0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

人工智能的第三定律:計算的未來是模擬

OaXG_jingzhengl ? 來源:ZF ? 2019-04-25 16:22 ? 次閱讀

計算機領域的下一次革命的標志將是模擬系統(tǒng)的崛起,而數(shù)字化編程不再具有統(tǒng)治地位。

雷鋒網(wǎng) AI 科技評論按:在人工智能研究如火如荼的今天,似乎也是時候回過頭來思考一下模擬計算在未來所具有的意義。當人類已經(jīng)習慣于通過數(shù)字化編程控制機器,也許以神經(jīng)網(wǎng)絡為代表的模擬計算會把對于世界的控制權從人類手中奪走。這是一個值得探究的技術問題,同時也是一個不容忽視的倫理問題!

計算機科學發(fā)展的歷史可以劃分為「舊約」(理論)和「新約」(實踐)兩部分:電子數(shù)字化計算機及其產(chǎn)生的代碼席卷全球之前和之后。舊約時代中,包括 Thomas Hobbes(托馬斯·霍布斯) 和 Gottfried Lribniz(戈特弗里德·萊布尼茨) 在內(nèi)的先知們?yōu)橛嬎銠C提供了底層的邏輯;而新約時代的先知們?nèi)?Alan Turing(阿蘭·圖靈),John von Neumann(約翰·馮·諾伊曼),Claude Shannon(克勞德·香農(nóng)),以及 Norbert Wiener(諾伯特·維納),則創(chuàng)造了實現(xiàn)這些邏輯的機器。

圖靈一直在思索如何才能使機器變得智能化;馮·諾伊曼在思考如何才能讓機器自我再生;香農(nóng)在思考的是,機器要怎樣在任意噪音的干擾下實現(xiàn)可靠的通信;維納則在探究機器何時能夠?qū)W會自行控制。

1949 年,就在第一代能夠存儲程序的電子數(shù)字計算機問世之時,維納就對超出人類控制范圍的控制系統(tǒng)發(fā)出了警示。不過彼時,這些系統(tǒng)仍然在人類程序員的監(jiān)督下運行,這無疑就減少了維納的擔憂。只要程序員能夠控制機器,那還會出現(xiàn)什么問題?從那時起,關于機器自動控制的風險的爭論與關于數(shù)字化編程的機器的能力與局限性的爭論,就一直相伴相隨。他們認為,盡管機器擁有驚人的能力,但實際上它們幾乎沒有真正的自主權。然而,這個假設是危險的。一旦它們將這種能力用來做其他事情而不是進行數(shù)字化計算,又將發(fā)生什么?

在過去的一百年中,電子科學經(jīng)歷了兩次根本性的轉(zhuǎn)變:從模擬到數(shù)字化,從真空管道到固態(tài)。這些轉(zhuǎn)變同時發(fā)生并不意味著它們之間就有必然的聯(lián)系。正如數(shù)字化計算使用使用真空管道元件實現(xiàn)一樣,模擬計算也可以在固態(tài)中實現(xiàn)。雖然商業(yè)應用已不再使用真空管道,但模擬計算卻仍然在被使用并且發(fā)展勢頭良好。

模擬計算和數(shù)字計算二者間沒有切確的分別。一般來說,數(shù)字計算處理的是整數(shù)、二進制序列、確定性的邏輯以及在理想狀況下以離散增量形式存在的時間,而模擬計算處理的則是實數(shù)、非確定性邏輯以及連續(xù)函數(shù),包括現(xiàn)實世界中作為「連續(xù)統(tǒng)」( continuum)存在的時間。

想象一下,如果你需要找到一條路的中點。你可以使用任何可用的增量來測量它的寬度,然后用數(shù)字計算計算出中點到最近的增量的距離。或者你可以把一段字符串當做模擬計算機使用,將路的寬度映射到字符串的長度上,然后通過將字符串的長度延長一倍,從而在字符串自身上找到中點的位置,而無需受到增量的限制。

