雖然溢出在程序開(kāi)發(fā)過(guò)程中不可完全避免,但溢出對(duì)系統(tǒng)的威脅是巨大的,由于系統(tǒng)的特殊性,溢出發(fā)生時(shí)攻擊者可以利用其漏洞來(lái)獲取系統(tǒng)的高級(jí)權(quán)限r(nóng)oot,因此本文將詳細(xì)介紹堆棧溢出技術(shù)……
在您開(kāi)始了解堆棧溢出前,首先你應(yīng)該了解win32匯編語(yǔ)言,熟悉寄存器的組成和功能。你必須有堆棧和存儲(chǔ)分配方面的基礎(chǔ)知識(shí),有關(guān)這方面的計(jì)算機(jī)書(shū)籍很多,我將只是簡(jiǎn)單闡述原理,著重在應(yīng)用。其次,你應(yīng)該了解linux,本講中我們的例子將在linux上開(kāi)發(fā)。
1、首先復(fù)習(xí)一下基礎(chǔ)知識(shí)。
從物理上講,堆棧是就是一段連續(xù)分配的內(nèi)存空間。在一個(gè)程序中,會(huì)聲明各種變量。靜態(tài)全局變量是位于數(shù)據(jù)段并且在程序開(kāi)始運(yùn)行的時(shí)候被加載。而程序的動(dòng)態(tài)的局部變量則分配在堆棧里面。
從操作上來(lái)講,堆棧是一個(gè)先入后出的隊(duì)列。他的生長(zhǎng)方向與內(nèi)存的生長(zhǎng)方向正好相反。我們規(guī)定內(nèi)存的生長(zhǎng)方向?yàn)橄蛏?,則棧的生長(zhǎng)方向?yàn)橄蛳?。壓棧的操作push=ESP-4,出棧的操作是pop=ESP+4.換句話說(shuō),堆棧中老的值,其內(nèi)存地址,反而比新的值要大。請(qǐng)牢牢記住這一點(diǎn),因?yàn)檫@是堆棧溢出的基本理論依據(jù)。
在一次函數(shù)調(diào)用中,堆棧中將被依次壓入:參數(shù),返回地址,EBP。如果函數(shù)有局部變量,接下來(lái),就在堆棧中開(kāi)辟相應(yīng)的空間以構(gòu)造變量。函數(shù)執(zhí)行結(jié)束,這些局部變量的內(nèi)容將被丟失。但是不被清除。在函數(shù)返回的時(shí)候,彈出EBP,恢復(fù)堆棧到函數(shù)調(diào)用的地址,彈出返回地址到EIP以繼續(xù)執(zhí)行程序。
在C語(yǔ)言程序中,參數(shù)的壓棧順序是反向的。比如func(a,b,c)。在參數(shù)入棧的時(shí)候,是:先壓c,再壓b,最后a。在取參數(shù)的時(shí)候,由于棧的先入后出,先取棧頂?shù)腶,再取b,最后取c。這些是匯編語(yǔ)言的基礎(chǔ)知識(shí),用戶在開(kāi)始前必須要了解這些知識(shí)。
2、現(xiàn)在我們來(lái)看一看什么是堆棧溢出。
運(yùn)行時(shí)的堆棧分配
堆棧溢出就是不顧堆棧中數(shù)據(jù)塊大小,向該數(shù)據(jù)塊寫(xiě)入了過(guò)多的數(shù)據(jù),導(dǎo)致數(shù)據(jù)越界,結(jié)果覆蓋了老的堆棧數(shù)據(jù)。
例如程序一:
#includeintmain(){charname[8];printf("Pleasetypeyourname:");gets(name);printf("Hello,%s!",name);return0;} |
編譯并且執(zhí)行,我們輸入ipxodi,就會(huì)輸出Hello,ipxodi!。程序運(yùn)行中,堆棧是怎么操作的呢?
