0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

5G毫米波終端技術(shù)及測試方案分析

Kitc_emc ? 來源:yxw ? 2019-07-11 09:13 ? 次閱讀

1、引言

隨著移動通信的迅猛發(fā)展,低頻段頻譜資源的開發(fā)已經(jīng)非常成熟,剩余的低頻段頻譜資源已經(jīng)不能滿足5G時代10Gbps的峰值速率需求,因此未來5G系統(tǒng)需要在毫米波頻段上尋找可用的頻譜資源。作為5G關(guān)鍵技術(shù)之一的毫米波技術(shù)已成為目前標(biāo)準(zhǔn)組織及產(chǎn)業(yè)鏈各方研究和討論的重點,毫米波將會給未來5G終端的實現(xiàn)帶來諸多的技術(shù)挑戰(zhàn),同時毫米波終端的測試方案也將不同于目前的終端。本文將對毫米波頻譜劃分近況,毫米波終端技術(shù)實現(xiàn)挑戰(zhàn)及測試方案進(jìn)行介紹及分析。

2、毫米波頻譜劃分

2015年,ITU-R WP5D發(fā)布了IMT.ABOVE 6GHz的研究報告,詳細(xì)研究了不同頻段無線電波的衰減特性。在同年的世界無線電通信大會(WRC-15)上提出了多個5G候選的毫米波頻段,最終5G毫米波頻譜的確定將在WRC-19上的完成。經(jīng)過多年的研究和討論,各國各地區(qū)對毫米波頻譜資源的劃分都有所進(jìn)展,以下將著重介紹中國、美國及歐洲在毫米波頻段劃分上的近況。

中國:2017年6月,工信部面向社會廣泛征集24.75-27.5 GHz、37-42.5 GHz或其他毫米波頻段用于5G系統(tǒng)的意見,并將毫米波頻段納入5G試驗的范圍,意在推動5G毫米波的研究及毫米波產(chǎn)品的研發(fā)試驗。

美國:早在2014年,F(xiàn)CC(美國聯(lián)邦通訊委員會)就開啟了5G毫米波頻段的分配工作,2016年7月,確定將27.5-28.35 GHz、37-38.6 GHz、38.6-40 GHz作為授權(quán)頻譜分配給5G,另外還為5G分配了64-71 GHz作為未授權(quán)頻譜。

歐洲:2016年11月,RSPG(歐盟委員會無線頻譜政策組)發(fā)布了歐盟5G頻譜戰(zhàn)略,確定將24.25-27.5 GHz作為歐洲5G 的先行頻段,31.8-33.4 GHz 、40.5-43.5 GHz作為5G潛在頻段。

3、毫米波終端技術(shù)實現(xiàn)

毫米波頻段頻率高、帶寬大等特點將對未來5G終端的實現(xiàn)帶來諸多挑戰(zhàn),毫米波對終端的影響主要在于天線射頻前端器件。

3.1 終端側(cè)大規(guī)模天線陣列

由于天線尺寸的限制,在低頻段大規(guī)模天線陣列只能在基站側(cè)使用。但隨著頻率的上升,在毫米波段,單個天線的尺寸可縮短至毫米級別,在終端側(cè)布置更多的天線成為可能。如下圖1所示,目前大多數(shù)LTE終端只部署了兩根天線,但未來5G毫米波終端的天線數(shù)可達(dá)到16根甚至更多,所有的天線將集成為一個毫米波天線模塊。由于毫米波的自由空間路損更大,氣衰、雨衰等特性都不如低頻段,毫米波的覆蓋將受到嚴(yán)重的影響。終端側(cè)使用大規(guī)模天線陣列可獲得更多的分集增益,提高毫米波終端的接收和發(fā)射性能,能夠在一定程度彌補毫米波覆蓋不足的缺點,終端側(cè)大規(guī)模天線陣列將會是毫米波得以商用的關(guān)鍵因素之一。

