目前,基于神經網絡的端到端文本到語音合成技術發(fā)展迅速,但仍面臨不少問題——合成速度慢、穩(wěn)定性差、可控性缺乏等。為此,微軟亞洲研究院機器學習組和微軟(亞洲)互聯網工程院語音團隊聯合浙江大學提出了一種基于Transformer的新型前饋網絡FastSpeech,兼具快速、魯棒、可控等特點。與自回歸的Transformer TTS相比,FastSpeech將梅爾譜的生成速度提高了近270倍,將端到端語音合成速度提高了38倍,單GPU上的語音合成速度達到了實時語音速度的30倍。
近年來,基于神經網絡的端到端文本到語音合成(Text-to-Speech,TTS)技術取了快速發(fā)展。與傳統(tǒng)語音合成中的拼接法(concatenative synthesis)和參數法(statistical parametric synthesis)相比,端到端語音合成技術生成的聲音通常具有更好的聲音自然度。但是,這種技術依然面臨以下幾個問題:
合成語音的速度較慢:端到端模型通常以自回歸(Autoregressive)的方式生成梅爾譜(Mel-Spectrogram),再通過聲碼器(Vocoder)合成語音,而一段語音的梅爾譜通常能到幾百上千幀,導致合成速度較慢;
合成的語音穩(wěn)定性較差:端到端模型通常采用編碼器-注意力-解碼器(Encoder-Attention-Decoder)機制進行自回歸生成,由于序列生成的錯誤傳播(Error Propagation)以及注意力對齊不準,導致出現重復吐詞或漏詞現象;
缺乏可控性:自回歸的神經網絡模型自動決定一條語音的生成長度,無法顯式地控制生成語音的語速或者韻律停頓等。
為了解決上述的一系列問題,微軟亞洲研究院機器學習組和微軟(亞洲)互聯網工程院語音團隊聯合浙江大學提出了一種基于Transformer的新型前饋網絡FastSpeech,可以并行、穩(wěn)定、可控地生成高質量的梅爾譜,再借助聲碼器并行地合成聲音。
在LJSpeech數據集上的實驗表明,FastSpeech除了在語音質量方面可以與傳統(tǒng)端到端自回歸模型(如Tacotron2和Transformer TTS)相媲美,還具有以下幾點優(yōu)勢:
快速:與自回歸的Transformer TTS相比,FastSpeech將梅爾譜的生成速度提高了近270倍,將端到端語音合成速度提高了近38倍,單GPU上的語音合成速度是實時語音速度的30倍;
魯棒:幾乎完全消除了合成語音中重復吐詞和漏詞問題;
可控:可以平滑地調整語音速度和控制停頓以部分提升韻律。
模型框架
圖1. FastSpeech網絡架構
前饋Transformer架構
FastSpeech采用一種新型的前饋Transformer網絡架構,拋棄掉傳統(tǒng)的編碼器-注意力-解碼器機制,如圖1(a)所示。其主要模塊采用Transformer的自注意力機制(Self-Attention)以及一維卷積網絡(1D Convolution),我們將其稱之為FFT塊(Feed-Forward Transformer Block, FFT Block),如圖1(b)所示。前饋Transformer堆疊多個FFT塊,用于音素(Phoneme)到梅爾譜變換,音素側和梅爾譜側各有N個FFT塊。特別注意的是,中間有一個長度調節(jié)器(Length Regulator),用來調節(jié)音素序列和梅爾譜序列之間的長度差異。
長度調節(jié)器
長度調節(jié)器如圖1(c)所示。由于音素序列的長度通常小于其梅爾譜序列的長度,即每個音素對應于幾個梅爾譜序列,我們將每個音素對齊的梅爾譜序列的長度稱為音素持續(xù)時間。長度調節(jié)器通過每個音素的持續(xù)時間將音素序列平鋪以匹配到梅爾譜序列的長度。我們可以等比例地延長或者縮短音素的持續(xù)時間,用于聲音速度的控制。此外,我們還可以通過調整句子中空格字符的持續(xù)時間來控制單詞之間的停頓,從而調整聲音的部分韻律。
音素持續(xù)時間預測器
音素持續(xù)時間預測對長度調節(jié)器來說非常重要。如圖1(d)所示,音素持續(xù)時間預測器包括一個2層一維卷積網絡,以及疊加一個線性層輸出標量用以預測音素的持續(xù)時間。這個模塊堆疊在音素側的FFT塊之上,使用均方誤差(MSE)作為損失函數,與FastSpeech模型協(xié)同訓練。我們的音素持續(xù)時間的真實標簽信息是從一個額外的基于自回歸的Transformer TTS模型中抽取encoder-decoder之間的注意力對齊信息得到的,詳細信息可查閱文末論文。
