0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于相變?nèi)鈱W(xué)神經(jīng)元系統(tǒng)實現(xiàn)監(jiān)督學(xué)習(xí)和非監(jiān)督學(xué)習(xí)

cMdW_icsmart ? 來源:YXQ ? 2019-05-12 11:47 ? 次閱讀

近日,Nature刊載IBM新研究,使用光學(xué)器件打造的“全光學(xué)”深度神經(jīng)網(wǎng)絡(luò)可以比傳統(tǒng)計算方式的能效更高,同時具備可擴展性、無需光電轉(zhuǎn)換和高帶寬等優(yōu)勢。這一發(fā)現(xiàn)可能給未來光學(xué)神經(jīng)網(wǎng)絡(luò)加速器的出現(xiàn)打下基礎(chǔ)。

光纖能夠以光的形式在世界范圍內(nèi)傳輸數(shù)據(jù),成為現(xiàn)代電信技術(shù)的支柱。不過如果需要分析這些傳輸數(shù)據(jù),要將其從光信號轉(zhuǎn)換為電子信號,然后用電子設(shè)備進行處理。曾經(jīng)有一段時間,光學(xué)被認(rèn)為是未來最具潛力的計算技術(shù)的基礎(chǔ),但與電子計算機的快速進步相比,光學(xué)計算技術(shù)的競爭力明顯不足。

不過,在過去幾年中,業(yè)界越來越關(guān)注對計算能源的成本問題。因此,光學(xué)計算系統(tǒng)再次受到關(guān)注。光學(xué)計算的能耗低,又能作為AI算法(如深度神經(jīng)網(wǎng)絡(luò)(DNN))的專用加速硬件。 近日,F(xiàn)eldmann等人在《自然》期刊上發(fā)表了這種“全光學(xué)網(wǎng)絡(luò)實現(xiàn)”的最新進展。

深度神經(jīng)網(wǎng)絡(luò)包括多層人工神經(jīng)元和人工突觸。這些連接的強度稱為網(wǎng)絡(luò)權(quán)重,可以是陽性,表示神經(jīng)元的興奮,或陰性,表示神經(jīng)元的抑制。網(wǎng)絡(luò)會盡力將實際輸出和期望輸出之間的差異實現(xiàn)最小化,從而改變突觸的權(quán)重,來執(zhí)行圖像識別等任務(wù)。

CPU和其他硬件加速器通常用于DNN的計算。DNN的訓(xùn)練可以使用已知數(shù)據(jù)集,而經(jīng)過訓(xùn)練后的DNN可以用來推理任務(wù)中的未知數(shù)據(jù)。雖然計算量很大,但計算操作的多樣性不會很高,因為“乘法累加”操作在許多突觸權(quán)重和神經(jīng)元激勵中占主導(dǎo)地位。

DNN在計算精度較低時仍能正常工作。因此,DNN網(wǎng)絡(luò)代表了非傳統(tǒng)計算技術(shù)的潛在機會。研究人員正在努力打造基于新型非易失性存儲器件的DNN加速器。這類設(shè)備在切斷電源時也能保存信息,通過模擬電子計算提升DNN的速度和能效。

那么,為什么不考慮使用光學(xué)器件呢?導(dǎo)光部件中可以包含大量數(shù)據(jù) - 無論是用于電信的光纖還是用于光子芯片上的波導(dǎo)。在這種波導(dǎo)內(nèi)部,可以使用“波分復(fù)用”技術(shù),讓許多不同波長的光一起傳播。然后可以以與電子到光學(xué)調(diào)制和光電子檢測相關(guān)的可用帶寬限制的速率調(diào)制(以可以攜帶信息的方式改變)每個波長。

圖1 全光學(xué)脈沖神經(jīng)元回路

使用諧振器可以實現(xiàn)單個波長的添加或移除,就像對貨車的裝貨和卸貨一樣。使用微米級環(huán)形諧振器可以構(gòu)建DNN網(wǎng)絡(luò)突觸權(quán)重陣列。這種諧振器可以采用熱調(diào)制,電光調(diào)制,或通過相變材料調(diào)制。這些材料可以在非晶相和結(jié)晶相之間切換,不同的材料的吸光能力差別很大。在理想條件下,進行乘法累加運算的功耗很低。