圖1:LTE終端與毫米波終端天線設(shè)想

終端部署更多的天線意味著終端設(shè)計難度的上升,與基站側(cè)部署大規(guī)模天線陣列不同,終端側(cè)的大規(guī)模天線陣列受終端尺寸、終端功耗的制約,其實現(xiàn)難度將大大增加,目前只能在固定終端上實現(xiàn)大規(guī)模天線陣列的布置。移動終端的大規(guī)模天線陣列設(shè)計面臨諸多挑戰(zhàn),包括天線陣列校準(zhǔn),天線單元間的相互耦合以及功耗控制等。

3.2 毫米波射頻前端器件

射頻前端器件包括了功率放大器、開關(guān)、濾波器、雙工器、低噪聲放大器等,其中功率放大器是最為核心的器件,其性能直接決定了終端的通信距離、信號質(zhì)量及待機時間。目前制造支持低頻段的射頻前端器件的材料多為砷化鎵、CMOS和硅鍺。但由于毫米波段與低頻段差異較大,低頻射頻前端器件的制造材料在物理特性上將很難滿足毫米波射頻前端器件的要求。

以功率放大器為例,目前主流的功率放大器制造材料為砷化鎵,但在毫米波頻段,氮化鎵及InP的制造工藝在性能指標(biāo)上均要強于砷化鎵。下表所示為從低頻到毫米波段主要的射頻前端器件制造工藝上的發(fā)展方向。

另外,毫米波頻段大帶寬的特點對射頻前端器件的提出了更高的要求,未來毫米波終端的射頻前端器件將可能需支持1GHz以上的連續(xù)帶寬。

雖然氮化鎵被認(rèn)為是未來毫米波終端射頻的主流制造工藝,但由于成本、產(chǎn)能等因素,基于氮化鎵工藝的高性能射頻前端器件多用于軍工和基站等特殊場景。毫米波射頻前端技術(shù)的發(fā)展將會成為毫米波終端實現(xiàn)的關(guān)鍵,預(yù)計到2020年之后,毫米波移動終端射頻器件的技術(shù)和成本才可能達(dá)到大規(guī)模商用的要求。

4、毫米波終端測試方案分析

目前LTE終端的實驗室測試主要使用傳導(dǎo)連接,使用射頻饋線將被測設(shè)備和測試儀表連接,這種測試方案對場地要求不高,受外界干擾較小。但隨著毫米波終端側(cè)的大規(guī)模天線陣列的使用,終端的無線收發(fā)器都將集成到天線形成天線模塊,未來毫米波終端可能不會存在射頻測試端口,而且高頻率下進(jìn)行耦合帶來的高插損等因素使傳統(tǒng)的傳導(dǎo)連接測試的方案更不可行,因此OTA(Over The Air)測試將成為毫米波終端測試的主流方案。

OTA測試可直接測試設(shè)備的整體輻射性能,能夠?qū)υO(shè)備的整機性能進(jìn)行測試,能夠更真實地反映設(shè)備的實際性能,但測試需要在微波暗室進(jìn)行,對于測試的場地要求較為嚴(yán)格,測試費用昂貴。

目前LTE OTA和MIMO OTA的研究已經(jīng)較為深入,但毫米波的OTA研究還處于起步階段,有關(guān)毫米波OTA測試的標(biāo)準(zhǔn)立項已經(jīng)在CCSA開始討論。下圖3是LTE OTA測試系統(tǒng)的示意圖,未來毫米波終端OTA測試的方案預(yù)計會參考LTE OTA測試的系統(tǒng),但由于毫米波工作頻率和主動天線陣技術(shù)等應(yīng)用,未來毫米波OTA測試在技術(shù)上將進(jìn)行一些改進(jìn)。

OTA測試作為毫米波終端測試的必選方案,將面臨以下挑戰(zhàn):

1)毫米波新型吸波材料。由于傳統(tǒng)的軟質(zhì)海綿吸波材料在物理性能可電性能上存在缺陷,無法完全滿足5G毫米波測量的要求。因此研究并開發(fā)更適合于毫米波暗室的吸波材料將會是毫米波OTA測試的關(guān)鍵。