許多系統(tǒng)可以跨模擬和數(shù)字環(huán)境操作。一棵「樹」集成了各種各樣的連續(xù)函數(shù)形式的輸入,但是如果你深入剖析這棵樹,你會發(fā)現(xiàn)它一直在以數(shù)字計算年份。

在模擬計算中,復雜的是網(wǎng)絡拓撲,而不是代碼。信息被處理成連續(xù)值函數(shù)(如電壓和相對脈沖頻率),而不是通過對位的離散字符串做邏輯運算進行處理。數(shù)字計算不能出現(xiàn)錯誤或歧義,因而它非常依賴于在每一個步驟中的錯誤糾正(校驗)機制。而模擬計算則允許出現(xiàn)錯誤,計算可以與錯誤并存。

不理解某樣東西,也完全有可能構(gòu)建出它。

自然界萬物使用數(shù)字編碼來存儲、復制和重組核苷酸序列,但是要想實現(xiàn)智能和控制,就需要依賴于在神經(jīng)系統(tǒng)上運行的模擬計算。每個活細胞的基因系統(tǒng)就是一個存儲程序的計算機,而大腦卻不是。

數(shù)字計算機會在兩類比特之間進行轉(zhuǎn)換:表示空間差異的比特和表示時間差異的比特。序列和結(jié)構(gòu)這兩種信息形式之間的轉(zhuǎn)換是通過計算機編程控制的,只要計算機還需要人類程序員來編程,我們就能保持對它們的控制權。

模擬計算機還可以在兩種信息形式之間進行轉(zhuǎn)換:空間結(jié)構(gòu)和時間行為。這種轉(zhuǎn)換不需要代碼,也不需要編程。然而,我們并不完全理解自然界是如何進化出被稱為神經(jīng)系統(tǒng)的模擬計算機的,神經(jīng)系統(tǒng)包含了從現(xiàn)實世界汲取的信息,并對這些信息進行學習。它們學到的東西之一就是控制。它們學著控制自己的行為,并盡可能地控制周圍能夠控制到的環(huán)境。

在實現(xiàn)神經(jīng)網(wǎng)絡方面,計算機科學有著悠久的歷史(甚至可以追溯到計算機科學出現(xiàn)之前),但在很大程度上,這些工作都是通過數(shù)字計算機對神經(jīng)網(wǎng)絡進行的模擬,而不是自然界在原始環(huán)境下演化出來的神經(jīng)網(wǎng)絡。不過這種情況正開始發(fā)生變化:自下往上來說,無人機、自動駕駛汽車和手機的三重驅(qū)動力推動了神經(jīng)形態(tài)微處理器的發(fā)展,這種微處理器實現(xiàn)了真正的神經(jīng)網(wǎng)絡,而不是直接在硅(和其它可能的基質(zhì))上模擬神經(jīng)網(wǎng)絡;自上往下而言,我們最大和最成功的企業(yè)在滲透和控制環(huán)境的過程中,正越來越多地轉(zhuǎn)向使用模擬計算。

當我們討論數(shù)字計算機的智能化時,模擬計算正悄然取代數(shù)字計算,方式就跟二戰(zhàn)后真空管等模擬元件被重新設計用以制造數(shù)字計算機如出一轍。在現(xiàn)實世界中,各個運行有限代碼的確定性有限狀態(tài)處理器正在形成大規(guī)模的、不確定性的、非有限狀態(tài)的「多細胞動物」生物體。就像電子流在真空管中被處理一樣,由此產(chǎn)生的混合模擬/數(shù)字系統(tǒng)會共同處理比特流,而不是由產(chǎn)生比特流的離散狀態(tài)的設備單獨處理比特。比特就是新型的電子。這樣的話,模擬又重新得以應用,并且它的本質(zhì)屬性就是奪取控制權。