Feldmann研究團隊在毫米級光子芯片上實現(xiàn)了“全光學(xué)神經(jīng)網(wǎng)絡(luò)”,其中網(wǎng)絡(luò)內(nèi)沒有使用光電轉(zhuǎn)換。輸入的數(shù)據(jù)被電子調(diào)制到不同的波長上注入網(wǎng)絡(luò),但此后所有數(shù)據(jù)都保留在芯片上。利用集成相變材料實現(xiàn)突觸權(quán)重的調(diào)節(jié)和神經(jīng)元的集成。

圖2 人工神經(jīng)元的脈沖生成與操作

本文作者小規(guī)模地展示了有監(jiān)督和無監(jiān)督的學(xué)習(xí) - 即使用標(biāo)記數(shù)據(jù)實現(xiàn)訓(xùn)練(DNN學(xué)習(xí)的方式),以及使用未標(biāo)記的數(shù)據(jù)訓(xùn)練(類似人類的學(xué)習(xí)方式)。

圖3 基于相變?nèi)鈱W(xué)神經(jīng)元系統(tǒng)實現(xiàn)監(jiān)督學(xué)習(xí)和非監(jiān)督學(xué)習(xí)

因為權(quán)重表達(dá)是通過光的吸收實現(xiàn)的,所以負(fù)權(quán)重需要更大的偏置信號,該信號不能激活相變材料。一種替代方法是使用Mach-Zehnder干涉儀的裝置,將單個波導(dǎo)分成兩個臂,然后重新組合,這時的透射光量取決于兩個傳播路徑之間光學(xué)相位的差異。然而,要想將這種方法與波分復(fù)用相結(jié)合可能難度較大,因為每個干涉儀的臂需要為每個波長引入適當(dāng)?shù)南辔徊睢?/p>

全光學(xué)實現(xiàn)的DNN仍然存在重大挑戰(zhàn)。在理想情況下,它們的總功率使用率可能較低,經(jīng)常需要熱光功率來調(diào)節(jié)和維持每個Mach-Zehnder干涉儀臂中的光學(xué)相位差異。

圖4 全光學(xué)神經(jīng)網(wǎng)絡(luò)的可擴展架構(gòu)

此外,對注入含有相變材料的系統(tǒng)的總光功率必須仔細(xì)校準(zhǔn),以使材料對輸入信號的響應(yīng)符合預(yù)期。盡管相變材料也可以用于調(diào)整Mach-Zehnder相位,但是材料吸收光的強度和減慢光速之間會出現(xiàn)不可避免的交叉耦合,這會增加系統(tǒng)的復(fù)雜性。

傳統(tǒng)的DNN規(guī)模已經(jīng)發(fā)展到很大,可能包含數(shù)千個神經(jīng)元和數(shù)百萬個突觸。但是光子網(wǎng)絡(luò)的波導(dǎo)需要彼此間隔很遠(yuǎn)才能防止耦合,并且避免急劇彎曲以防止光離開波導(dǎo)。因為兩個波導(dǎo)的交叉可能會將不需要的功率注入錯誤路徑,這對光子芯片設(shè)計的2D特性造成了實質(zhì)性的限制。

圖5 單層脈沖神經(jīng)網(wǎng)絡(luò)的實驗實現(xiàn)

實現(xiàn)光學(xué)器件打造神經(jīng)網(wǎng)絡(luò)需要很長的距離和很大的面積,但是每個光學(xué)結(jié)構(gòu)的關(guān)鍵部分的制造需要高精度。這是因為波導(dǎo)和耦合區(qū)域,比如在每個微環(huán)諧振器的入口和出口處,必須達(dá)到相應(yīng)網(wǎng)絡(luò)性能所需的精確尺寸。對于如何制造小型微環(huán)諧振器也存在諸多限制。

最后,調(diào)制技術(shù)提供的光學(xué)效應(yīng)較弱,需要很長的相互作用區(qū)域,以使其對通過的光的有限影響能夠達(dá)到顯著水平。

