近年來,由于氮化鎵(GaN)在高頻下的較高功率輸出和較小的占位面積,GaN已被RF工業(yè)大量采用。根據(jù)兩個主要應用:電信基礎設施和國防,推動整個氮化鎵射頻市場預計到2024年成長至20億美元,產(chǎn)業(yè)研究機構Yole Développement(Yole)的研究報告指出,過去十年,全球電信基礎設施投資保持穩(wěn)定,在該市場中,更高頻率的趨勢為5G網(wǎng)路中頻率低于6GHz的PA中的RF GaN提供了一個最佳發(fā)展的動力。
自從20年前第一批商用產(chǎn)品出現(xiàn)以來,GaN已成為射頻功率應用中LDMOS和GaAs的重要競爭對手,并以更低的成本不斷提高性能和可靠性。第一個GaN-on-SiC和GaN-on-Si元件幾乎同時出現(xiàn),但GaN-on-SiC在技術上已經(jīng)變得更加成熟。GaN-on-SiC目前主導GaN射頻市場,已滲透到4G LTE無線基礎設施市場,預計將部署在5G 6GHz以下的RRH架構中。然而,與此同時,在經(jīng)濟高效的LDMOS技術方面也取得了顯著進展,這可能會挑戰(zhàn)5G sub-6Ghz主動式天線和大規(guī)模MIMO部署中的GaN解決方案。
GaN市場整體規(guī)模再2018年約6.45億美元,無線通訊應用約3.04億美元、軍事約2.7億美元,航太應用3700萬美元為三大主要應用,2024年整體市場將成長至200.13億美元,年復合成長率達21%,無線通訊應用規(guī)模達7.52億美元,軍事應用為9.77億美元,值得注意的是RF Energy將從200萬美元成長至1.04億美元。
延伸閱讀:為什么這么多人看好氮化鎵
GaN屬于第三代高大禁帶寬度的半導體材料,和第一代的Si以及第二代的GaAs等前輩相比,其在特性上優(yōu)勢突出。由于禁帶寬度大、導熱率高,GaN器件可在200℃以上的高溫下工作,能夠承載更高的能量密度,可靠性更高;較大禁帶寬度和絕緣破壞電場,使得器件導通電阻減少,有利與提升器件整體的能效;電子飽和速度快,以及較高的載流子遷移率,可讓器件高速地工作。
因此,利用GaN人們可以獲得具有更大帶寬、更高放大器增益、更高能效、尺寸更小的半導體器件,這與半導體行業(yè)一貫的“調(diào)性”是吻合的。
與GaN相比,實際上同為第三代半導體材料的SiC的應用研究起步更早,而之所以GaN近年來更為搶眼,主要的原因有兩點。
首先,GaN在降低成本方面顯示出了更強的潛力。目前主流的GaN技術廠商都在研發(fā)以Si為襯底的GaN的器件,以替代昂貴的SiC襯底。有分析預測到2019年GaN MOSFET的成本將與傳統(tǒng)的Si器件相當,屆時很可能出現(xiàn)一個市場拐點。并且該技術對于供應商來說是一個有吸引力的市場機會,它可以向它們的客戶提供目前半導體工藝材料可能無法企及的性能。
其次,由于GaN器件是個平面器件,與現(xiàn)有的Si半導體工藝兼容性強,這使其更容易與其他半導體器件集成。比如有廠商已經(jīng)實現(xiàn)了驅(qū)動IC和GaN開關管的集成,進一步降低用戶的使用門檻。
正是基于GaN的上述特性,越來越多的人看好其發(fā)展的后勢。特別是在幾個關鍵市場中,GaN都表現(xiàn)出了相當?shù)臐B透力。
1.GaN在5G方面的應用
射頻氮化鎵技術是5G的絕配,基站功放使用氮化鎵。氮化鎵(GaN)、砷化鎵(GaAs)和磷化銦(InP)是射頻應用中常用的半導體材料。
與砷化鎵和磷化銦等高頻工藝相比,氮化鎵器件輸出的功率更大;與LDCMOS和碳化硅(SiC)等功率工藝相比,氮化鎵的頻率特性更好。氮化鎵器件的瞬時帶寬更高,這一點很重要,載波聚合技術的使用以及準備使用更高頻率的載波都是為了得到更大的帶寬。
