自動駕駛是百年汽車工業(yè)史上又一次偉大的范式轉(zhuǎn)移。自動駕駛將重新定義汽車產(chǎn)業(yè)規(guī)則。汽車的產(chǎn)品定義將不再是 “行走的精密儀器”,也不只是一臺“行走的計算機”,而是“行走的第三空間”;車廠的角色將從傳統(tǒng)的汽車制造商向移動出行服務(wù)商轉(zhuǎn)型。自動駕駛是產(chǎn)業(yè)發(fā)展的必然趨勢,關(guān)乎時間、生命,是重塑未來出行生態(tài)的關(guān)鍵技術(shù)。2018年下半年以來,全球自動駕駛產(chǎn)業(yè)現(xiàn)象級事件頻發(fā),商業(yè)化序幕已經(jīng)拉開。
1.自動駕駛是百年汽車工業(yè)史上又一次偉大的范式轉(zhuǎn)移
1.1.重新定義汽車產(chǎn)業(yè)的游戲規(guī)則
汽車產(chǎn)業(yè)升級換代,自動駕駛獨領(lǐng)風(fēng)騷。直觀理解,自動駕駛就是“機器替代駕駛員開車”,國內(nèi)亦稱之為智能網(wǎng)聯(lián)汽車。與電動化、共享化相并列,自動駕駛(智能化+網(wǎng)聯(lián)化)早已被產(chǎn)業(yè)界普遍認(rèn)可為汽車產(chǎn)業(yè)未來發(fā)展的“新四化”趨勢之一。
春江水暖鴨先知,從嗅覺靈敏的資本市場的表現(xiàn)來看,自動駕駛早已是汽車產(chǎn)業(yè)升級的絕對主角。代表目前全球最強自動駕駛實力的Waymo(谷歌)盡管尚未產(chǎn)生正式的收入,已經(jīng)被Morgan Stanley率先定價到了1750億美元,遠(yuǎn)超傳統(tǒng)車企代表通用、福特、電動化勢力代表特斯拉以及共享出行代表Uber的估值。Morgan Stanley對于自動駕駛的熱捧絕非孤例,根據(jù)德國《經(jīng)理人》雜志報道,大眾集團CEO Herbert Diess曾計劃以1370億美元的報價參股Waymo 10%股份(提議最終未得到董事會支持而告終),產(chǎn)業(yè)資本對于自動駕駛的認(rèn)可度和追捧可見一般。我們認(rèn)為,自動駕駛獨領(lǐng)風(fēng)騷的背后原因在于——自動駕駛將是未來汽車產(chǎn)業(yè)游戲規(guī)則的定義者。
自動駕駛時代,汽車被重新定義。自動駕駛時代,汽車不再只是汽車,而是用戶的第三空間。高等級自動駕駛意味著手、腳、眼和注意力將逐步被解放,從“機器輔助人開車”(L2)到“機器開車人輔助”(L3)”、“機器開車”(L4/L5)意味著車主的生產(chǎn)力、時間的釋放,汽車將不再是代步工具,用戶在車內(nèi)即可實現(xiàn)娛樂和辦公,汽車有望進(jìn)化成為家庭、辦公場所之外的第三生活空間。從本質(zhì)上來說,自動駕駛汽車不再是 “行走的精密儀器”,也不只是一臺“行走的計算機”,而是“行走的第三空間”,汽車的產(chǎn)品形態(tài)將被重新定義,商業(yè)價值也將更多維度地展開(自動駕駛創(chuàng)造了新的消費經(jīng)濟和生產(chǎn)力市場——乘客經(jīng)濟,乘客在路上或消費,或工作,或娛樂,每一輛車都可以變成移動的商業(yè)地產(chǎn))。
自動駕駛時代,車廠角色將重新定義。未來汽車可能分為兩類,一類是有人駕駛的汽車,一類是移動服務(wù)汽車。傳統(tǒng)的汽車制造商將逐步向移動出行服務(wù)商轉(zhuǎn)型,為用戶提供Car as a Service或者說是Mobility as a Service(MaaS)的一站式出行服務(wù)。從用戶角度來看,相對于私有車的模式,轉(zhuǎn)向移動出行服務(wù),可以充分利用路上的時間做自己的事;從車廠的角度來看,商業(yè)模式將從產(chǎn)權(quán)交易到使用權(quán)交易,即不再是一錘子買賣的整車銷售,而是類似“手機流量套餐”一樣,對用戶的出行服務(wù)進(jìn)行按需收費。從廣義來看,未來出行服務(wù)需要具備三大要素:移動平臺(車)、自動駕駛技術(shù)、用戶服務(wù)入口。其中,自動駕駛將是關(guān)鍵技術(shù),可以大幅度的降低出行服務(wù)平臺的最大的運營成本項(司機的工資),直接決定了車企轉(zhuǎn)型移動出行服務(wù)商的盈利潛力。
1.2. 自動駕駛是汽車產(chǎn)業(yè)發(fā)展的必然趨勢
依從第一性原理思考現(xiàn)有交通出行的困局,發(fā)展自動駕駛是破局之道。現(xiàn)在很多大城市每年汽車增長20%,道路增長1%,人、車、路間供需不平衡,消費者被車廠教育了都想買車,可車還是不夠人用(限購限行,打車難),路不夠車用(擁堵),車已經(jīng)塞滿了城市;另一方面,汽車又是使用率最低的工業(yè)品,城市不得不為95%時間閑置的汽車建造大量的停車場,車位比車貴?,F(xiàn)有交通出行的困局的根源是因為——人、車、路,三者之間在特定時間段的供需矛盾,增加車、修路都是治標(biāo)不治本的措施,即使是共享出行,也只解決了一半的問題。我們需要從底層創(chuàng)新上尋求現(xiàn)有交通出行問題解決之道。從第一性原理出發(fā),唯有,也只有代表著更高效率的MaaS(自動駕駛驅(qū)動)的普及,才能根本性地解決現(xiàn)有的交通出行困局。
