0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

介紹你需要的圖建模論文,圖中的各種隱藏知識、強大且復(fù)雜的工具

智能感知與物聯(lián)網(wǎng)技術(shù)研究所 ? 來源:陳年麗 ? 2019-07-22 11:41 ? 次閱讀

圖嵌入、圖表征、圖分類、圖神經(jīng)網(wǎng)絡(luò),這篇文章將介紹你需要的圖建模論文,當(dāng)然它們都有配套實現(xiàn)的。

圖是一種非常神奇的表示方式,生活中絕大多數(shù)的現(xiàn)象或情境都能用圖來表示,例如人際關(guān)系網(wǎng)、道路交通網(wǎng)、信息互聯(lián)網(wǎng)等等。正如馬哲介紹事物具有普遍聯(lián)系性,而圖正好能捕捉這種聯(lián)系,所以用它來描述這個世界是再好不過的方法。

但圖這種結(jié)構(gòu)化數(shù)據(jù)有個麻煩的地方,我們先要有圖才能進行后續(xù)的計算。但圖的搭建并不簡單,目前也沒有比較好的自動化方法,所以第一步還是需要挺多功夫的。只要各節(jié)點及邊都確定了,那么圖就是一種非常強大且復(fù)雜的工具,模型也能推斷出圖中的各種隱藏知識。

不同時期的圖建模

其實,我們可以將圖建模分為圖神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)的圖模型。其中以前的圖建模主要借助 Graph Embedding 為不同的節(jié)點學(xué)習(xí)低維向量表征,這借鑒了 NLP 中詞嵌入的思想。而圖神經(jīng)網(wǎng)絡(luò)借助深度學(xué)習(xí)進行更強大的圖運算與圖表征。

Graph Embedding 算法聚焦在如何對網(wǎng)絡(luò)節(jié)點進行低維向量表示,相似的節(jié)點在表征空間中更加接近。相比之下,GNN 最大的優(yōu)勢在于它不只可以對一個節(jié)點進行語義表示。

例如 GNN 可以表示子圖的語義信息,將網(wǎng)絡(luò)中一小部分節(jié)點構(gòu)成的語義表示出來,這是以前 Graph Embedding 不容易做到的。GNN 還可以在整個圖網(wǎng)絡(luò)上進行信息傳播、聚合等建模,也就是說它可以把圖網(wǎng)絡(luò)當(dāng)成一個整體進行建模。此外,GNN 對單個節(jié)點的表示也可以做得更好,因為它可以更好地建模周圍節(jié)點豐富信息。

在傳統(tǒng)圖建模中,隨機游走、最短路徑等圖方法會利用符號知識,但這些方法并沒有辦法很好地利用每個節(jié)點的語義信息。而深度學(xué)習(xí)技術(shù)更擅長處理非結(jié)構(gòu)文本、圖像等數(shù)據(jù)。簡言之,我們可以將 GNN 看做將深度學(xué)習(xí)技術(shù)應(yīng)用到符號表示的圖數(shù)據(jù)上,或者說是從非結(jié)構(gòu)化數(shù)據(jù)擴展到了結(jié)構(gòu)化數(shù)據(jù)。GNN 能夠充分融合符號表示和低維向量表示,發(fā)揮兩者優(yōu)勢。

圖建模論文與代碼

在 GitHub 的一項開源工作中,開發(fā)者收集了圖建模相關(guān)的論文與實現(xiàn),并且從經(jīng)典的 Graph Embedding、Graph Kernel 到圖神經(jīng)網(wǎng)絡(luò)都有涉及。它們在圖嵌入、圖分類、圖表征等領(lǐng)域都是非常重要的論文。

項目地址:https://github.com/benedekrozemberczki/awesome-graph-classification

該項目主要收集的論文領(lǐng)域如下所示:

1. Factorization

2. Spectral and Statistical Fingerprints

3. Graph Neural Network

4. Graph Kernels

因式分解法

Learning Graph Representation via Frequent Subgraphs (SDM 2018)

Dang Nguyen, Wei Luo, Tu Dinh Nguyen, Svetha Venkatesh, Dinh Phung

Paper:https://epubs.siam.org/doi/10.1137/1.9781611975321.35

Python:https://github.com/nphdang/GE-FSG

Anonymous Walk Embeddings (ICML 2018)

Sergey Ivanov and Evgeny Burnaev

Paper:https://arxiv.org/pdf/1805.11921.pdf

Python:https://github.com/nd7141/AWE

Graph2vec (MLGWorkshop 2017)

Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, Yang Liu, and Santhoshkumar Saminathan

Paper:https://arxiv.org/abs/1707.05005

Python High Performance:https://github.com/benedekrozemberczki/graph2vec

Python Reference:https://github.com/MLDroid/graph2vec_tf

Subgraph2vec (MLGWorkshop 2016)

Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, Yang Liu, and Santhoshkumar Saminathan

Paper:https://arxiv.org/abs/1606.08928

Python High Performance:https://github.com/MLDroid/subgraph2vec_gensim

Python Reference:https://github.com/MLDroid/subgraph2vec_tf

Rdf2Vec: RDF Graph Embeddings for Data Mining (ISWC 2016)

Petar Ristoski and Heiko Paulheim

Paper:https://link.springer.com/chapter/10.1007/978-3-319-46523-4_30

Python Reference:https://github.com/airobert/RDF2VecAtWebScale

Deep Graph Kernels (KDD 2015)

Pinar Yanardag and S.V.N. Vishwanathan

Paper:https://dl.acm.org/citation.cfm?id=2783417

Python Reference:https://github.com/pankajk/Deep-Graph-Kernels

Spectral and Statistical Fingerprints

A Simple Yet Effective Baseline for Non-Attribute Graph Classification (ICLR RLPM 2019)

Chen Cai, Yusu Wang

Paper:https://arxiv.org/abs/1811.03508

Python Reference:https://github.com/Chen-Cai-OSU/LDP

NetLSD (KDD 2018)

Anton Tsitsulin, Davide Mottin, Panagiotis Karras, Alex Bronstein, and Emmanuel Müller

Paper:https://arxiv.org/abs/1805.10712

Python Reference:https://github.com/xgfs/NetLSD

A Simple Baseline Algorithm for Graph Classification (Relational Representation Learning, NIPS 2018)

Nathan de Lara and Edouard Pineau

Paper:https://arxiv.org/pdf/1810.09155.pdf

Python Reference:https://github.com/edouardpineau/A-simple-baseline-algorithm-for-graph-classification

Multi-Graph Multi-Label Learning Based on Entropy (Entropy NIPS 2018)

Zixuan Zhu and Yuhai Zhao

Paper:https://github.com/TonyZZX/MultiGraph_MultiLabel_Learning/blob/master/entropy-20-00245.pdf

Python Reference:https://github.com/TonyZZX/MultiGraph_MultiLabel_Learning

Hunt For The Unique, Stable, Sparse And Fast Feature Learning On Graphs (NIPS 2017)

Saurabh Verma and Zhi-Li Zhang

Paper:https://papers.nips.cc/paper/6614-hunt-for-the-unique-stable-sparse-and-fast-feature-learning-on-graphs.pdf

Python Reference:https://github.com/vermaMachineLearning/FGSD

Joint Structure Feature Exploration and Regularization for Multi-Task Graph Classification (TKDE 2015)

Shirui Pan, Jia Wu, Xingquan Zhuy, Chengqi Zhang, and Philip S. Yuz

Paper:https://ieeexplore.ieee.org/document/7302040

Java Reference:https://github.com/shiruipan/MTG

NetSimile: A Scalable Approach to Size-Independent Network Similarity (arXiv 2012)

Michele Berlingerio, Danai Koutra, Tina Eliassi-Rad, and Christos Faloutsos

Paper:https://arxiv.org/abs/1209.2684

Python:https://github.com/kristyspatel/Netsimile

圖神經(jīng)網(wǎng)絡(luò)

Self-Attention Graph Pooling (ICML 2019)

Junhyun Lee, Inyeop Lee, Jaewoo Kang

Paper:https://arxiv.org/abs/1904.08082

Python Reference:https://github.com/inyeoplee77/SAGPool

Variational Recurrent Neural Networks for Graph Classification (ICLR 2019)

Edouard Pineau, Nathan de Lara

Paper:https://arxiv.org/abs/1902.02721

Python Reference:https://github.com/edouardpineau/Variational-Recurrent-Neural-Networks-for-Graph-Classification

Crystal Graph Neural Networks for Data Mining in Materials Science (Arxiv 2019)

Takenori Yamamoto

Paper:https://storage.googleapis.com/rimcs_cgnn/cgnn_matsci_May_27_2019.pdf

Python Reference:https://github.com/Tony-Y/cgnn

Explainability Techniques for Graph Convolutional Networks (ICML 2019)