與硅或者其他器件相比,氮化鎵速度更快。GaN可以實現(xiàn)更高的功率密度。對于既定功率水平,GaN具有體積小的優(yōu)勢。有了更小的器件,就可以減小器件電容,從而使得較高帶寬系統(tǒng)的設計變得更加輕松。射頻電路中的一個關鍵組成是PA(Power Amplifier,功率放大器)。
從目前的應用上看,功率放大器主要由砷化鎵功率放大器和互補式金屬氧化物半導體功率放大器(CMOS PA)組成,其中又以GaAs PA為主流,但隨著5G的到來,砷化鎵器件將無法滿足在如此高的頻率下保持高集成度。
于是,GaN成為下一個熱點。氮化鎵作為一種寬禁帶半導體,可承受更高的工作電壓,意味著其功率密度及可工作溫度更高,因而具有高功率密度、低能耗、適合高頻率、支持寬帶寬等特點。
高通公司總裁Cristiano Amon 在2018 高通4G / 5G 峰會上表示:預計明年上半年和年底圣誕新年檔期將會是兩波5G 手機上市潮,首批商用5G 手機即將登場。據(jù)介紹,5G 技術預計將提供比目前的4G 網(wǎng)絡快10 至100 倍的速度,達到每秒千兆的級別,同時能夠更為有效地降低延遲。
在5G的關鍵技術Massive MIMO應用中,基站收發(fā)信機上使用大數(shù)量(如32/64等)的陣列天線來實現(xiàn)了更大的無線數(shù)據(jù)流量和連接可靠性,這種架構需要相應的射頻收發(fā)單元陣列配套,因此射頻器件的數(shù)量將大為增加,器件的尺寸大小很關鍵,利用GaN的尺寸小、效率高和功率密度大的特點可實現(xiàn)高集化的解決方案,如模塊化射頻前端器件。
同時在5G毫米波應用上,GaN的高功率密度特性在實現(xiàn)相同覆蓋條件及用戶追蹤功能下,可有效減少收發(fā)通道數(shù)及整體方案的尺寸。實現(xiàn)性能成本的最優(yōu)化組合。
除了基站射頻收發(fā)單元陳列中所需的射頻器件數(shù)量大為增加,基站密度和基站數(shù)量也會大為增加,因此相比3G、4G時代,5G時代的射頻器件將會以幾十倍、甚至上百倍的數(shù)量增加,因此成本的控制非常關鍵,而硅基氮化鎵在成本上具有巨大的優(yōu)勢,隨著硅基氮化鎵技術的成熟,它能以最大的性價比優(yōu)勢取得市場的突破。
2.GaN在快充市場的應用
隨著電子產(chǎn)品的屏幕越來越大,充電器的功率也隨之增大,尤其是對于大功率的快充充電器,使用傳統(tǒng)的功率開關無法改變充電器的現(xiàn)狀。
而GaN技術可以做到,因為它是目前全球最快的功率開關器件,并且可以在高速開關的情況下仍保持高效率水平,能夠應用于更小的元件,應用于充電器時可以有效縮小產(chǎn)品尺寸,比如使目前的典型45W適配器設計可以采用25W或更小的外形設計。
氮化鎵充電器可謂吸引了全球眼球,高速高頻高效讓大功率USB PD充電器不再是魁梧磚塊,小巧的體積一樣可以實現(xiàn)大功率輸出,比APPLE原廠30W充電器更小更輕便。
將內(nèi)置氮化鎵充電器與傳統(tǒng)充電器并排放在一起看看,內(nèi)置氮化鎵充電器輸出功率達到27W,APPLE USB-C充電器輸出功率30W,兩者功率相差不大,但體積上卻是完全不同的級別,內(nèi)置氮化鎵充電器比蘋果充電器體積小40%。
據(jù)不完全統(tǒng)計,截止2018年10月23日,市面上支持USB PD快充的手機達到52款,幾乎所有主流的手機廠商都已將USB PD快充協(xié)議納入到了手機的充電配置,其中不乏蘋果、華為、小米、三星等一線大廠品牌。
從各大手機廠商和芯片原廠的布局來看,USB PD快充將成為目前手機、游戲機、筆記本電腦等電子設備的首選充電方案,而USB Type-C也將成為下一個十年電子設備之間電力與數(shù)據(jù)傳輸?shù)奈ㄒ?a target="_blank">接口,USB PD快充協(xié)議大一統(tǒng)的局面即將到來。
3.GaN在無人駕駛技術中的應用