Feldmann 團隊的研究中所取得的進步,有望推動該領(lǐng)域的未來發(fā)展,該研究可能會為未來高能效、可擴展的光學(xué)神經(jīng)網(wǎng)絡(luò)加速器的出現(xiàn)打下基礎(chǔ)。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

原文標(biāo)題:下一代計算架構(gòu)革命,從“全光學(xué)神經(jīng)網(wǎng)絡(luò)”開始

文章出處:【微信號:icsmart,微信公眾號:芯智訊】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    時空引導(dǎo)下的時間序列自監(jiān)督學(xué)習(xí)框架

    【導(dǎo)讀】最近,香港科技大學(xué)、上海AI Lab等多個組織聯(lián)合發(fā)布了一篇時間序列無監(jiān)督預(yù)訓(xùn)練的文章,相比原來的TS2Vec等時間序列表示學(xué)習(xí)工作,核心在于提出了將空間信息融入到預(yù)訓(xùn)練階段,即在預(yù)訓(xùn)練階段
    的頭像 發(fā)表于 11-15 11:41 ?267次閱讀
    時空引導(dǎo)下的時間序列自<b class='flag-5'>監(jiān)督學(xué)習(xí)</b>框架

    【《大語言模型應(yīng)用指南》閱讀體驗】+ 基礎(chǔ)篇

    章節(jié)最后總結(jié)了機器學(xué)習(xí)的分類:有監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí)、半監(jiān)督學(xué)習(xí)、自監(jiān)督學(xué)習(xí)和強化學(xué)習(xí)。 1.3
    發(fā)表于 07-25 14:33

    神經(jīng)元是什么?神經(jīng)元神經(jīng)系統(tǒng)中的作用

    神經(jīng)元,又稱神經(jīng)細(xì)胞,是神經(jīng)系統(tǒng)的基本結(jié)構(gòu)和功能單位。它們負(fù)責(zé)接收、整合、傳導(dǎo)和傳遞信息,從而參與和調(diào)控神經(jīng)系統(tǒng)的各種活動。神經(jīng)元在形態(tài)上高
    的頭像 發(fā)表于 07-12 11:49 ?1299次閱讀
    <b class='flag-5'>神經(jīng)元</b>是什么?<b class='flag-5'>神經(jīng)元</b>在<b class='flag-5'>神經(jīng)系統(tǒng)</b>中的作用

    人工神經(jīng)元模型的基本構(gòu)成要素

    人工神經(jīng)元模型是人工智能領(lǐng)域中的一個重要概念,它模仿了生物神經(jīng)元的工作方式,為機器學(xué)習(xí)和深度學(xué)習(xí)提供了基礎(chǔ)。本文將介紹人工神經(jīng)元模型的基本構(gòu)
    的頭像 發(fā)表于 07-11 11:28 ?1306次閱讀

    人工神經(jīng)元模型的基本原理是什么

    人工神經(jīng)元模型是人工智能領(lǐng)域中的一個重要概念,它模仿了生物神經(jīng)系統(tǒng)中的神經(jīng)元行為,為機器學(xué)習(xí)和深度學(xué)習(xí)提供了基礎(chǔ)。 一、人工
    的頭像 發(fā)表于 07-11 11:26 ?775次閱讀

    人工神經(jīng)元由哪些部分組成

    人工神經(jīng)元是深度學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)和機器學(xué)習(xí)領(lǐng)域的核心組件之一。 1. 引言 在深入討論人工神經(jīng)元之前,我們需要了解其在人工智能領(lǐng)域的重要性。人
    的頭像 發(fā)表于 07-11 11:17 ?659次閱讀

    人工神經(jīng)元模型的基本原理及應(yīng)用

    人工神經(jīng)元模型是人工智能和機器學(xué)習(xí)領(lǐng)域的一個重要概念,它模仿了生物神經(jīng)元的工作方式,為計算機提供了處理信息的能力。 一、人工神經(jīng)元模型的基本原理 生物
    的頭像 發(fā)表于 07-11 11:15 ?912次閱讀