Federico Baldassarre, Hossein Azizpour

Paper:https://128.84.21.199/pdf/1905.13686.pdf

Python Reference:https://github.com/gn-exp/gn-exp

Semi-Supervised Graph Classification: A Hierarchical Graph Perspective (WWW 2019)

Jia Li, Yu Rong, Hong Cheng, Helen Meng, Wenbing Huang, and Junzhou Huang

Paper:https://arxiv.org/pdf/1904.05003.pdf

Python Reference:https://github.com/benedekrozemberczki/SEAL-CI

Capsule Graph Neural Network (ICLR 2019)

Zhang Xinyi and Lihui Chen

Paper:https://openreview.net/forum?id=Byl8BnRcYm

Python Reference:https://github.com/benedekrozemberczki/CapsGNN

How Powerful are Graph Neural Networks? (ICLR 2019)

Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka

Paper:https://arxiv.org/abs/1810.00826

Python Reference:https://github.com/weihua916/powerful-gnns

Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks (AAAI 2019)

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe

Paper:https://arxiv.org/pdf/1810.02244v2.pdf

Python Reference:https://github.com/k-gnn/k-gnn

Capsule Neural Networks for Graph Classification using Explicit Tensorial Graph Representations (Arxiv 2019)

Marcelo Daniel Gutierrez Mallea, Peter Meltzer, and Peter J Bentley

Paper:https://arxiv.org/pdf/1902.08399v1.pdf

Python Reference:https://github.com/BraintreeLtd/PatchyCapsules

Three-Dimensionally Embedded Graph Convolutional Network for Molecule Interpretation (Arxiv 2018)

Hyeoncheol Cho and Insung. S. Choi

Paper:https://arxiv.org/abs/1811.09794

Python Reference:https://github.com/blackmints/3DGCN

Learning Graph-Level Representations with Recurrent Neural Networks (Arxiv 2018)

Yu Jin and Joseph F. JaJa

Paper:https://arxiv.org/pdf/1805.07683v4.pdf

Python Reference:https://github.com/yuj-umd/graphRNN

Graph Capsule Convolutional Neural Networks (ICML 2018)

Saurabh Verma and Zhi-Li Zhang

Paper:https://arxiv.org/abs/1805.08090

Python Reference:https://github.com/vermaMachineLearning/Graph-Capsule-CNN-Networks

Graph Classification Using Structural Attention (KDD 2018)

John Boaz Lee, Ryan Rossi, and Xiangnan Kong

Paper:http://ryanrossi.com/pubs/KDD18-graph-attention-model.pdf

Python Pytorch Reference:https://github.com/benedekrozemberczki/GAM

Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation (NIPS 2018)

Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, and Jure Leskovec

Paper:https://arxiv.org/abs/1806.02473

Python Reference:https://github.com/bowenliu16/rl_graph_generation

Hierarchical Graph Representation Learning with Differentiable Pooling (NIPS 2018)

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton and Jure Leskovec

Paper:http://papers.nips.cc/paper/7729-hierarchical-graph-representation-learning-with-differentiable-pooling.pdf

Python Reference:https://github.com/rusty1s/pytorch_geometric

Contextual Graph Markov Model: A Deep and Generative Approach to Graph Processing (ICML 2018)

Davide Bacciu, Federico Errica, and Alessio Micheli

Paper:https://arxiv.org/pdf/1805.10636.pdf

Python Reference:https://github.com/diningphil/CGMM

MolGAN: An Implicit Generative Model for Small Molecular Graphs (ICML 2018)

Nicola De Cao and Thomas Kipf

Paper:https://arxiv.org/pdf/1805.11973.pdf

Python Reference:https://github.com/nicola-decao/MolGAN

Deeply Learning Molecular Structure-Property Relationships Using Graph Attention Neural Network (2018)

Seongok Ryu, Jaechang Lim, and Woo Youn Kim

Paper:https://arxiv.org/abs/1805.10988

Python Reference:https://github.com/SeongokRyu/Molecular-GAT

Compound-protein Interaction Prediction with End-to-end Learning of Neural Networks for Graphs and Sequences (Bioinformatics 2018)

Masashi Tsubaki, Kentaro Tomii, and Jun Sese

Paper:https://academic.oup.com/bioinformatics/article/35/2/309/5050020

Python Reference:https://github.com/masashitsubaki/CPI_prediction

Python Reference:https://github.com/masashitsubaki/GNN_molecules

Python Alternative:https://github.com/xnuohz/GCNDTI

Learning Graph Distances with Message Passing Neural Networks (ICPR 2018)