2)OTA測試遠(yuǎn)場測量條件。OTA測試根據(jù)測試場類型可以分為近場和遠(yuǎn)場測試。通常對于天線輻射性能的測試,測試接收天線一般置于遠(yuǎn)場,此時電磁輻射屬于平面波,場的相對角分布與離開天線的距離無關(guān),大小與離開天線的距離成反比,天線方向圖主瓣、副瓣和零值點已全部形成。而在近場接收天線可能會和發(fā)射天線會由于電容和電感的耦合作用互相干擾,造成錯誤的結(jié)果。遠(yuǎn)場的判定條件是被測件與測量天線間的距離要大于2D2/λ,其中D為測量天線的直徑,λ為波長,由于毫米波段波長很短,因此天線遠(yuǎn)場的距離較大,以30GHz頻段,測量天線直徑為0.2m為例,遠(yuǎn)場的距離將達(dá)到80m,暗室難以達(dá)到如此大的尺寸,并且測試距離的增加還會增加被測終端到測量天線間的路徑損耗,會進(jìn)一步降低測試系統(tǒng)的靈敏性和準(zhǔn)確性。為解決毫米波遠(yuǎn)場條件的問題,我們可以通過緊縮場法縮短測量距離,或者采用中區(qū)場測量的方式來代替遠(yuǎn)場測量。

緊縮場法:其通常采用一個拋物面金屬反射板,將測量天線發(fā)送的球面波經(jīng)反射面反射形成平面波,在一定遠(yuǎn)距離處形成一個良好的靜區(qū)。將天線安置在靜區(qū)內(nèi),測量天線的遠(yuǎn)場特性,其類似于遠(yuǎn)場測量,只是縮短測量距離,便于在理想遠(yuǎn)場環(huán)境(暗室)下進(jìn)行測量。緊縮場天線測量系統(tǒng)能在較小的微波暗室里模擬遠(yuǎn)場的平面波電磁環(huán)境,利用常規(guī)的遠(yuǎn)場測試設(shè)備和方法對天線的輻射性能進(jìn)行測試。

中區(qū)場法:中區(qū)場(菲涅爾區(qū))的距離計算方式為0.63

,同樣以30GHz頻段,測量天線直徑為0.2m為例,中區(qū)場的距離只有1.26m,普通的暗室尺寸也能滿足需求,因此可以在系統(tǒng)層面上,研究新的中區(qū)場測量理論與場源重構(gòu)方法,用中區(qū)場來代替遠(yuǎn)場進(jìn)行OTA測試。

圖3:LTE和毫米波測試系統(tǒng)示意圖

5、國內(nèi)毫米波終端商用計劃分析

國內(nèi)有關(guān)5G相關(guān)的研究和測試正如火如荼地進(jìn)行,但是相比于歐美,我國在6GHz以下的低頻段尚有較多可用的頻譜資源,包括3.3-3.6 GHz,4.8-5 GHz以及部分重耕的頻譜,因此我國對于毫米波的需求并不是很迫切。從產(chǎn)業(yè)鏈各方的路標(biāo)來看,國內(nèi)5G的首發(fā)頻段應(yīng)該為6GHz以下的低頻段。

目前毫米波相關(guān)的研究尚處于起步階段,5G毫米波頻譜劃分還需進(jìn)一步確定。預(yù)計到2020年,才會有正式的5G毫米波終端出現(xiàn)。在5G商用的初期,主要會以6GHz以下低頻基站為主,國內(nèi)5G毫米波終端的大規(guī)模商用預(yù)計還需要較長的一段時間才能實現(xiàn)。

6、結(jié)束語

本文介紹了全球毫米波的劃分情況,總結(jié)了毫米波終端在技術(shù)實現(xiàn)上將會遇到的挑戰(zhàn)及困難,毫米波終端將布置更多的天線形成天線模塊,同時在射頻前端制造工藝上,高頻特性更好的材料將被開發(fā)和應(yīng)用。最后對毫米波終端OTA測試的情況及毫米波終端商用情況進(jìn)行了分析。毫米波技術(shù)作為5G關(guān)鍵技術(shù)之一,必將在即將到來的5G時代得以重用,毫米波終端相關(guān)的研究和測試工作也將不斷提速,為毫米波的商用奠定基礎(chǔ)。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 移動通信
    +關(guān)注