實驗評估
為了驗證FastSpeech模型的有效性,我們從聲音質量、生成速度、魯棒性和可控制性幾個方面來進行了評估。
聲音質量
我們選用LJSpeech數據集進行實驗,LJSpeech包含13100個英語音頻片段和相應的文本,音頻的總長度約為24小時。我們將數據集分成3組:300個樣本作為驗證集,300個樣本作為測試集,剩下的12500個樣本用來訓練。
我們對測試樣本作了MOS測試,每個樣本至少被20個英語母語評測者評測。MOS指標用來衡量聲音接近人聲的自然度和音質。我們將FastSpeech方法與以下方法進行對比:1) GT, 真實音頻數據;2) GT (Mel + WaveGlow), 用WaveGlow作為聲碼器將真實梅爾譜轉換得到的音頻;3) Tacotron 2 (Mel + WaveGlow);4) Transformer TTS (Mel + WaveGlow);5) Merlin (WORLD), 一種常用的參數法語音合成系統(tǒng),并且采用WORLD作為聲碼器。
從表1中可以看出,我們的音質幾乎可以與自回歸的Transformer TTS和Tacotron 2相媲美。
FastSpeech合成的聲音Demo:
文字:“The result of the recommendation of the committee of 1862 was the Prison Act of 1865”
合成速度
我們比較FastSpeech與具有近似參數量的Transformer TTS的語音合成速度。從表2可以看出,在梅爾譜的生成速度上,FastSpeech比自回歸的Transformer TTS提速將近270倍;在端到端(合成語音)的生成速度上,FastSpeech比自回歸的Transformer TTS提速將近38倍。FastSpeech平均合成一條語音的時間為0.18s,由于我們的語音平均時長為6.2s,我們的模型在單GPU上的語音合成速度是實時語音速度的30倍(6.2/0.18)。
圖2展示了測試集上生成語音的耗時和生成的梅爾譜長度(梅爾譜長度與語音長度成正比)的可視化關系圖??梢钥闯觯S著生成語音長度的增大,FastSpeech的生成耗時并沒有發(fā)生較大變化,而Transformer TTS的速度對長度非常敏感。這也表明我們的方法非常有效地利用了GPU的并行性實現了加速。
圖2. 生成語音的耗時與生成的梅爾譜長度的可視化關系圖
魯棒性
自回歸模型中的編碼器-解碼器注意力機制可能導致音素和梅爾譜之間的錯誤對齊,進而導致生成的語音出現重復吐詞或漏詞。為了評估FastSpeech的魯棒性,我們選擇微軟(亞洲)互聯網工程院語音團隊產品線上使用的50個較難的文本對FastSpeech和基準模型Transformer TTS魯棒性進行測試。從下表可以看出,Transformer TTS的句級錯誤率為34%,而FastSpeech幾乎可以完全消除重復吐詞和漏詞。
語速調節(jié)
FastSpeech可以通過長度調節(jié)器很方便地調節(jié)音頻的語速。通過實驗發(fā)現,從0.5x到1.5x變速,FastSpeech生成的語音清晰且不失真。
消融對比實驗
我們也比較了FastSpeech中一些重要模塊和訓練方法(包括FFT中的一維卷積、序列級別的知識蒸餾技術和參數初始化)對生成音質效果的影響,通過CMOS的結果來衡量影響程度。由下表可以看出,這些模塊和方法確實有助于我們模型效果的提升。
未來,我們將繼續(xù)提升FastSpeech模型在生成音質上的表現,并且將會把該模型應用到其它語言(例如中文)、多說話人和低資源場景中。我們還會嘗試將FastSpeech與并行神經聲碼器結合在一起訓練,形成一個完全端到端訓練的語音到文本并行架構。
-
微軟
+關注
關注
4文章
6619瀏覽量
104223 -
互聯網
+關注
關注
54文章
11177瀏覽量
103548 -
語音合成系統(tǒng)
+關注
關注
0文章
3瀏覽量
6368
原文標題:速度提升270倍!微軟和浙大聯合推出全新語音合成系統(tǒng)FastSpeech
文章出處:【微信號:rgznai100,微信公眾號:rgznai100】歡迎添加關注!文章轉載請注明出處。
發(fā)布評論請先 登錄
相關推薦
評論