Pau Riba, Andreas Fischer, Josep Llados, and Alicia Fornes

Paper:https://ieeexplore.ieee.org/abstract/document/8545310

Python Reference:https://github.com/priba/siamese_ged

Edge Attention-based Multi-Relational Graph Convolutional Networks (2018)

Chao Shang, Qinqing Liu, Ko-Shin Chen, Jiangwen Sun, Jin Lu, Jinfeng Yi and Jinbo Bi

Paper:https://arxiv.org/abs/1802.04944v1

Python Reference:https://github.com/Luckick/EAGCN

Commonsense Knowledge Aware Conversation Generation with Graph Attention (IJCAI-ECAI 2018)

Hao Zhou, Tom Yang, Minlie Huang, Haizhou Zhao, Jingfang Xu and Xiaoyan Zhu

Paper:http://coai.cs.tsinghua.edu.cn/hml/media/files/2018_commonsense_ZhouHao_3_TYVQ7Iq.pdf

Python Reference:https://github.com/tuxchow/ccm

Residual Gated Graph ConvNets (ICLR 2018)

Xavier Bresson and Thomas Laurent

Paper:https://arxiv.org/pdf/1711.07553v2.pdf

Python Pytorch Reference:https://github.com/xbresson/spatial_graph_convnets

An End-to-End Deep Learning Architecture for Graph Classification (AAAI 2018)

Muhan Zhang, Zhicheng Cui, Marion Neumann and Yixin Chen

Paper:https://www.cse.wustl.edu/~muhan/papers/AAAI_2018_DGCNN.pdf

Python Tensorflow Reference:https://github.com/muhanzhang/DGCNN

Python Pytorch Reference:https://github.com/muhanzhang/pytorch_DGCNN

MATLAB Reference:https://github.com/muhanzhang/DGCNN

Python Alternative:https://github.com/leftthomas/DGCNN

Python Alternative:https://github.com/hitlic/DGCNN-tensorflow

SGR: Self-Supervised Spectral Graph Representation Learning (KDD DLDay 2018)

Anton Tsitsulin, Davide Mottin, Panagiotis Karra, Alex Bronstein and Emmanueal Müller

Paper:https://arxiv.org/abs/1807.02839

Python Reference:http://mott.in/publications/others/sgr/

Deep Learning with Topological Signatures (NIPS 2017)

Christoph Hofer, Roland Kwitt, Marc Niethammer, and Andreas Uhl

paper:https://arxiv.org/abs/1707.04041

Python Reference:https://github.com/c-hofer/nips2017

Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs (CVPR 2017)

Martin Simonovsky and Nikos Komodakis

paper:https://arxiv.org/pdf/1704.02901v3.pdf

Python Reference:https://github.com/mys007/ecc

Deriving Neural Architectures from Sequence and Graph Kernels (ICML 2017)

Tao Lei, Wengong Jin, Regina Barzilay, and Tommi Jaakkola

Paper:https://arxiv.org/abs/1705.09037

Python Reference:https://github.com/taolei87/icml17_knn

Protein Interface Prediction using Graph Convolutional Networks (NIPS 2017)

Alex Fout, Jonathon Byrd, Basir Shariat and Asa Ben-Hur

Paper:https://papers.nips.cc/paper/7231-protein-interface-prediction-using-graph-convolutional-networks

Python Reference:https://github.com/fouticus/pipgcn

Graph Classification with 2D Convolutional Neural Networks (2017)

Antoine J.-P. Tixier, Giannis Nikolentzos, Polykarpos Meladianos and Michalis Vazirgiannis

Paper:https://arxiv.org/abs/1708.02218

Python Reference:https://github.com/Tixierae/graph_2D_CNN

CayleyNets: Graph Convolutional Neural Networks with Complex Rational Spectral Filters (IEEE TSP 2017)

Ron Levie, Federico Monti, Xavier Bresson, Michael M. Bronstein

Paper:https://arxiv.org/pdf/1705.07664v2.pdf

Python Reference:https://github.com/fmonti/CayleyNet

Semi-supervised Learning of Hierarchical Representations of Molecules Using Neural Message Passing (2017)

Hai Nguyen, Shin-ichi Maeda, Kenta Oono

Paper:https://arxiv.org/pdf/1711.10168.pdf

Python Reference:https://github.com/pfnet-research/hierarchical-molecular-learning

