器設(shè)計中,由于工藝偏差等原因會產(chǎn)生頻率偏差。為保證頻率精度,有必要采用數(shù)字修調(diào)控制可配置寄存器對振蕩器頻率進行矯正,以得到精準(zhǔn)的目標(biāo)頻率。
2.4.1 電流粗調(diào)頻率可選
??? 由圖2電路可見,開關(guān)管EN1閉合,EN2斷開時,Ich=I,選擇4 MHz頻率輸出;開關(guān)管EN1關(guān)閉,EN2斷開時,Ich=I1,選擇2 MHz頻率輸出。
2.4.2 電阻微調(diào)頻率
??? 帶隙基準(zhǔn)電路的電阻微調(diào)網(wǎng)絡(luò)如圖4所示。R按照RN=2n-1RLSB取值,所有開關(guān)由片上可配置寄存器控制,通過控制Tr1~Tr8,可使電阻在256階精度變化,使得基準(zhǔn)電壓Vbg的變化梯度為256階,從而實現(xiàn)頻率256階精度微調(diào)。
??? 十六進制寄存器為FFH狀態(tài)時,Tr1~Tr8全為1,開關(guān)管均閉合,Rtrim最小,基準(zhǔn)電壓Vbg輸出最小,振蕩器輸出最大頻率fmax;十六進制寄存器為00H狀態(tài)時,Tr1~Tr8全為O,開關(guān)管均斷開,Rtrim最大,基準(zhǔn)電壓Vbg輸出最大,振蕩器輸出最小頻率fmin。設(shè)置寄存器為80H狀態(tài)則對應(yīng)頻率振蕩器的中心頻率fOSC,該頻率可通過電阻網(wǎng)絡(luò)在fmin~fmax之間調(diào)節(jié),可調(diào)精度為:
??
??? 在微調(diào)電阻陣列的設(shè)計中,要充分考慮晶體管的工藝偏差和開關(guān)的傳輸延遲,減小開關(guān)晶體管的導(dǎo)通電阻對trim電阻的影響。
3 測試結(jié)果及分析
??? 基于CSMC O.5 μm CMOS工藝對所提電路進行流片,其電路的顯微照片如圖5所示。
在室溫下對流片電路進行了頻率和數(shù)字修調(diào)測試,測試時EN1選通,可配置數(shù)字寄存器從00H變化到FFH狀態(tài),頻率可調(diào)范圍為3.828~4.162 MHz,振蕩器輸出頻率fOSC=4.001 MHz,最大可微調(diào)步長為O.005 MHz/LSB,調(diào)節(jié)精度為O.125%;EN2選通,寄存器00H~FFH的可調(diào)范圍為1.942~2.054 MHz,振蕩器的輸出頻率fOSC=2.000 2 MHz,微調(diào)步長為O.002 MHz/LSB,調(diào)節(jié)精度為O.1%。對流片電路進行了溫度和電壓特性測試。
3.1 振蕩器的溫度特性
??? 振蕩器在00H,80H,F(xiàn)FH狀態(tài)下隨溫度的變化特性曲線如圖6所示。
??? 當(dāng)VDD=5 V,溫度范圍為-40~+125℃,頻率為4 MHz時,振蕩器的頻率變化為138 ppm/℃;頻率為2 MHz時,振蕩器的頻率變化為94 ppm/℃。
3.2 振蕩器的電源電壓變化特性
??? 圖7是2 MHz,4 MHz在00H,80H,F(xiàn)FH狀態(tài)下振蕩器頻率與電源電壓關(guān)系圖。當(dāng)t=25℃,電源電壓為3~6 V,頻率為4 MHz時,振蕩器的頻率變化為2.3%;當(dāng)頻率為2 MHz時,振蕩器的頻率變化僅為0.56%。表1總結(jié)了室溫下測得的振蕩器特性參數(shù)。
4 結(jié) 語
??? 基于0.5μm CMOS工藝設(shè)計一種頻率為2 MHz,4 MHz數(shù)字可調(diào)高精度振蕩器。經(jīng)流片測試表明,該振蕩器在3~5 V工作電壓下,-40~+125℃溫度范圍內(nèi)都具有較穩(wěn)定的工作頻率,4 MHz數(shù)字修調(diào)精度可達±0.125%;2 MHz數(shù)字修調(diào)精度可達±O.1%,該電路可嵌入到數(shù)字系統(tǒng)鐘作為片內(nèi)時鐘,亦可單獨作為時鐘芯片。所設(shè)計的振蕩器已應(yīng)用于LED驅(qū)動芯片中,并且具有極其廣泛的應(yīng)用前景。
評論
查看更多