這些系統(tǒng)控制著從商品流到交通流再到思想流的一切事物,它們以統(tǒng)計的方式進行操作,就像脈沖頻率編碼的信息在神經(jīng)元或大腦中進行處理一樣。智能的出現(xiàn)引起了智人(人類)的注意力,但是我們應該擔心的是控制的出現(xiàn)。

想象一下,假如現(xiàn)在是 1958 年,你正試圖保衛(wèi)美國大陸免受空中襲擊。為了區(qū)分敵機,除了計算機網(wǎng)絡和預警雷達站,你還需要一張實時更新所有商業(yè)空中航線的交通地圖。當時美國建立了一個這樣的系統(tǒng),并將其命名為 SAGE(半自動地面防空警備系統(tǒng))。SAGE接著又催生了第一個用于實時預訂航空旅程的綜合預訂系統(tǒng) Sabre。Sabre 和它的后續(xù)產(chǎn)品很快就不僅僅是一張顯示可選擇的座位的地圖,而是開始成為具有去中心化智能的自動控制系統(tǒng),能夠控制飛機將在何時飛往何處。

但這里是否仍然存在一個人為進行控制的控制室呢?也許沒有。比如說,你可以通過僅讓車輛訪問地圖,并將其實時速度和位置反饋給地圖,來建立一個可以實時繪制高速公路交通路況的系統(tǒng)。最終,你可以得到的是一個完全去中心化的控制系統(tǒng)。而除了系統(tǒng)本身,不存在任何系統(tǒng)控制模型。

想象一下,在 21 世紀的第一個十年中,你想要實時跟蹤人際關系的復雜性。針對一所規(guī)模較小的學院里面的社交生活,你可以建立一個中心數(shù)據(jù)庫并使其保持更新,但如果學校擴大規(guī)模,其維護工作就會超出你的控制能力。你最好能夠?qū)⒁粋€簡單的半自動化代碼的免費副本分發(fā)出去,在本地托管這些副本,并讓社交網(wǎng)絡自行更新。該代碼將由數(shù)字計算機執(zhí)行,但是模擬計算要由系統(tǒng)執(zhí)行,因為它的整個計算的復雜度要遠超過底層代碼。由此產(chǎn)生社交網(wǎng)絡圖的脈沖頻率編碼模型最終會變成社交網(wǎng)絡圖。它會在校園里廣泛傳播,然后傳遍全世界。

計算機領域的下一次革命的標志將是模擬系統(tǒng)的崛起,而數(shù)字化編程不再具有統(tǒng)治地位。

如果你想要開發(fā)一臺機器來掌握人類所已知的一切知識,這意味著什么?有了摩爾定律的支持,將世界上所有的信息數(shù)字化并不需要太長的時間。你可以掃描每一本印刷好的書,收集每一封寫好的電子郵件,每 24 小時就能收集 49 年間拍攝的視頻,同時實時跟蹤人們在哪里,他們在做什么。但是,你如何理解這一切的「意義」?

即使是在萬物數(shù)字化的時代,這也不能以任何嚴格的邏輯意義來定義,因為對于人類來說,「意義」從根本上來說是不合邏輯的。一旦你收集了所有可能的答案,你能做的最好的事情,就是提出一些被很好地定義了的問題,并編制一個描述所有事物之間聯(lián)系的脈沖頻率加權的映射。在你弄清楚問題的答案之前,你的系統(tǒng)將不僅僅是觀察和映射事物的意義,它也將開始「構(gòu)建」意義。隨著時間的推移,它將「控制」意義的定義,這就像是如果看上去沒有人在控制交通流,交通地圖系統(tǒng)就會開始控制一樣。

人工智能領域有三條定律:

第一定律被稱為阿什比定律(Ashby'slaw),該定律由《大腦的設計》(Design for a Brain)一書的作者、控制論科學家 W.Ross Ashby 提出,他認為任何有效的控制系統(tǒng)都必須和它所控制的系統(tǒng)一樣復雜。