    人工神經(jīng)元模型的三要素是什么

    神經(jīng)元是構(gòu)成神經(jīng)系統(tǒng)的基本單元,它們通過突觸與其他神經(jīng)元相互連接,實現(xiàn)信息的傳遞和處理。人工神經(jīng)元則是模仿生物
    的頭像 發(fā)表于 07-11 11:13 ?941次閱讀

    神經(jīng)網(wǎng)絡(luò)如何用無監(jiān)督算法訓(xùn)練

    神經(jīng)網(wǎng)絡(luò)作為深度學(xué)習(xí)的重要組成部分,其訓(xùn)練方式多樣,其中無監(jiān)督學(xué)習(xí)是一種重要的訓(xùn)練策略。無監(jiān)督學(xué)習(xí)旨在從未標(biāo)記的數(shù)據(jù)中發(fā)現(xiàn)數(shù)據(jù)內(nèi)在的結(jié)構(gòu)、模式或規(guī)律,從而提取有用的特征表示。這種訓(xùn)練方
    的頭像 發(fā)表于 07-09 18:06 ?813次閱讀

    深度學(xué)習(xí)中的無監(jiān)督學(xué)習(xí)方法綜述

    應(yīng)用中往往難以實現(xiàn)。因此,無監(jiān)督學(xué)習(xí)在深度學(xué)習(xí)中扮演著越來越重要的角色。本文旨在綜述深度學(xué)習(xí)中的無監(jiān)督學(xué)習(xí)方法,包括自編碼器、生成對抗網(wǎng)絡(luò)、
    的頭像 發(fā)表于 07-09 10:50 ?761次閱讀

    神經(jīng)元的分類包括哪些

    神經(jīng)元神經(jīng)系統(tǒng)的基本功能單位,它們通過電信號和化學(xué)信號進行信息傳遞和處理。神經(jīng)元的分類非常復(fù)雜,可以根據(jù)不同的標(biāo)準(zhǔn)進行分類。 一、神經(jīng)元的基本概念 1.1
    的頭像 發(fā)表于 07-03 11:36 ?1306次閱讀

    神經(jīng)元的結(jié)構(gòu)及功能是什么

    神經(jīng)元神經(jīng)系統(tǒng)的基本結(jié)構(gòu)和功能單位,它們通過電信號和化學(xué)信號進行信息傳遞和處理。神經(jīng)元的結(jié)構(gòu)和功能非常復(fù)雜,涉及到許多不同的方面。 一、神經(jīng)元的形態(tài)結(jié)構(gòu)
    的頭像 發(fā)表于 07-03 11:33 ?1301次閱讀

    神經(jīng)網(wǎng)絡(luò)反向傳播算法原理是什么

    神經(jīng)網(wǎng)絡(luò)反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練多層前饋神經(jīng)網(wǎng)絡(luò)的監(jiān)督學(xué)習(xí)算法。它通過最小化損失函數(shù)來調(diào)整網(wǎng)絡(luò)的權(quán)重和偏置,從而提高網(wǎng)絡(luò)的預(yù)測性能。本文將詳細(xì)
    的頭像 發(fā)表于 07-02 14:16 ?652次閱讀

    神經(jīng)元神經(jīng)網(wǎng)絡(luò)的區(qū)別與聯(lián)系

    在人工智能和機器學(xué)習(xí)的領(lǐng)域中,神經(jīng)元神經(jīng)網(wǎng)絡(luò)是兩個至關(guān)重要的概念。雖然它們都與人腦中的神經(jīng)系統(tǒng)有著密切的聯(lián)系,但在實際應(yīng)用和理論研究中,它們各自扮演著不同的角色。本文旨在深入探討
    的頭像 發(fā)表于 07-01 11:50 ?984次閱讀

    基于FPGA的類腦計算平臺 —PYNQ 集群的無監(jiān)督圖像識別類腦計算系統(tǒng)

    的 FPGA 集群的硬件加速器,通過并行流水線結(jié)構(gòu)實現(xiàn) 8 個神經(jīng)元同時計算并采用分時復(fù)用 8 個神經(jīng)元實現(xiàn)任意規(guī)模的脈沖神經(jīng)網(wǎng)絡(luò)的加速,并
    發(fā)表于 06-25 18:35