Kernel Graph Convolutional Neural Networks (2017)

Giannis Nikolentzos, Polykarpos Meladianos, Antoine Jean-Pierre Tixier, Konstantinos Skianis, Michalis Vazirgiannis

Paper:https://arxiv.org/pdf/1710.10689.pdf

Python Reference:https://github.com/giannisnik/cnn-graph-classification

Deep Topology Classification: A New Approach For Massive Graph Classification (IEEE Big Data 2016)

Stephen Bonner, John Brennan, Georgios Theodoropoulos, Ibad Kureshi, Andrew Stephen McGough

Paper:https://ieeexplore.ieee.org/document/7840988/

Python Reference:https://github.com/sbonner0/DeepTopologyClassification

Learning Convolutional Neural Networks for Graphs (ICML 2016)

Mathias Niepert, Mohamed Ahmed, Konstantin Kutzkov

Paper:https://arxiv.org/abs/1605.05273

Python Reference:https://github.com/tvayer/PSCN

Gated Graph Sequence Neural Networks (ICLR 2016)

Yujia Li, Daniel Tarlow, Marc Brockschmidt, Richard Zemel

Paper:https://arxiv.org/abs/1511.05493

Python TensorFlow:https://github.com/bdqnghi/ggnn.tensorflow

Python PyTorch:https://github.com/JamesChuanggg/ggnn.pytorch

Python Reference:https://github.com/YunjaeChoi/ggnnmols

Convolutional Networks on Graphs for Learning Molecular Fingerprints (NIPS 2015)

David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams

Paper:https://papers.nips.cc/paper/5954-convolutional-networks-on-graphs-for-learning-molecular-fingerprints.pdf

Python Reference:https://github.com/fllinares/neural_fingerprints_tf

Python Reference:https://github.com/jacklin18/neural-fingerprint-in-GNN

Python Reference:https://github.com/HIPS/neural-fingerprint

Python Reference:https://github.com/debbiemarkslab/neural-fingerprint-theano

Graph Kernels

Message Passing Graph Kernels (2018)

Giannis Nikolentzos, Michalis Vazirgiannis

Paper:https://arxiv.org/pdf/1808.02510.pdf

Python Reference:https://github.com/giannisnik/message_passing_graph_kernels

Matching Node Embeddings for Graph Similarity (AAAI 2017)

Giannis Nikolentzos, Polykarpos Meladianos, and Michalis Vazirgiannis

Paper:https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14494

Global Weisfeiler-Lehman Graph Kernels (2017)

Christopher Morris, Kristian Kersting and Petra Mutzel

Paper:https://arxiv.org/pdf/1703.02379.pdf

C++ Reference:https://github.com/chrsmrrs/glocalwl

On Valid Optimal Assignment Kernels and Applications to Graph Classification (2016)

Nils Kriege, Pierre-Louis Giscard, Richard Wilson

Paper:https://arxiv.org/pdf/1606.01141.pdf

Java Reference:https://github.com/nlskrg/optimal_assignment_kernels

Efficient Comparison of Massive Graphs Through The Use Of ‘Graph Fingerprints’ (MLGWorkshop 2016)

Stephen Bonner, John Brennan, and A. Stephen McGough

Paper:http://dro.dur.ac.uk/19773/1/19773.pdf?DDD10+lzdh59+d700tmt

python Reference:https://github.com/sbonner0/GraphFingerprintComparison

The Multiscale Laplacian Graph Kernel (NIPS 2016)

Risi Kondor and Horace Pan

Paper:https://arxiv.org/abs/1603.06186

C++ Reference:https://github.com/horacepan/MLGkernel

Faster Kernels for Graphs with Continuous Attributes (ICDM 2016)

Christopher Morris, Nils M. Kriege, Kristian Kersting and Petra Mutzel

Paper:https://arxiv.org/abs/1610.00064

Python Reference:https://github.com/chrsmrrs/hashgraphkernel

Propagation Kernels: Efficient Graph Kernels From Propagated Information (Machine Learning 2016)

Neumann, Marion and Garnett, Roman and Bauckhage, Christian and Kersting, Kristian

Paper:https://link.springer.com/article/10.1007/s10994-015-5517-9

Matlab Reference:https://github.com/marionmari/propagation_kernels

Halting Random Walk Kernels (NIPS 2015)