第二定律由馮諾依曼提出。它指出,一個復雜系統(tǒng)的定義特征是,它構(gòu)成了自身最簡單的行為描述。有機體最簡單的完整模型就是有機體本身。任何試圖將系統(tǒng)的行為簡化為正式的描述的做法,都會使事情變得更復雜,而不是更簡單。

第三條定律指出,任何足夠簡單易懂的系統(tǒng)都不會復雜到能夠?qū)崿F(xiàn)智能化的行為,而任何足夠復雜到實現(xiàn)智能化行為的系統(tǒng)都會復雜到難以理解。

對于那些相信「在我們理解智能之前,我們不必擔心機器產(chǎn)生超人類的智能」的人來說,第三定律為他們帶來了慰藉。但是第三定律中存在一個漏洞,因為你完全有可能在不了解某些東西的情況下去創(chuàng)建它。你不需要完全了解大腦是如何工作的,就可以創(chuàng)建一個可以使用的大腦模型。這確實是一個程序員和他們的道德顧問對算法進行再多的監(jiān)管也無法彌補的漏洞。能夠被證明的「好的」人工智能還是一個神話。我們與真正的人工智能的關系將永遠是一個信仰(唯心)的問題,而不是證明(唯物)的問題。

我們過于關注機器的智能,對自我再生、通信和控制等問題卻不夠重視。計算機領域的下一次革命的標志將是模擬系統(tǒng)的崛起,而數(shù)字化編程不再具有統(tǒng)治地位。對于那些相信自己可以制造出一臺能控制一切的機器的人來說,自然界的反應將會是:讓他們制造一臺機器來控制他們自己吧。

本文出自 John Brockman 編輯的《POSSIBLE MINDS: Twenty-Five Ways of Looking at AI 》 一書。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 人工智能
    +關注

    關注

    1792

    文章

    47425

    瀏覽量

    238961

原文標題:人工智能的第三定律:計算的未來是模擬

文章出處:【微信號:jingzhenglizixun,微信公眾號:機器人博覽】歡迎添加關注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關推薦

    嵌入式和人工智能究竟是什么關系?

    領域,如工業(yè)控制、智能家居、醫(yī)療設備等。 人工智能計算機科學的一個分支,它研究如何使計算機具備像人類一樣思考、學習、推理和決策的能力。人工智能
    發(fā)表于 11-14 16:39

    人工智能計算大數(shù)據(jù)者關系

    人工智能、云計算與大數(shù)據(jù)之間的關系是緊密相連、相互促進的。大數(shù)據(jù)為人工智能提供了豐富的訓練資源和驗證環(huán)境;云計算為大數(shù)據(jù)和人工智能提供了強大
    的頭像 發(fā)表于 11-06 10:03 ?480次閱讀

    《AI for Science:人工智能驅(qū)動科學創(chuàng)新》第6章人AI與能源科學讀后感

    探討了人工智能如何通過技術創(chuàng)新推動能源科學的進步,為未來的可持續(xù)發(fā)展提供了強大的支持。 首先,書中通過深入淺出的語言,介紹了人工智能在能源領域的基本概念和技術原理。這使得我對人工智能
    發(fā)表于 10-14 09:27

    AI for Science:人工智能驅(qū)動科學創(chuàng)新》第4章-AI與生命科學讀后感

    。 4. 對未來生命科學發(fā)展的展望 在閱讀這一章后,我對未來生命科學的發(fā)展充滿了期待。我相信,在人工智能技術的推動下,生命科學將取得更加顯著的進展。例如,在藥物研發(fā)領域,AI技術將幫助科學家們更加
    發(fā)表于 10-14 09:21

    《AI for Science:人工智能驅(qū)動科學創(chuàng)新》第二章AI for Science的技術支撐學習心得

    非常高興本周末收到一本新書,也非常感謝平臺提供閱讀機會。 這是一本挺好的書,包裝精美,內(nèi)容詳實,干活滿滿。 關于《AI for Science:人工智能驅(qū)動科學創(chuàng)新》第二章“AI
    發(fā)表于 10-14 09:16