    關(guān)注

    10

    文章

    2614

    瀏覽量

    69930
  • 毫米波
    +關(guān)注

    關(guān)注

    21

    文章

    1925

    瀏覽量

    64877
  • 5G
    5G
    +關(guān)注

    關(guān)注

    1355

    文章

    48476

    瀏覽量

    564740

原文標(biāo)題:5G毫米波終端技術(shù)及測試方案分析

文章出處:【微信號:emc-2015,微信公眾號:電磁兼容之家】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    毫米波雷達(dá)技術(shù)優(yōu)勢分析 毫米波雷達(dá)在安防監(jiān)控中的應(yīng)用

    毫米波雷達(dá)技術(shù)優(yōu)勢分析 毫米波雷達(dá)作為一種先進(jìn)的傳感器技術(shù),具備多項顯著的技術(shù)優(yōu)勢: 高精度定位
    的頭像 發(fā)表于 12-03 17:30 ?575次閱讀

    5G毫米波市場蓬勃發(fā)展的因素

    毫米波5G市場迎來決定性時刻的當(dāng)下,市場需求開始呈指數(shù)級攀升并達(dá)到一個臨界點。需求量的極速膨脹將催生一條持續(xù)上揚的增長曲線。為應(yīng)對這一需求的激增和5G應(yīng)用場景的爆發(fā),將需要大量關(guān)鍵的毫米波
    的頭像 發(fā)表于 11-17 10:51 ?337次閱讀

    蘋果自研5G芯片獲重要進(jìn)展,毫米波技術(shù)暫缺席

    知名科技媒體DigiTimes最新爆料指出,蘋果公司在其自主研發(fā)的5G調(diào)制解調(diào)器(基帶芯片)項目上取得了顯著進(jìn)展,然而,首個版本卻面臨一個關(guān)鍵性限制:不支持毫米波技術(shù)。這一消息引發(fā)了業(yè)界的廣泛關(guān)注,尤其是在考慮到
    的頭像 發(fā)表于 09-20 16:05 ?942次閱讀

    毫米波生產(chǎn)測試概述

    電子發(fā)燒友網(wǎng)站提供《毫米波生產(chǎn)測試概述.pdf》資料免費下載
    發(fā)表于 08-27 09:44 ?0次下載
    <b class='flag-5'>毫米波</b>生產(chǎn)<b class='flag-5'>測試</b>概述

    5G毫米波測試助力突破高頻段設(shè)備局限,實現(xiàn)高效外場測試

    作者介紹 ? 一、方案背景 隨著業(yè)務(wù)對帶寬需求的不斷增加,通信頻譜不斷向更高頻譜延伸,5G毫米波具有豐富的頻率資源,是移動通信技術(shù)演進(jìn)的必然方向。下圖是ITU的WRC-19會議發(fā)布的目
    的頭像 發(fā)表于 08-21 13:34 ?331次閱讀
    <b class='flag-5'>5G</b><b class='flag-5'>毫米波</b><b class='flag-5'>測試</b>助力突破高頻段設(shè)備局限,實現(xiàn)高效外場<b class='flag-5'>測試</b>

    5G網(wǎng)絡(luò)毫米波支持的最大載波帶寬是多少?

    5G網(wǎng)絡(luò)中當(dāng)前毫米波支持的最大載波帶寬是10GHz。首先,我們需要了解什么是5G網(wǎng)絡(luò)。5G是第五代移動通信技術(shù),它被設(shè)計用于提供比4
    的頭像 發(fā)表于 08-01 08:10 ?969次閱讀
    <b class='flag-5'>5G</b>網(wǎng)絡(luò)<b class='flag-5'>毫米波</b>支持的最大載波帶寬是多少?