自動駕駛關(guān)乎時間、關(guān)乎生命,將釋放巨大的社會價值:
1)自動駕駛關(guān)乎生命。滴滴程維曾表示,理論上,機器比人更適合開車。人其實并不很適合開車,人類的可靠視距大概只有兩三百米,但是激光雷達(dá)可以看到更遠(yuǎn)。人類只能看到前面180°的視角,看不到后面有車追尾,機器可以環(huán)顧360°。人只能靠個體學(xué)習(xí)積累駕駛經(jīng)驗,用公里數(shù)換經(jīng)驗,但是機器可以100萬輛車共享一個大腦,去學(xué)習(xí)沉淀經(jīng)驗。人類開車走復(fù)雜路段,是靠自己的經(jīng)驗控制方向盤,但是機器可以學(xué)習(xí)舒馬赫怎樣精準(zhǔn)過彎。人類操縱汽車是靠手感,是靠腳踩下去的感覺,機器人可以精確到毫米、微米去控制機械。機器也不會疲勞駕駛、酒駕。在技術(shù)足夠成熟的前提下,機器駕駛的綜合安全性會比人類高一個量級,而這意味著全球每年死于交通事故的125萬人死于道路交通事故的人員(WHO《2015年全球道路安全現(xiàn)狀報告》),有更多生命得到拯救。
2)自動駕駛關(guān)乎時間。羅振宇提出了“國民總時間”的概念,時間是最有價值、也是最稀缺的資源。在大部分人的一天24小時中,上下班通勤是逃不掉的固定時間支出,尤其是在地理尺度較大和職住問題嚴(yán)重的大城市,交通擁堵會令本已很長的通勤時間加倍延長。高德地圖《2018年度中國主要城市交通分析報告》顯示,以北京為例,人均年擁堵時間高達(dá)174小時。按照擁堵?lián)p失=城市平均時薪*因擁堵造成的延時*人均全年通勤次數(shù)的計算公式,根據(jù)百度測算,國內(nèi)每年因為交通擁堵大概會造成GDP的5%到8%的損失。自動駕駛時代,用戶在車上的時間會被解放出來,這些時間都可以轉(zhuǎn)化成生產(chǎn)力,釋放巨大的經(jīng)濟價值。
在釋放巨大社會價值的基礎(chǔ)上,自動駕駛將激活、重塑和創(chuàng)造多個萬億級市場。1)自動駕駛將激活汽車市場。智能、安全和人機共駕的新體驗將重新激發(fā)人們換車的需求;2)自動駕駛將重塑出行市場。MaaS將解決如今困擾消費者和出行服務(wù)商的最大問題——司機成本和“壞人”風(fēng)險。如果說當(dāng)前的網(wǎng)約車只解決了出行需求的一半問題,那么未來自動駕駛出租車將是另一半問題的答案。此外,自動駕駛應(yīng)用到商用場景,用機器替代日益高昂的人力成本,也將創(chuàng)造巨大價值;3)自動駕駛將創(chuàng)造新的消費經(jīng)濟和生產(chǎn)力市場——乘客經(jīng)濟。這些時間,乘客在路上或消費,或工作,或娛樂,每一輛車都可以變成移動的商業(yè)地產(chǎn)。更進(jìn)一步,除了上述三個市場之外,自動駕駛技術(shù)的普及還會產(chǎn)生間接的二級效應(yīng),對能源、房地產(chǎn)、保險等行業(yè)都會產(chǎn)生深遠(yuǎn)而巨大的影響。
1.3. 現(xiàn)象級事件頻發(fā),自動駕駛拉開商業(yè)化序幕
自動駕駛不再是夢想,主機廠規(guī)?;慨a(chǎn)即將啟動?;仡欁詣玉{駛產(chǎn)業(yè)發(fā)展歷史,大致可以分為如下階段:
1)源起。自動駕駛技術(shù)的探索最早可以追溯到1980年,美國率先開啟了自動駕駛汽車在軍事領(lǐng)域的應(yīng)用。美國的國防高級研究計劃局(DARPA)和卡內(nèi)基梅隆大學(xué),分別以 “攝像頭為主、其他傳感器為輔 ”開發(fā)出不同的自動駕駛汽車的原型,并且在真實路況中展現(xiàn)出了令人信服的能力。2004年開始,美國(DARPA)發(fā)布無人車挑戰(zhàn)賽。時值 “ 第二次海灣戰(zhàn)爭 ” 剛剛開始,國防部注意到沙漠行動中的士兵傷亡,希望用無人駕駛來解決這一問題。DARPA無人車挑戰(zhàn)賽為自動駕駛技術(shù)交流開辟了空間和研究的土壤,為產(chǎn)業(yè)貢獻(xiàn)了大量的人才。第一代的自動駕駛技術(shù)大牛,基本都是以DARPA無人車挑戰(zhàn)賽為起點。
2)賽道開啟。自動駕駛產(chǎn)業(yè)化的正式開啟是從2009年拉開序幕,Google X確立了多個登計劃(Moonshot),旨在捕捉未來惠及全人類的核心技術(shù)。無人車項目在谷歌的資金支持下正式開啟。隨后,陸續(xù)有更多的科技巨頭入場。
3)核心技術(shù)跨越式發(fā)展。自動駕駛技術(shù)經(jīng)過多年打磨后,日趨成熟,絕大部分主流車企也宣布了自動駕駛的量產(chǎn)計劃表。為了更好的捕捉自動駕駛技術(shù)衍生出來的需求,從芯片廠到Tier1開始了供應(yīng)鏈整合之路。標(biāo)志性的事件就是英特爾宣布以153億美元收購 Mobileye(自動駕駛視覺芯片公司),并正式成立自動駕駛事業(yè)部。