激光雷達(LiDAR)使用鐳射脈沖快速形成三維圖像或為周圍環(huán)境制作電子地圖。氮化鎵場效應晶體管相較MOSFET器件而言,開關速度快十倍,使得LiDAR系統(tǒng)具備優(yōu)越的解像度及更快速反應時間等優(yōu)勢,由于可實現(xiàn)優(yōu)越的開關轉(zhuǎn)換,因此可推動更高準確性。
這些性能推動全新及更廣闊的LiDAR應用領域的出現(xiàn)包括支持電玩應用的偵測實時動作、以手勢驅(qū)動指令的計算機及自動駕駛汽車等應用。
在大力研發(fā)和推進自動化汽車普及過程中,汽車廠商和科技企業(yè)都在尋覓傳感器和攝像頭之間的最佳搭配組合,有效控制成本且可以大批量生產(chǎn)的前提下,最大限度的提升對周圍環(huán)境的感知和視覺能力。
氮化鎵的傳輸速度明顯更快,是目前激光雷達應用中硅元素的100 甚至1000 倍。這樣的速度意味著拍攝照片的速度,照片的銳度以及精準度。
讓我們描述道路前方的事物和變道的顏色預警。激光雷達能檢測前方路段是否有障礙物存在。通過激光雷達你能夠更全面地了解地形變化,一些你無法看到的地形。而單純的使用攝像頭或者雷達都無法勝任這項工作,因為兩者各自身上都有短板和不足。
4.GaN在國防工業(yè)中的應用
雷神宣布將開始在新生產(chǎn)的Guidance Enhanced Missile-TBM(GEM-T)攔截器中使用氮化鎵(GaN)計算機芯片,以取代目前在導彈發(fā)射器中使用的行波管(TWT)。雷神希望通過使用GaN芯片升級GEM-T的發(fā)射器,提高攔截器的可靠性和效率。此外,在新生產(chǎn)導彈中過渡到GaN意味著發(fā)射器不需要在攔截器的使用壽命期間更換。
雷神公司的GEM-T導彈是美國陸軍愛國者空中和導彈防御系統(tǒng)的支柱,用于對付飛機和戰(zhàn)術彈道導彈和巡航導彈。近些年來,雷神一直致力于推動GaN功率和效率向更高極限發(fā)展。
新發(fā)射器具有與舊發(fā)射器相同的外形和功能,不需要額外的冷卻,并且可以在通電幾秒鐘內(nèi)運行。這意味著采用新型GaN發(fā)射器的GEM-T將能夠繼續(xù)在最苛刻的條件下運行。
這種發(fā)射器技術也可能會在其他導彈上看到其他測試。陸軍表示有興趣用這些類型的發(fā)射器取代整個庫存,在GEM-T計劃中采用這些發(fā)射器能夠?qū)⑿迯统杀窘档?6%。
目前,氮化鎵已經(jīng)擁有了足夠廣闊的應用空間。作為第三代半導體新技術,也是全球各國爭相角逐的市場,并且市面上已經(jīng)形成了多股氮化鎵代表勢力,其中第一梯隊有英諾賽科、納微、EPC等代表企業(yè)。其中英諾賽科是目前全球首家采用8英寸增強型硅氮化鎵外延與芯片大規(guī)模量產(chǎn)的企業(yè),也是躋身氮化鎵產(chǎn)業(yè)第一梯隊的國產(chǎn)半導體企業(yè)代表。
然而,現(xiàn)在還有什么是阻礙氮化鎵器件發(fā)展的不利因素呢?
兩個字:太貴!
回顧前兩代半導體的演進發(fā)展過程,任何一代半導體技術從實驗室走向市場,都面臨商用化的挑戰(zhàn)。目前氮化鎵也處于這一階段,成本將會隨著市場需求量加速、大規(guī)模生產(chǎn)、工藝制程革新等,而走向平民化,而最終的市場也將會取代傳統(tǒng)的硅基功率器件。8英寸硅基氮化鎵的商用化量產(chǎn),可以大幅降低成本。第三代半導體的普及臨近,也讓我們有幸見證這一刻的到來。
-
RF
+關注
關注
65文章
3055瀏覽量
167116 -
GaN
+關注
關注
19文章
1947瀏覽量
73677 -
5G
+關注
關注
1355文章
48477瀏覽量
564772
原文標題:GaN產(chǎn)業(yè)規(guī)模有望突破200億美元
文章出處:【微信號:Micro_Grid,微信公眾號:電力電子技術與新能源】歡迎添加關注!文章轉(zhuǎn)載請注明出處。
發(fā)布評論請先 登錄
相關推薦
評論