Mahito Sugiyama and Karsten M. Borgward

Paper:https://pdfs.semanticscholar.org/79ba/8bcfbf9496834fdc22a1f7c96d26d776cd6c.pdf

C++ Reference:https://github.com/BorgwardtLab/graph-kernels

Scalable Kernels for Graphs with Continuous Attributes (NIPS 2013)

Aasa Feragen, Niklas Kasenburg, Jens Petersen, Marleen de Bruijne and Karsten Borgwardt

Paper:https://papers.nips.cc/paper/5155-scalable-kernels-for-graphs-with-continuous-attributes.pdf

Subgraph Matching Kernels for Attributed Graphs (ICML 2012)

Nils Kriege and Petra Mutzel

Paper:https://arxiv.org/abs/1206.6483

Python Reference:https://github.com/mockingbird2/GraphKernelBenchmark

Nested Subtree Hash Kernels for Large-Scale Graph Classification over Streams (ICDM 2012)

Bin Li, Xingquan Zhu, Lianhua Chi, Chengqi Zhang

Paper:https://ieeexplore.ieee.org/document/6413884/

Python Reference:https://github.com/benedekrozemberczki/NestedSubtreeHash

Weisfeiler-Lehman Graph Kernels (JMLR 2011)

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M. Borgwardt

Paper:http://www.jmlr.org/papers/volume12/shervashidze11a/shervashidze11a.pdf

Python Reference:https://github.com/jajupmochi/py-graph

Python Reference:https://github.com/deeplego/wl-graph-kernels

C++ Reference:https://github.com/BorgwardtLab/graph-kernels

Fast Neighborhood Subgraph Pairwise Distance Kernel (ICML 2010)

Fabrizio Costa and Kurt De Grave

Paper:https://icml.cc/Conferences/2010/papers/347.pdf

C++ Reference:https://github.com/benedekrozemberczki/awesome-graph-classification/blob/master/www.bioinf.uni-freiburg.de/~costa/EDeNcpp.tgz

Python Reference:https://github.com/fabriziocosta/EDeN

A Linear-time Graph Kernel (ICDM 2009)

Shohei Hido and Hisashi Kashima

Paper:https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5360243

Python Reference:https://github.com/hgascon/adagio

Weisfeiler-Lehman Subtree Kernels (NIPS 2009)

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M. Borgwardt

Paper:http://papers.nips.cc/paper/3813-fast-subtree-kernels-on-graphs.pdf

Python Reference:https://github.com/jajupmochi/py-graph

Python Reference:https://github.com/deeplego/wl-graph-kernels

C++ Reference:https://github.com/BorgwardtLab/graph-kernels

Fast Computation of Graph Kernels (NIPS 2006)

S. V. N. Vishwanathan, Karsten M. Borgwardt, and Nicol N. Schraudolph

Paper:http://www.dbs.ifi.lmu.de/Publikationen/Papers/VisBorSch06.pdf

Python Reference:https://github.com/jajupmochi/py-graph

C++ Reference:https://github.com/BorgwardtLab/graph-kernels

Shortest-Path Kernels on Graphs (ICDM 2005)

Karsten M. Borgwardt and Hans-Peter Kriegel

Paper:https://www.ethz.ch/content/dam/ethz/special-interest/bsse/borgwardt-lab/documents/papers/BorKri05.pdf

C++ Reference:https://github.com/KitwareMedical/ITKTubeTK

Cyclic Pattern Kernels For Predictive Graph Mining (KDD 2004)

Tamás Horváth, Thomas G?rtner, and Stefan Wrobel

Paper:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.332.6158&rep=rep1&type=pdf

Python Reference:https://github.com/jajupmochi/py-graph

Extensions of Marginalized Graph Kernels (ICML 2004)

Pierre Mahe, Nobuhisa Ueda, Tatsuya Akutsu, Jean-Luc Perret, and Jean-Philippe Vert

Paper:http://members.cbio.mines-paristech.fr/~jvert/publi/04icml/icmlMod.pdf

Python Reference:https://github.com/jajupmochi/py-graph

Marginalized Kernels Between Labeled Graphs (ICML 2003)

Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi

Paper:https://pdfs.semanticscholar.org/2dfd/92c808487049ab4c9b45db77e9055b9da5a2.pdf

Python Reference:https://github.com/jajupmochi/py-graph

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

原文標(biāo)題:想要了解圖或圖神經(jīng)網(wǎng)絡(luò)?沒有比看論文更好的方式了

文章出處:【微信號:tyutcsplab,微信公眾號:智能感知與物聯(lián)網(wǎng)技術(shù)研究所】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    VirtualLab Fusion:系統(tǒng)建模分析器