4)技術(shù)得到商業(yè)化驗證。2017、2018年開始,自動駕駛技術(shù)得到商業(yè)化驗證。車廠領(lǐng)跑者——奧迪首發(fā)了全球第一款L3級別的量產(chǎn)自動駕駛車輛;科技公司的領(lǐng)跑者——Waymo在經(jīng)過10年的測試和技術(shù)打磨之后,推出Waymo One的自動駕駛出租車服務(wù),試水商業(yè)化運營,并在18年分別向捷豹、菲亞特-克萊斯勒下了20000量捷豹I-PACE車型以及62,000輛Pacifica混動車的訂單,用于在未來3年內(nèi)在全美擴大自動駕駛車隊陣容。無獨有偶,Uber早期也與沃爾沃達(dá)成協(xié)議,計劃采購2.4萬輛車輛,用于自動駕駛車隊。
5)供應(yīng)鏈啟動。隨著車廠自動駕駛量產(chǎn)計劃日益臨近,前裝供應(yīng)鏈的“車輪”也已經(jīng)率先啟動,標(biāo)志性的事件就是2019年年初,四維圖新斬獲國內(nèi)首個L3及以上的高精度地圖的主流車廠訂單(寶馬)。從2019年開始,到2020、2021年,根據(jù)全球主流車廠的計劃表,將陸續(xù)開始有量產(chǎn)的自動駕駛車輛出爐,自動駕駛產(chǎn)業(yè)有望進(jìn)入黃金發(fā)展期。
現(xiàn)象級事件頻發(fā),自動駕駛產(chǎn)業(yè)發(fā)展全面提速。1)資金層面。自動駕駛在一級市場已經(jīng)成為最火熱的賽道,展現(xiàn)出超強的吸金能力,僅2018年就全球狂攬94.7億美元的融資。充裕的資金資質(zhì)將成為自動駕駛產(chǎn)業(yè)最好的助推器之一;2)產(chǎn)業(yè)層面。科技巨頭繼續(xù)引領(lǐng)行業(yè)風(fēng)向標(biāo);車廠相繼爭先宣布轉(zhuǎn)型移動出行服務(wù)商(典型代表豐田、通用、大眾),繼續(xù)加碼自動駕駛研發(fā)投入;3)政策。全球政府為自動駕駛的合法化上路正緊鑼密鼓的修訂政策法規(guī)。日本政府近期通過了《道路運輸車輛法》修正案,確保自動駕駛的合法性;國內(nèi)方面,交通部部長***也在近期表示將力爭在國家層面出臺《自動駕駛發(fā)展指導(dǎo)意見》??傮w來看,自動駕駛產(chǎn)業(yè)生機勃勃,在資金、產(chǎn)業(yè)、政策的共振下,發(fā)展不斷提速,快馬加鞭縱情向前。
2.自動駕駛概念定義——L3是分水嶺
L3將是自動駕駛技術(shù)的飛躍。對于自動駕駛技術(shù)和概念的定義,國際上通用的是美國SAE協(xié)會定義的標(biāo)準(zhǔn)。我們?nèi)粘I钪薪佑|的最多的仍然是L2級別的自動駕駛技術(shù)(以特斯拉AutoPilot為典型代表),本文所強調(diào)的自動駕駛是指L3及以上的高等級自動駕駛技術(shù)。
在自動駕駛技術(shù)分級中,L2和L3是重要的分水嶺,在L2及以下的自動駕駛技術(shù)仍然是輔助駕駛技術(shù),盡管可以一定程度上解放雙手(Hands Off),但是環(huán)境感知、接管仍然需要人來完成,即由人來進(jìn)行駕駛環(huán)境的觀察,并且在緊急情況下直接接管。而在L3級中,環(huán)境感知的工作將交由機器來完成,車主可以不用再關(guān)注路況,從而實現(xiàn)了車主雙眼的解放(Eyes Off)。而L4、L5則帶來自動駕駛終極的駕駛體驗,在規(guī)定的使用范圍內(nèi),車主可以完全實現(xiàn)雙手脫離方向盤以及注意力的解放(Minds Off),被釋放了手、腳、眼和注意力的人類,將能真正擺脫駕駛的羈絆,享受自由的移動生活。從實際應(yīng)用價值來看,L3/L4相對于輔助駕駛技術(shù)有質(zhì)的提升,從“機器輔助人開車”(L2)到“機器開車人輔助”(L3)”,最終實現(xiàn)“機器開車”(L4/L5),L3將成為是用戶價值感受的臨界點,將成為產(chǎn)業(yè)重要分水嶺。
跟消費者普遍希望的“全能”所不同,自動駕駛技術(shù)是有應(yīng)用場景和功能要求的。除了基礎(chǔ)的分級之外,SAE協(xié)會還給出了自動駕駛系統(tǒng)的重要設(shè)計維度:設(shè)計運行范圍(ODD),即自動駕駛技術(shù)可以安全工作的環(huán)境,包括車輛自動駕駛時的速度、地形、路況、基礎(chǔ)環(huán)境、交通情況、時段(白天、晚上)。以消費者最常見的量產(chǎn)自動駕駛系統(tǒng)——特斯拉Autopilot為例,雖然很多粉絲在城市環(huán)境試過Autopilot,但官方給出的啟用范圍依然是高速公路和行車緩慢的路段,并對時速做出了限制。很顯然,路況越復(fù)雜,自動駕駛的實現(xiàn)難度將越高。
國內(nèi)自動駕駛將漸進(jìn)式落地。SAE的自動駕駛分級是較為粗線條的,容易產(chǎn)生歧義。我們按照路況復(fù)雜程度進(jìn)一步細(xì)化自動駕駛的功能定義,并對其落地時間進(jìn)行預(yù)測。參考羅蘭貝格的報告,我們整體上判斷國內(nèi)自動駕駛將以L0-L5的路線漸進(jìn)式展開,主要落地應(yīng)用場景將以私家車出行、共享客運接駁、貨運物流為主,從低難度的區(qū)域(封閉低速路段)向高難度的區(qū)域(復(fù)雜城市道路)循序漸進(jìn)地落地。2019年,國內(nèi)將在城市特定區(qū)域開放道路進(jìn)行自動駕駛車輛測試,并有望在部分高速公路允許L3自動駕駛。到2025年城市特定區(qū)域L4、L5自動駕駛有望開放,自動駕駛將步入分區(qū)域推進(jìn)的新階段。而2025年之后,才會逐步放開自動駕駛區(qū)域限制,從限定場景逐步拓展到全場景。