在main函數(shù)開(kāi)始運(yùn)行的時(shí)候,堆棧里面將被依次放入返回地址,EBP。
我們用gcc -S 來(lái)獲得匯編語(yǔ)言輸出,可以看到main函數(shù)的開(kāi)頭部分對(duì)應(yīng)如下語(yǔ)句:
pushl%ebpmovl%esp,%ebpsubl$8,%esp |
首先他把EBP保存下來(lái),,然后EBP等于現(xiàn)在的ESP,這樣EBP就可以用來(lái)訪問(wèn)本函數(shù)的局部變量。之后ESP減8,就是堆棧向上增長(zhǎng)8個(gè)字節(jié),用來(lái)存放name[]數(shù)組。最后,main返回,彈出ret里的地址,賦值給EIP,CPU繼續(xù)執(zhí)行EIP所指向的指令。
堆棧溢出
現(xiàn)在我們?cè)賵?zhí)行一次,輸入ipxodiAAAAAAAAAAAAAAA,執(zhí)行完gets(name)之后,由于我們輸入的name字符串太長(zhǎng),name數(shù)組容納不下,只好向內(nèi)存頂部繼續(xù)寫(xiě)‘A’。由于堆棧的生長(zhǎng)方向與內(nèi)存的生長(zhǎng)方向相反,這些‘A’覆蓋了堆棧的老的元素。 我們可以發(fā)現(xiàn),EBP,ret都已經(jīng)被‘A’覆蓋了。在main返回的時(shí)候,就會(huì)把‘AAAA’的ASCII碼:0x41414141作為返回地址,CPU會(huì)試圖執(zhí)行0x41414141處的指令,結(jié)果出現(xiàn)錯(cuò)誤。這就是一次堆棧溢出。
3、如何利用堆棧溢出
我們已經(jīng)制造了一次堆棧溢出。其原理可以概括為:由于字符串處理函數(shù)(gets,strcpy等等)沒(méi)有對(duì)數(shù)組越界加以監(jiān)視和限制,我們利用字符數(shù)組寫(xiě)越界,覆蓋堆棧中的老元素的值,就可以修改返回地址。
在上面的例子中,這導(dǎo)致CPU去訪問(wèn)一個(gè)不存在的指令,結(jié)果出錯(cuò)。事實(shí)上,當(dāng)堆棧溢出的時(shí)候,我們已經(jīng)完全的控制了這個(gè)程序下一步的動(dòng)作。如果我們用一個(gè)實(shí)際存在指令地址來(lái)覆蓋這個(gè)返回地址,CPU就會(huì)轉(zhuǎn)而執(zhí)行我們的指令。
在UINX/linux系統(tǒng)中,我們的指令可以執(zhí)行一個(gè)shell,這個(gè)shell將獲得和被我們堆棧溢出的程序相同的權(quán)限。如果這個(gè)程序是setuid的,那么我們就可以獲得root shell。下一講將敘述如何書(shū)寫(xiě)一個(gè)shell code。
如何書(shū)寫(xiě)一個(gè)shell code
一:shellcode基本算法分析
在程序中,執(zhí)行一個(gè)shell的程序是這樣寫(xiě)的:
shellcode.c------------------------------------------------------------------------#includevoidmain(){char*name[2];name[0]="/bin/sh"name[1]=NULL;execve(name[0],name,NULL);}------------------------------------------------------------------------ |
execve函數(shù)將執(zhí)行一個(gè)程序。他需要程序的名字地址作為第一個(gè)參數(shù)。一個(gè)內(nèi)容為該程序的argv[i](argv[n-1]=0)的指針數(shù)組作為第二個(gè)參數(shù),以及(char*) 0作為第三個(gè)參數(shù)。
我們來(lái)看以看execve的匯編代碼:
[nkl10]$Content$nbsp;gcc-oshellcode-staticshellcode.c[nkl10]$Content$nbsp;gdbshellcode(gdb)disassemble__execveDumpofassemblercodeforfunction__execve:0x80002bc<__execve>:pushl%ebp;0x80002bd<__execve+1>:movl%esp,%ebp;上面是函數(shù)頭。0x80002bf<__execve+3>:pushl%ebx;保存ebx0x80002c0<__execve+4>:movl$0xb,%eax;eax=0xb,eax指明第幾號(hào)系統(tǒng)調(diào)用。0x80002c5<__execve+9>:movl0x8(%ebp),%ebx;ebp+8是第一個(gè)參數(shù)"/bin/sh |