    摘要 在物理光學(xué)中,傅里葉變換是光在復(fù)雜光學(xué)系統(tǒng)中傳播所需的最基本的工具之一。這些操作允許我們在表示光場的不同域(如空間域和頻域)之間切換,并促進各種光學(xué)元件特定求解器的高效應(yīng)用。這些求解器中
    發(fā)表于 01-04 08:45

    No Magic -?復(fù)雜產(chǎn)品系統(tǒng)架構(gòu)開發(fā)套件

    No Magic系列產(chǎn)品被達索收購后融入3D Experience產(chǎn)品協(xié)同研發(fā)管理平臺中,是一款強大建模工具,專為軟件分析和設(shè)計、系統(tǒng)建模、項目管理等領(lǐng)域設(shè)計。
    的頭像 發(fā)表于 01-03 17:20 ?230次閱讀
    No Magic -?<b class='flag-5'>復(fù)雜</b>產(chǎn)品系統(tǒng)架構(gòu)開發(fā)套件

    VirtualLab:系統(tǒng)建模分析器

    摘要 在物理光學(xué)中,傅里葉變換是光在復(fù)雜光學(xué)系統(tǒng)中傳播所需的最基本的工具之一。這些操作允許我們在表示光場的不同域(如空間域和頻域)之間切換,并促進各種光學(xué)元件特定求解器的高效應(yīng)用。這些求解器中
    發(fā)表于 12-19 12:36

    手持 / 便攜多普勒流速流量計:無懼復(fù)雜環(huán)境的強大測流工具

    手持 / 便攜多普勒流速流量儀是一種功能強大的測流工具,具有諸多特點和優(yōu)勢,使其能夠在各種復(fù)雜環(huán)境中準(zhǔn)確測量流體的流速和流量。
    的頭像 發(fā)表于 11-22 09:35 ?236次閱讀
    手持 / 便攜多普勒流速流量計:無懼<b class='flag-5'>復(fù)雜</b>環(huán)境的<b class='flag-5'>強大</b>測流<b class='flag-5'>工具</b>

    FPGA基礎(chǔ)知識及設(shè)計和執(zhí)行FPGA應(yīng)用所需的工具

    本文將首先介紹FPGA的基礎(chǔ)知識,包括FPGA的工作原理以及為什么要使用FPGA等,然后討論設(shè)計和執(zhí)行FPGA應(yīng)用所需的工具
    的頭像 發(fā)表于 11-11 11:29 ?990次閱讀
    FPGA基礎(chǔ)<b class='flag-5'>知識</b>及設(shè)計和執(zhí)行FPGA應(yīng)用所需的<b class='flag-5'>工具</b>

    P2link——強大的內(nèi)網(wǎng)穿透和遠程訪問工具

    P2Link作為一款強大的內(nèi)網(wǎng)穿透和遠程訪問工具,可以幫助用戶輕松實現(xiàn)網(wǎng)絡(luò)連接和數(shù)據(jù)傳輸。特別適用于在復(fù)雜網(wǎng)絡(luò)環(huán)境中需要遠程訪問內(nèi)網(wǎng)資源的場景,如遠程辦公、設(shè)備管理和云服務(wù)等。
    的頭像 發(fā)表于 11-01 14:21 ?398次閱讀

    知識分享 | 輕松實現(xiàn)優(yōu)質(zhì)建模

    知識分享在知識分享欄目中,我們會定期與讀者分享來自MES模賽思的基于模型的軟件開發(fā)相關(guān)Know-How干貨,關(guān)注公眾號,隨時掌握基于模型的軟件設(shè)計的技術(shù)知識。輕松實現(xiàn)優(yōu)質(zhì)建模前言在基于
    的頭像 發(fā)表于 09-12 08:08 ?418次閱讀
    <b class='flag-5'>知識</b>分享 | 輕松實現(xiàn)優(yōu)質(zhì)<b class='flag-5'>建模</b>

    Python建模算法與應(yīng)用

    Python作為一種功能強大、免費、開源面向?qū)ο蟮木幊陶Z言,在科學(xué)計算、數(shù)學(xué)建模、數(shù)據(jù)分析等領(lǐng)域展現(xiàn)出了卓越的性能。其簡潔的語法、對動態(tài)輸入的支持以及解釋性語言的本質(zhì),使得Python在多個平臺
    的頭像 發(fā)表于 07-24 10:41 ?578次閱讀