3.1.自動駕駛技術(shù)框架概述
單車智能的三大核心環(huán)節(jié)——感知層、決策層和執(zhí)行層。狹義的理解,從單車智能的角度,自動駕駛技術(shù)的本質(zhì)就是用機器視角去模擬人類駕駛員的行為,其技術(shù)框架可以分為三個環(huán)節(jié):感知層、決策層和執(zhí)行層。感知層解決的是“我在哪?”、“周邊環(huán)境如何?”的問題;決策層則要判斷“周邊環(huán)境接下來要發(fā)生什么變化”、“我該怎么做”;執(zhí)行層則是偏機械控制,將機器的決策轉(zhuǎn)換為實際的車輛行為。根據(jù)上述三個環(huán)節(jié)的分析框架,自動駕駛技術(shù)實現(xiàn)的基本原理是:感知層的各類硬件傳感器捕捉車輛的位置信息以及外部環(huán)境(行人、車輛)信息。決策層的大腦(計算平臺+算法)基于感知層輸入的信息進(jìn)行環(huán)境建模(預(yù)判行人、車輛的行為),形成對全局的理解并作出決策判斷,發(fā)出車輛執(zhí)行的信號指令(加速、超車、減速、剎車等)。最后執(zhí)行層將決策層的信號轉(zhuǎn)換為汽車的動作行為(轉(zhuǎn)向、剎車、加速)。鑒于高等級自動駕駛是極為復(fù)雜的系統(tǒng)性工程,其技術(shù)方案尚未完全定型,無論傳統(tǒng)車廠、Tier1還是互聯(lián)網(wǎng)科技企業(yè),對于高等級自動駕駛均有自己的技術(shù)路線,我們將在后續(xù)章節(jié)詳細(xì)分析自動駕駛技術(shù)框架下不同模塊的作用和技術(shù)趨勢。
“車”、“云”、“路”協(xié)同進(jìn)化是產(chǎn)業(yè)發(fā)展趨勢。廣義的理解,在單車智能技術(shù)路線的基礎(chǔ)上,未來整個自動駕駛的技術(shù)體系將是“車端”、“云端”、“路端”同步升級發(fā)展。云端的意義在于:1)收集大量數(shù)據(jù),訓(xùn)練自動駕駛算法;2)通過云端更新高精度地圖,為自動駕駛車輛提供更實時的環(huán)境模型和動態(tài)信息。路端的意義在于:通過打造互聯(lián)網(wǎng)化的道路,以車路協(xié)同技術(shù),為自動駕駛車輛提供一個聯(lián)網(wǎng)的“外腦”,從而減少單車智能的硬件成本。
3.2.解構(gòu)自動駕駛核心技術(shù)模塊
3.2.1. 自動駕駛感知層傳感器
3.2.1.1. 自動駕駛感知層傳感器的定義和分類
感知層傳感器是自動駕駛車輛所有數(shù)據(jù)的輸入源。根據(jù)不同的目標(biāo)功能,自動駕駛汽車搭載的傳感器類型一般分為兩類——環(huán)境感知傳感器和車輛運動傳感器。環(huán)境感知傳感器主要包括攝像頭、毫米波雷達(dá)、超聲波傳感器、激光雷達(dá)以及GPS&慣導(dǎo)組合等,環(huán)境感知傳感器類似于人的視覺和聽覺,幫助自動駕駛車輛做外部環(huán)境的建模;車輛運動傳感器(高精度定位模塊),主要包括GNSS、IMU、速度傳感器等,提供車輛的位置信息、速度、姿態(tài)等信息。目前自動駕駛需要依賴不同的傳感器來收集信息,尚不具有一個具備所有感知功能于一身的“萬能”傳感器。不同傳感器所發(fā)揮的功能各不相同,在不同場景中各自發(fā)揮自身優(yōu)勢,難以相互替代。
3.2.1.2. 環(huán)境感知傳感器的發(fā)展趨勢
環(huán)境感知傳感器的技術(shù)方案主要可以分為視覺主導(dǎo)和激光雷達(dá)主導(dǎo)。1)視覺主導(dǎo)的方案:攝像頭(主導(dǎo))+毫米波雷達(dá)+超聲波雷達(dá)+低成本激光雷達(dá),典型的車廠是特斯拉。特斯拉最為激進(jìn),創(chuàng)始人馬斯克堅持在其方案中不加入激光雷達(dá);2)激光雷達(dá)主導(dǎo)的方案:低成本激光雷達(dá)(主導(dǎo))+毫米波雷達(dá)+超聲波傳感器+攝像頭,典型的代表是Google Waymo。目前,谷歌Waymo自己組建團隊研發(fā)激光雷達(dá)的硬件,把成本削減了90%以上,基本上是7000美金左右,同時也已經(jīng)在美國鳳凰城地區(qū)進(jìn)行商業(yè)化的試運營。
傳感器各有優(yōu)劣勢,技術(shù)方向的最終定型取決于技術(shù)的發(fā)展速度以及部件成本的價格曲線。
1)攝像頭——非常適用于物體分類。攝像頭視覺屬于被動視覺,受環(huán)境光照的影響較大,但成本低。攝像頭生成的數(shù)據(jù),人就能看懂,不過其測距能力堪憂。攝像頭非常適用于物體分類。
2)雷達(dá)——在探測范圍和應(yīng)對惡劣天氣方面占優(yōu)勢。在探測距離上優(yōu)勢巨大,也不怕天氣影響,但不善于識別物體分辨率。