    愛立信與高通、Dronus共同完成使用5G毫米波無人機的制造與倉儲用例測試

    近期,愛立信、高通及工業(yè)無人機解決方案提供商Dronus共同完成了一項使用5G毫米波無人機的制造與倉儲用例測試5G
    的頭像 發(fā)表于 07-31 18:03 ?1.3w次閱讀

    Qorvo收購Anokiwave,以硅晶創(chuàng)新推動毫米波5G商業(yè)化

    才能真正發(fā)揮毫米波5G的巨大潛力。? ?? 全球領(lǐng)先的連接和電源解決方案供應(yīng)商Qorvo于2024年初宣布已就收購Anokiwave達(dá)成最終協(xié)議,本文將介紹高性能硅基集成電路的領(lǐng)先供應(yīng)商Anokiwave如何利用硅晶創(chuàng)新,依托第
    發(fā)表于 07-09 11:17 ?386次閱讀
    Qorvo收購Anokiwave,以硅晶創(chuàng)新推動<b class='flag-5'>毫米波</b><b class='flag-5'>5G</b>商業(yè)化

    毫米波應(yīng)用5G手機低介電絕緣透散熱膜

    毫米波(millimeterwave):波長為1~10毫米的電磁毫米波,它位于微波與遠(yuǎn)紅外相交疊的波長范圍,因而兼有兩種波譜的特點。
    的頭像 發(fā)表于 07-09 08:10 ?390次閱讀
    <b class='flag-5'>毫米波</b>應(yīng)用<b class='flag-5'>5G</b>手機低介電絕緣透<b class='flag-5'>波</b>散熱膜

    基于毫米波雷達(dá)的手勢識別算法

    [6]和紅外[7]光感測在手部成像和手勢識別方面要準(zhǔn)確得多,但毫米波在隱私保護(hù)和能耗方面具有獨特的優(yōu)勢。因此,毫米波是最適合非接觸式手勢識別的選擇。特別是毫米波主要用于5G
    發(fā)表于 06-05 19:09

    5G毫米波通信有哪些特點和優(yōu)勢?

    隨著科技的不斷進(jìn)步,5G技術(shù)已經(jīng)站在了無線通信領(lǐng)域的前沿。尤其是5G毫米波通信,作為一個關(guān)鍵技術(shù),它受到了全世界的關(guān)注和研究。
    的頭像 發(fā)表于 04-03 16:19 ?1240次閱讀

    5G技術(shù)面面觀:毫米波與Sub-6GHz特性及其量產(chǎn)挑戰(zhàn)

    5G 毫米波與Sub-6GHZ特性與量產(chǎn)挑戰(zhàn)
    發(fā)表于 03-01 10:08 ?719次閱讀
    <b class='flag-5'>5G</b><b class='flag-5'>技術(shù)</b>面面觀:<b class='flag-5'>毫米波</b>與Sub-6GHz特性及其量產(chǎn)挑戰(zhàn)

    5G毫米波與Sub-6GHz頻段的特性與技術(shù)挑戰(zhàn)

    5G毫米波與Sub-6GHz頻段的特性與技術(shù)挑戰(zhàn)
    發(fā)表于 01-24 14:22 ?1540次閱讀
    <b class='flag-5'>5G</b><b class='flag-5'>毫米波</b>與Sub-6GHz頻段的特性與<b class='flag-5'>技術(shù)</b>挑戰(zhàn)

    長電科技突破5G毫米波芯片封裝模塊測試難題

    作為芯片封測領(lǐng)域的領(lǐng)軍企業(yè),長電科技成功突破了5G毫米波芯片封裝模塊測試的一系列挑戰(zhàn),以其先進(jìn)的AiP天線封裝技術(shù)和專業(yè)的測試平臺實驗室,為
    的頭像 發(fā)表于 01-22 10:37 ?981次閱讀

    4D毫米波成像雷達(dá)的測試要求都有哪些嗯?

    毫米波雷達(dá)在智能駕駛起到什么作用,這個在純視覺的方案的替代下,引發(fā)了我們的思考。4D毫米波成像雷達(dá),可以說在原有的毫米波雷達(dá)技術(shù),有了更好的
    的頭像 發(fā)表于 01-18 15:54 ?658次閱讀
    4D<b class='flag-5'>毫米波</b>成像雷達(dá)的<b class='flag-5'>測試</b>要求都有哪些嗯?