    神經(jīng)網(wǎng)絡(luò)在數(shù)學(xué)建模中的應(yīng)用

    數(shù)學(xué)建模是一種利用數(shù)學(xué)方法和工具來描述和分析現(xiàn)實世界問題的過程。神經(jīng)網(wǎng)絡(luò)是一種模擬人腦神經(jīng)元結(jié)構(gòu)和功能的計算模型,可以用于解決各種復(fù)雜問題。在數(shù)學(xué)
    的頭像 發(fā)表于 07-02 11:29 ?980次閱讀

    常見的數(shù)據(jù)采集工具介紹

    數(shù)據(jù)采集是數(shù)據(jù)分析和處理的基礎(chǔ),它涉及到從各種數(shù)據(jù)源中提取、收集和整理數(shù)據(jù)的過程。數(shù)據(jù)采集工具的選擇對于數(shù)據(jù)的質(zhì)量和準(zhǔn)確性至關(guān)重要。以下是對一些常見的數(shù)據(jù)采集工具介紹: 網(wǎng)絡(luò)爬蟲(W
    的頭像 發(fā)表于 07-01 14:51 ?878次閱讀

    Thermal-BST自動化工具在Flotherm建模中的應(yīng)用與優(yōu)勢

    引言隨著科技的不斷發(fā)展,電子領(lǐng)域的需求也越來越廣泛和多樣化。然而,PCB板及其上的器件建模問題一直是電子工程師在設(shè)計過程中面臨的重要挑戰(zhàn)之一。軟件中原有的PCB建模工具,轉(zhuǎn)換出來的模型復(fù)雜
    的頭像 發(fā)表于 05-28 08:35 ?318次閱讀
    Thermal-BST自動化<b class='flag-5'>工具</b>在Flotherm<b class='flag-5'>建模</b>中的應(yīng)用與優(yōu)勢

    原理工具Jupiter強大的連線功能

    利于電路設(shè)計和檢查。很多專業(yè)的電路設(shè)計軟件(原理Jupiter)都提供了強大的連線工具,以滿足各種復(fù)雜電路的連線需求。連線功能主要具有哪些
    的頭像 發(fā)表于 05-24 18:35 ?1146次閱讀
    原理<b class='flag-5'>圖</b><b class='flag-5'>工具</b>Jupiter<b class='flag-5'>強大</b>的連線功能

    虹科分享 | PCAN工具強大的CAN通訊解決方案,了解多少?

    在當(dāng)今的汽車和工業(yè)自動化領(lǐng)域,可靠的通訊系統(tǒng)至關(guān)重要,虹科PCAN工具為這些應(yīng)用提供了強大的支持。本文將介紹虹科PCAN工具的功能、應(yīng)用和優(yōu)勢,幫助您根據(jù)實際需求選擇合適的
    的頭像 發(fā)表于 02-02 09:54 ?861次閱讀
    虹科分享 | PCAN<b class='flag-5'>工具</b>:<b class='flag-5'>強大</b>的CAN通訊解決方案,<b class='flag-5'>你</b>了解多少?

    介紹三種建模方式

    據(jù)量大,而是指樣本的完備性。還有就是大數(shù)據(jù)或者AI被專業(yè)學(xué)者或者行業(yè)工程師所詬病的就是,純粹的數(shù)據(jù)驅(qū)動搞不出所以然出來,需要領(lǐng)域知識(即Domain Knowledge)的協(xié)助。此外,還有第三種建模方式就是混合驅(qū)動,即基礎(chǔ)物理模
    的頭像 發(fā)表于 01-23 10:48 ?1985次閱讀

    虹科分享 | PCAN工具強大的CAN通訊解決方案,了解多少?

    導(dǎo)讀: 在當(dāng)今的汽車和工業(yè)自動化領(lǐng)域,可靠的通訊系統(tǒng)至關(guān)重要,PCAN工具為這些應(yīng)用提供了強大的支持。本文將介紹PCAN工具的功能、應(yīng)用和優(yōu)勢,以幫助您根據(jù)實際需求選擇合適的
    的頭像 發(fā)表于 01-15 10:23 ?1407次閱讀
    虹科分享 | PCAN<b class='flag-5'>工具</b>:<b class='flag-5'>強大</b>的CAN通訊解決方案,<b class='flag-5'>你</b>了解多少?