3)激光雷達(dá)——優(yōu)勢在于障礙物檢測。激光雷達(dá)是主動視覺,和攝像頭這類被動傳感器相比,激光雷達(dá)可以主動探測周圍環(huán)境,即使在夜間仍能準(zhǔn)確地檢測障礙物。因為激光光束更加聚攏,所以比毫米波雷達(dá)擁有更高的探測精度。但激光雷達(dá)現(xiàn)階段的成本較高??傮w來看,為了更好的安全冗余,各類傳感器的融合是技術(shù)路線的必由之路,而最終技術(shù)方向的定型取決于技術(shù)的發(fā)展速度以及部件成本的價格。
3.2.1.3. 高精度定位傳感器的發(fā)展趨勢
高精度定位模塊是自動駕駛的標(biāo)配。要實現(xiàn)車輛的自動駕駛,就要解決在哪里(即刻位置)、要去哪里(目標(biāo)位置)的問題,因此高精度定位傳感器(厘米級精度)模塊需要應(yīng)用于L3以上自動駕駛。
按照不同的定位實現(xiàn)技術(shù),高精度定位可以分為三類。第一類,基于信號的定位,代表就是GNSS定位,即全球?qū)Ш叫l(wèi)星系統(tǒng);第二類,航跡推算,依靠IMU(慣性測量單元)等,根據(jù)上一時刻的位置和方位推斷現(xiàn)在的位置和方位;第三類是環(huán)境特征匹配,基于激光雷達(dá)的定位,用觀測到的特征和數(shù)據(jù)庫中的特征和存儲的特征進(jìn)行匹配,得到現(xiàn)在車的位置和姿態(tài)。觀察目前產(chǎn)業(yè)的主流方案,普遍采取融合的形式,大體上有:1)基于 GPS 和慣性傳感器的傳感器融合;2)基于激光雷達(dá)點云與高精地圖的匹配;3)基于計算機視覺技術(shù)的道路特征識別,GPS衛(wèi)星定位為輔助的形式。
3.2.1.4. 5G/ V2X技術(shù)為自動駕駛打通外部“大腦”
5G/ V2X技術(shù)為自動駕駛打通外部“大腦”。車聯(lián)網(wǎng)V2X就是把車連到網(wǎng)或者把車連成網(wǎng),包括汽車對汽車(V2V)、汽車對基礎(chǔ)設(shè)施(V2I)、汽車對互聯(lián)網(wǎng)(V2N)和汽車對行人(V2P)。通過V2X網(wǎng)絡(luò),相當(dāng)于自動駕駛打通外部“大腦”,提供了豐富、及時的“外部信息”輸入,能夠有效彌補單車智能的感知盲點??梢哉f,V2X是自動駕駛加速劑,能夠有效補充單車智能的技術(shù)、加速反應(yīng)效率。5G網(wǎng)絡(luò)具備低時延、高吞吐、高可靠的特性,大大提升了 V2X傳輸信息的豐富性和及時性,也提高了V2X傳感器的技術(shù)價值。
3.2.2. 計算平臺(主控芯片)
3.2.2.1. 高等級自動駕駛的本質(zhì)是AI計算問題,車載計算平臺是剛需
自動駕駛就是“四個輪子上的數(shù)據(jù)中心”,車載計算平臺成為剛需。隨著汽車自動駕駛程度的提高,汽車自身所產(chǎn)生的數(shù)據(jù)量將越來越龐大。根據(jù)英特爾CEO測算,假設(shè)一輛自動駕駛汽車配置了GPS、攝像頭、雷達(dá)和激光雷達(dá)等傳感器,則上述一輛自動駕駛汽車每天將產(chǎn)生約4000GB待處理的傳感器數(shù)據(jù)。不夸張的講,自動駕駛就是“四個輪子上的數(shù)據(jù)中心”,而如何使自動駕駛汽車能夠?qū)崟r處理如此海量的數(shù)據(jù),并在提煉出的信息基礎(chǔ)上得出合乎邏輯且形成安全駕駛行為的決策,需要強大的計算能力做支持??紤]到自動駕駛對延遲要求很高,傳統(tǒng)的云計算面臨著延遲明顯、連接不穩(wěn)定等問題,這意味著一個強大的車載計算平臺(芯片)成為了剛需。事實上,如果我們打開現(xiàn)階段展示的自動駕駛測試汽車的后備箱,會明顯發(fā)現(xiàn)其與傳統(tǒng)汽車的不同之處,都會裝載一個“計算平臺”,用于處理傳感器輸入的信號數(shù)據(jù)并輸出決策及控制信號。
高等級自動駕駛的本質(zhì)是AI計算問題,車載計算平臺的計算力需求至少在20T以上。從最終實現(xiàn)的功能來看,計算平臺在自動駕駛中主要負(fù)責(zé)解決兩個主要問題:1)處理輸入的信號(雷達(dá)、激光雷達(dá)、攝像頭等);2)做出決策判斷、給出控制信號:該加速還是剎車?該左轉(zhuǎn)還是右轉(zhuǎn)?英偉達(dá)CEO黃仁勛的觀點是“自動駕駛本質(zhì)是AI計算問題,需求的計算力取決于希望實現(xiàn)的功能”,其認(rèn)為自動駕駛汽車需要對周邊的環(huán)境進(jìn)行判斷之后還作出決策,到底要采取什么樣的行動,本質(zhì)上是一個AI計算的問題,車上必須配備一臺AI超級處理器,然后基于AI算法能夠進(jìn)行認(rèn)知、推理以及駕駛。根據(jù)國內(nèi)領(lǐng)先的自動駕駛芯片設(shè)計初創(chuàng)公司地平線的觀點,要實現(xiàn)L3級的自動駕駛起碼需要20個teraflops(每秒萬億次浮點運算)以上的的計算力級別,而在L4級、L5級,計算力的要求將繼續(xù)指數(shù)級上升。
3.2.2.2. 算法和芯片協(xié)同設(shè)計是計算平臺的重要發(fā)展趨勢
