上電復(fù)位工作原理
上電壓從無到有在RESET處會先處于高電平一段時間,然后由于該點通過電阻接地則RESET該點的電平會逐漸的改變?yōu)榈碗娖?,從而使?a target="_blank">單片機復(fù)位口電平從1到0,達到給單片機復(fù)位的功能。這樣一種復(fù)位方式就是所謂上電復(fù)位。
上電復(fù)位電路圖
AT89C51的上電復(fù)位電路如圖2所示,只要在RST復(fù)位輸入引腳上接一電容至Vcc端,下接一個電阻到地即可。對于CMOS型單片機,由于在RST端內(nèi)部有一個下拉電阻,故可將外部電阻去掉,而將外接電容減至1μF。上電復(fù)位的工作過程是在加電時,復(fù)位電路通過電 容加給RST端一個短暫的高電平信號,此高電平信號隨著Vcc對電容的充電過程而逐漸回落,即RST端的高電平持續(xù)時間取決于電容的充電時間。為了保證系統(tǒng)能夠可靠地復(fù)位,RST端的高電平信號必須維持足夠長的時間。上電時,Vcc的上升時間約為10ms,而振蕩器的起振時間取決于振蕩頻率,如晶振頻率為10MHz,起振時間為1ms;晶振頻率為1MHz,起振時間則為10ms。在圖2的復(fù)位電路中,當Vcc掉電時,必然會使RST端電壓迅速下降到0V以下,但是,由于內(nèi)部電路的限制作用,這個負電壓將不會對器件產(chǎn)生損害。另外,在復(fù)位期間,端口引腳處于隨機狀態(tài),復(fù)位后,系統(tǒng)將端口置為全“l(fā)”態(tài)。如果系統(tǒng)在上電時得不到有效的復(fù)位,則程序計數(shù)器PC將得不到一個合適的初值,因此,CPU可能會從一個未被定義的位置開始執(zhí)行程序。
積分型上電復(fù)位
常用的上電或開關(guān)復(fù)位電路如圖3所示。上電后,由于電容C3的充電和反相門的作用,使RST持續(xù)一段時間的高電平。當單片機已在運行當中時,按下復(fù)位鍵K后松開,也能使RST為一段時間的高電平,從而實現(xiàn)上電或開關(guān)復(fù)位的操作。
根據(jù)實際操作的經(jīng)驗,下面給出這種復(fù)位電路的電容、電阻參考值。
圖3中:C:=1uF,Rl=lk,R2=10k
專用芯片復(fù)位電路
上電復(fù)位電路 在控制系統(tǒng)中的作用是啟動單片機開始工作。但在電源上電以及在正常工作時電壓異?;蚋蓴_時,電源會有一些不穩(wěn)定的因素,為單片機工作的穩(wěn)定性可能帶來嚴重的影響。因此,在電源上電時延時輸出給芯片輸出一復(fù)位信號。上復(fù)位電路另一個作用是,*正常工作時電源電壓。若電源有異常則會進行強制復(fù)位。復(fù)位輸出腳輸出低電平需要持續(xù)三個(12/fc s)或者更多的指令周期,復(fù)位程序開始初始化芯片內(nèi)部的初始狀態(tài)。等待接受輸入信號(若如遙控器的信號等)。
?上電復(fù)位電路原理分析
5V電源通過MC34064的2腳輸入,1腳便可輸出一個上升沿,觸發(fā)芯片的復(fù)位腳。電解電容C13是調(diào)節(jié)復(fù)位延時時間的。當電源關(guān)斷時,電解電容C13上的殘留電荷通過D13和MC34064內(nèi)部電路構(gòu)成回路,釋放掉電荷。以備下次復(fù)位啟用。
四、上電復(fù)位電路的關(guān)鍵性器件
關(guān)鍵性器件有:MC34064 。
三極管欠壓復(fù)位電路
比較器型復(fù)位電路
比較器型復(fù)位電路的基本原理如圖8所示。上電復(fù)位時,由于組成了一個RC低通網(wǎng)絡(luò),所以比較器的正相輸入端的電壓比負相端輸入電壓延遲一定時間。而比較器的負相端網(wǎng)絡(luò)的時間常數(shù)遠遠小于正相端RC網(wǎng)絡(luò)的時間常數(shù),因此在正端電壓還沒有超過負端電壓時,比較器輸出低電平,經(jīng)反相器后產(chǎn)生高電平。復(fù)位脈沖的寬度主要取決于正常電壓上升的速度。由于負端電壓放電回路時間常數(shù)較大,因此對電源電壓的波動不敏感。但是容易產(chǎn)生以下二種不利現(xiàn)象:(1)電源二次開關(guān)間隔太短時,復(fù)位不可靠;(2)當電源電壓中有浪涌現(xiàn)象時,可能在浪涌消失后不能產(chǎn)生復(fù)位脈沖。為此,將改進比較器重定電路,如圖9所示。這個改進電路可以消除第一種現(xiàn)象,并減少第二種現(xiàn)象的產(chǎn)生。為了徹底消除這二種現(xiàn)象,可以利用數(shù)字邏輯的方法與比較器配合,設(shè)計如圖9所示的比較器重定電路。此電路稍加改進即可作為上電復(fù)位與看門狗復(fù)位電路共同復(fù)位的電路,大大提高了復(fù)位的可靠性。
改進型比較器型復(fù)位電路
評論
查看更多