    《AI for Science:人工智能驅(qū)動科學創(chuàng)新》第一章人工智能驅(qū)動的科學創(chuàng)新學習心得

    的同時,確保其公正性、透明度和可持續(xù)性,是當前和未來科學研究必須面對的重要課題。此外,培養(yǎng)具備AI技能的科研人才,也是推動這一領域發(fā)展的關鍵。 4. 激發(fā)創(chuàng)新思維 閱讀這一章,我被深深啟發(fā)的是人工智能
    發(fā)表于 10-14 09:12

    人工智能計算是什么

    人工智能計算,簡而言之,是指將人工智能技術與云計算平臺相結(jié)合,利用云計算的強大計算力、存儲能力
    的頭像 發(fā)表于 10-12 09:46 ?272次閱讀

    risc-v在人工智能圖像處理應用前景分析

    長時間運行或電池供電的設備尤為重要。 高性能 : 盡管RISC-V架構(gòu)以低功耗著稱,但其高性能也不容忽視。通過優(yōu)化指令集和處理器設計,RISC-V可以在處理復雜的人工智能圖像處理任務時表現(xiàn)出色。
    發(fā)表于 09-28 11:00

    人工智能ai 數(shù)電 模電 模擬集成電路原理 電路分析

    人工智能ai 數(shù)電 模電 模擬集成電路原理 電路分析 想問下哪些比較容易學 不過好像都是要學的
    發(fā)表于 09-26 15:24

    名單公布!【書籍評測活動NO.44】AI for Science:人工智能驅(qū)動科學創(chuàng)新

    大力發(fā)展AI for Science的原因。 第2章從科學研究底層的理論模式與主要困境,以及人工智能要素(數(shù)據(jù)、算法、算力)出發(fā),對AI for Science的技術支撐進行解讀。 第3章介紹了在
    發(fā)表于 09-09 13:54

    報名開啟!深圳(國際)通用人工智能大會將啟幕,國內(nèi)外大咖齊聚話AI

    8月28日至30日,2024深圳(國際)通用人工智能大會暨深圳(國際)通用人工智能產(chǎn)業(yè)博覽會將在深圳國際會展中心(寶安)舉辦。大會以“魅力AI·無限未來”為主題,致力于打造全球通用人工智能
    發(fā)表于 08-22 15:00

    FPGA在人工智能中的應用有哪些?

    定制化的硬件設計,提高了硬件的靈活性和適應性。 綜上所述,F(xiàn)PGA在人工智能領域的應用前景廣闊,不僅可以用于深度學習的加速和云計算的加速,還可以針對特定應用場景進行定制化計算,為人工智能
    發(fā)表于 07-29 17:05

    5G智能物聯(lián)網(wǎng)課程之Aidlux下人工智能開發(fā)(SC171開發(fā)套件V1)

    課程類別 課程名稱 視頻課程時長 視頻課程鏈接 課件鏈接 人工智能 參賽基礎知識指引 14分50秒 https://t.elecfans.com/v/25508.html *附件:參賽基礎知識指引
    發(fā)表于 04-01 10:40

    嵌入式人工智能的就業(yè)方向有哪些?

    嵌入式人工智能的就業(yè)方向有哪些? 在新一輪科技革命與產(chǎn)業(yè)變革的時代背景下,嵌入式人工智能成為國家新型基礎建設與傳統(tǒng)產(chǎn)業(yè)升級的核心驅(qū)動力。同時在此背景驅(qū)動下,眾多名企也紛紛在嵌入式人工智能領域布局
    發(fā)表于 02-26 10:17

    CES 2024:星展示一系列引領未來人工智能應用

    在CES 2024上,星展示了一系列引領未來人工智能應用,將智能生活推向新的高度。
    的頭像 發(fā)表于 01-12 15:05 ?1516次閱讀