自動駕駛計算平臺演進(jìn)方向——芯片+算法協(xié)同設(shè)計。目前運用于自動駕駛的芯片架構(gòu)主要有4種:CPU、GPU、FPGA(現(xiàn)場可編程門陣列)和ASIC(專用集成電路)。從應(yīng)用性能、單位功耗、性價比、成本等多維度分析,ASIC架構(gòu)具備相當(dāng)優(yōu)勢。參考我們之前發(fā)布的行業(yè)報告《芯際爭霸—人工智能芯片研發(fā)攻略》的觀點,未來芯片有望迎來全新的設(shè)計模式——應(yīng)用場景決定算法,算法定義芯片。如果說過去是算法根據(jù)芯片進(jìn)行優(yōu)化設(shè)計的時代(通用CPU+算法),現(xiàn)在則是算法和芯片協(xié)同設(shè)計的時代(專用芯片ASIC+算法),這一定程度上稱得上是“AI時代的新摩爾定律”。具體而言,自動駕駛核心計算平臺的研發(fā)路徑將是根據(jù)應(yīng)用場景需求,設(shè)計算法模型,在大數(shù)據(jù)情況下做充分驗證,待模型成熟以后,再開發(fā)一個芯片架構(gòu)去實現(xiàn),該芯片并不是通用的處理器,而是針對應(yīng)用場景,跟算法協(xié)同設(shè)計的人工智能算法芯片。根據(jù)業(yè)界預(yù)估,相比于通用的設(shè)計思路,算法定義的芯片將至少有三個數(shù)量級的效率提升。
3.2.3. 自動駕駛算法
3.2.3.1. 自動駕駛算法的定義和分類
算法是自動駕駛的大腦。根據(jù)面向的不同環(huán)節(jié),可以分為感知層的算法和決策層的算法。其中,1)感知層算法核心任務(wù)——是將傳感器的輸入數(shù)據(jù)最終轉(zhuǎn)換成計算機能夠理解的自動駕駛車輛所處場景的語義表達(dá)、物體的結(jié)構(gòu)化表達(dá),具體可以包括:物體檢測、識別和跟蹤、3D環(huán)境建模、物體的運動估計;2)決策層算法的核心任務(wù)——是基于感知層算法的輸出結(jié)果,給出最終的行為/動作指令,包括行為決策(汽車的跟隨、停止和追趕)、動作決策(汽車的轉(zhuǎn)向、速度等)、反饋控制(向油門、剎車等車輛核心控制部件發(fā)出指令)。整體來看,不同等級的自動駕駛算法的焦點不同。L3級別的自動駕駛,側(cè)重于替代人的環(huán)境感知能力,因此感知層算法將是核心。L4級別的自動駕駛,除了環(huán)境感知能力之外,側(cè)重點更在于復(fù)雜場景的決策算法的突破。
算法的驗證及迭代需要路測+仿真。按照產(chǎn)業(yè)普遍觀點,車企需要100億英里的試駕數(shù)據(jù)來優(yōu)化其自動駕駛系統(tǒng),若要達(dá)到該測試?yán)锍虜?shù),按照目前的實際路測能力計算,即便是一支擁有100輛測試車的自動駕駛車隊,7X24小時一刻不停歇地測試,要想完成100億英里的測試?yán)锍桃残枰ㄙM大約500年的時間。為了破解這一難題,仿真測試成為大多數(shù)公司的共同選擇。所謂自動駕駛仿真測試,簡單來說,就是計算機模擬重構(gòu)現(xiàn)實場景,讓自動駕駛算法在虛擬道路上做自動駕駛測試,虛擬場景中也可以包含道路設(shè)施、老人小孩等各種行人。目前仿真測試已經(jīng)成為了真實路測的一個有益補充,而未來隨著深度學(xué)習(xí)技術(shù)地進(jìn)一步深入運用,仿真測試將來自動駕駛研發(fā)方面發(fā)揮越來越重要的作用,并將推動自動駕駛技術(shù)早日實現(xiàn)商業(yè)化。相對于真實的路測而言,仿真的一大優(yōu)勢就是其可重復(fù)性,畢竟“人不能兩次踏進(jìn)同一條河流”,但仿真通過在計算機的虛擬世界中重構(gòu)現(xiàn)實場景可以做到這一點。從產(chǎn)業(yè)來看,為了更高效的迭代和驗證自動駕駛算法,仿真系統(tǒng)已經(jīng)逐漸成為標(biāo)配,Waymo、百度、騰訊將仿真系統(tǒng)研發(fā)作為頭等大事;AutoX、Roadstar.ai、Pony.ai等諸多自動駕駛初創(chuàng)公司也在自主研發(fā)仿真環(huán)境;業(yè)內(nèi)開始出現(xiàn)CARLA、AirSim等開源式自動駕駛仿真平臺。
3.2.4. 高精度地圖
高精度地圖的定義和特性。在自動駕駛時代,“地圖”一詞已經(jīng)失去了其傳統(tǒng)路線圖的含義。目前大多數(shù)車載地圖的分辨率已足夠用于導(dǎo)航功能,但想要實現(xiàn)自動駕駛,需要掌握更精確、更新的車輛周邊環(huán)境信息,從而通過其他駕駛輔助系統(tǒng)做出實時反應(yīng)。因此,未來的“地圖”實際上指的是非常精確且不斷更新的自動駕駛環(huán)境模型。目前,業(yè)界對于高精度地圖所包含的內(nèi)容尚未有準(zhǔn)群的定義,但大體上高精度地圖將滿足“高精度+高鮮度”的兩高特性:1)高精度是指地圖對整個道路的描述更加準(zhǔn)確、清晰和全面。高精地圖除了傳統(tǒng)地圖的道路級別,還有道路之間的連接關(guān)系(專業(yè)術(shù)語叫Link)。高精地圖最主要的特征是需要描述車道、車道的邊界線、道路上各種交通設(shè)施和人行橫道。即它把所有東西、所有人能看到的影響交通駕駛行為的特性全部表述出來;2)高鮮度則是指數(shù)據(jù)將更為豐富以及需要動態(tài)實時更新。實時性是非常關(guān)鍵的指標(biāo),因為自動駕駛完全依賴于車輛對于周圍環(huán)境的處理,如果實時性達(dá)不到要求,可能在車輛行駛過程中會有各種各樣的問題及危險。
按照數(shù)據(jù)的更新頻率,高精度地圖可以分為靜態(tài)數(shù)據(jù)和動態(tài)數(shù)據(jù)兩層。1)靜態(tài)數(shù)據(jù)是指高精度地圖需要將道路基本形態(tài)(車道線等數(shù)據(jù)),通過地圖或矢量數(shù)據(jù)來正確表達(dá)出來。在靜態(tài)高精地圖模型中,車道要素模型包括車道中心線、車道邊界線、參考點、虛擬連接線等;2)動態(tài)數(shù)據(jù)是指天氣、地理環(huán)境、道路交通、自車狀態(tài)等需要動態(tài)更新的數(shù)據(jù)。通過靜態(tài)數(shù)據(jù)和動態(tài)數(shù)據(jù)的疊加,高精度地圖將最終實現(xiàn)對于自動駕駛的環(huán)境建模。
高精度地圖對于自動駕駛的意義在于:1)提升傳感器的性能邊界,作為感知層的安全冗余。在自動駕駛行業(yè),傳感器方案供應(yīng)商正在致力于使汽車擁有“眼睛”,代替駕駛員完成感知的過程。然而,現(xiàn)有的傳感器方案仍然存在改進(jìn)的空間,包括傳感器測量的邊界(視覺、激光感知范圍有限)、傳感器應(yīng)用的工況限制(如攝像頭在雨雪天氣無法正常工作)。高精度地圖超視距的特點意味著其可以對整體道路流量、交通事件、路況進(jìn)行預(yù)判,可以作為感知層的安全冗余;2)提供先驗知識。自動駕駛的基本原則:讓車的判斷越少、也就越安全。高精度地圖可以提供車輛環(huán)境模型的先驗知識,一定程度上減少自動駕駛車輛感知層的壓力;3)確定車輛在地圖中的位置:人可以通過觀察和記憶,而自動駕駛汽車只能通過高精度地圖以及其創(chuàng)建的環(huán)境模型確定車輛在在地圖中的位置。4)提供車道級的規(guī)劃路徑。正如前文所述,高精度地圖會把道路基本形態(tài),特別是車道線展現(xiàn)出來,輔助自動駕駛車輛實現(xiàn)車道級的路徑規(guī)劃,支持并線超車等高等級的駕駛決策。
高精度地圖是實現(xiàn)自動駕駛的必要條件嗎?——Level3及以上是必選項?;诿绹鳶AE協(xié)會對自動駕駛技術(shù)等級的劃分,在Level 2以下的輔助駕駛階段(ADAS階段),高精度地圖對整個輔助駕駛系統(tǒng)來說是一個可選項。當(dāng)自動駕駛技術(shù)發(fā)展到Level3及以上時,要求車輛在高速公路、停車場泊車等特殊場景中實現(xiàn)自動駕駛,高精度地圖的重要性開始凸顯。業(yè)內(nèi)公認(rèn)要想實現(xiàn)Level3級別的自動駕駛,高精度地圖將成為必選項。理由在于Level3的自動駕駛就意味著機器將完全取代人對于環(huán)境的監(jiān)控,考慮到現(xiàn)有的傳感器的性能邊界尚不足以完全替代,引入高精度地圖作為感知端的安全冗余增強整個系統(tǒng)的魯棒性就成為了必然的選擇。觀察目前自動駕駛行業(yè)實踐,無論是車廠推出的奧迪A8、凱迪拉克Super Cruise等已經(jīng)量產(chǎn)的Level3車型還是百度、谷歌等互聯(lián)網(wǎng)廠商的Level4自動駕駛方案都引入了高精度地圖,進(jìn)一步驗證了上述觀點。
3.2.5 自動駕駛OS
自動駕駛?cè)蝿?wù)復(fù)雜需要穩(wěn)定的實時OS支持。如果將自動駕駛汽車視為一個電子終端產(chǎn)品,那么除了組成的硬件、用來執(zhí)行命令的算法(程序)之外,底層操作系統(tǒng)也必不可少。操作系統(tǒng)的價值在于可以更好的分配、調(diào)度運算和存儲資源。一個汽車駕駛系統(tǒng)運行的軟件包括感知、控制、決策、定位等一系列高計算消耗,邏輯十分復(fù)雜,對安全可靠性要求特別高的程序,簡單的單片機無法實現(xiàn),需要建立在一個成熟的五臟俱全的通用操作系統(tǒng)基礎(chǔ)上,同時要滿足實時性、分布式、可靠性、安全性、通用性等要求。從上述的要求可見,自動駕駛的操作系統(tǒng)與PC端、移動端操作系統(tǒng)的最大差別在于實時性。實際上,自動駕駛操作系統(tǒng)又稱為實時操作系統(tǒng)(RTOS),可確保在給定時間內(nèi)完成特定任務(wù),「實時」是指無人車的操作系統(tǒng),能夠及時進(jìn)行計算,分析并執(zhí)行相應(yīng)的操作,是在車輛傳感器收集到外界數(shù)據(jù)后的短時間內(nèi)完成的。實時性能是確保系統(tǒng)穩(wěn)定性和駕駛安全性的重要要求。
3.2.6. HMI(人機交互)
自動駕駛時代,HMI是連接用戶與外部互聯(lián)服務(wù)的重要入口。HMI是駕駛員與車輛交互的橋梁,駕駛員可以方便快捷地在HMI中查詢、設(shè)置和切換車輛系統(tǒng)的各種信息,在增強駕駛樂趣的同時,提升駕駛安全性。HMI由中控、儀表、抬頭顯示、ADAS系統(tǒng)等多個組件構(gòu)成。傳統(tǒng)汽車的人機界面HMI也被稱作駕馭員界面(Driver Interface),駕馭員的首要使命(Primary Task)是駕馭,因此支撐和輔佐駕馭就天然成為HMI的中心功能,信息娛樂等作為次要功能(Secondary Task)。而在自動駕駛時代,隨著駕駛員的注意力逐步釋放出來,汽車從生產(chǎn)工具進(jìn)化為家庭、辦公場所之外的第三生活空間,HMI將成為連接用戶與外部互聯(lián)服務(wù)的重要入口,產(chǎn)業(yè)地位將顯著提升,HMI的設(shè)計理念也將被顛覆。
3.3. 5G+AI黑科技打通自動駕駛技術(shù)的“任督二脈”
5G+AI是解鎖高等級自動駕駛技術(shù)的關(guān)鍵所在。L2升級到L3、L3升級到L4,每一個自動駕駛級別的升級,都是一個質(zhì)的飛躍。其中:1)L2過渡到L3。L3的主要升級在于實時監(jiān)測環(huán)境并作出反應(yīng),其主要難點在于機器的感知能力能否達(dá)到要求。駕駛這種等級的車輛,司機只需要在系統(tǒng)提示的時候接管系車輛的掌控權(quán)或者完成判斷,正常加減速、轉(zhuǎn)彎等操作基本可以交給系統(tǒng)來處理。這一過渡需要解決的問題是,機器如何代替人進(jìn)行可靠的周邊行車環(huán)境感知?特別是在極端環(huán)境下仍然可以做到可靠感知,確保行車安全;2)L3過渡到L4。L4的主要升級在于完全交由機器來進(jìn)行自主決策(即使是在緊急情況、激烈的駕駛情況下)。這意味著機器的認(rèn)知智能要有實質(zhì)性進(jìn)步。上述問題的關(guān)鍵所在正是5G+AI。
以深度學(xué)習(xí)為代表的AI機器視覺崛起,成功突破L3的技術(shù)瓶頸。以Mobileye的L2級別輔助駕駛為例,仍然是基于后端規(guī)則庫的傳統(tǒng)機器視覺,通過匹配后端規(guī)則庫與前端攝像頭的輸入數(shù)據(jù),進(jìn)行物體的識別和跟蹤。傳統(tǒng)機器視覺最大的問題是,規(guī)則庫是有限的,而汽車面對的環(huán)境是無限的。而在深度學(xué)習(xí)的框架引進(jìn)并發(fā)揚光大后,AI處理圖像分類任務(wù)的能力大幅提升,錯誤率直接下降。以ImageNet機器視覺大賽為例,深度學(xué)習(xí)技術(shù)框架下的機器視覺和傳統(tǒng)的機器視覺有著明顯的量級的提升。我們認(rèn)為,不斷成熟完善的AI機器視覺配合高精度地圖作為安全冗余,對于突破L3的技術(shù)瓶頸起到了關(guān)鍵的作用。
引入以強化學(xué)習(xí)為代表的AI技術(shù),5G打通外部“大腦”,助力L4自動駕駛場景的實現(xiàn)。傳統(tǒng)基于搜索或者規(guī)則引擎的駕駛決策系統(tǒng),往往只能采取非常保守的駕駛策略,即遇到障礙物立即剎停。而變道超車,加塞卡位等等在日常駕駛中經(jīng)常需要面對的情況,目前的系統(tǒng)需要人為設(shè)計各種精妙的策略進(jìn)行應(yīng)對,在設(shè)計策略時一旦有所疏忽,后果很可能是車毀人亡。如何讓機器真正像人一樣的開車,學(xué)會自主的決策,是L4的關(guān)鍵所在。谷歌AlphaGo在圍棋領(lǐng)域的成功是一個重要的標(biāo)志性事件,其創(chuàng)新的引入了強化學(xué)習(xí)等全新的AI學(xué)習(xí)框架,模擬了人的思考方式,標(biāo)志著機器智能的重要突破。引入強化學(xué)習(xí)的框架后,自動駕駛車輛可以像AlphaGo一樣思考學(xué)習(xí),進(jìn)行自主決策。此外,以5G為代表的V2X的引入,相當(dāng)于打通了自動駕駛的外部“大腦”,可以為自動駕駛車輛提供更實時、更全面的外部信息,更好的實現(xiàn)多車的協(xié)同、交互,突破單車智能的技術(shù)瓶頸,助力L4自動駕駛場景的實現(xiàn)。
自動駕駛L3商業(yè)化技術(shù)已經(jīng)成熟,L4/5加速發(fā)展進(jìn)入驗證試點階段??v觀全球主流科技公司和整車廠的自動駕駛技術(shù)商業(yè)化進(jìn)展,除了個別領(lǐng)跑者如整車廠(奧迪已經(jīng)量產(chǎn)L3級別的自動駕駛車輛)、科技公司(Waymo已啟動L4級別機器人出租車的商業(yè)化運營),大部分公司的節(jié)奏是已初步掌握L3的核心技術(shù),進(jìn)入由L2向L3商業(yè)化過渡的關(guān)鍵階段,同時L4/5加速發(fā)展進(jìn)入驗證試點階段。
4.政策:“綠燈”頻開,合法上路在即
國家層面:自動駕駛汽車已成為全球汽車產(chǎn)業(yè)發(fā)展的戰(zhàn)略制高點,國內(nèi)頂層設(shè)計政策已出臺。制造強國離不開汽車強國,汽車強國離不開智能汽車強國。全球眾多國家已將自動駕駛汽車發(fā)展納入國家頂層規(guī)劃,爭搶未來汽車產(chǎn)業(yè)發(fā)展的戰(zhàn)略制高點,以求在汽車產(chǎn)業(yè)轉(zhuǎn)型升級之際搶占先機。比如,美國交通運輸部于2016年9月發(fā)布聯(lián)邦《自動駕駛汽車政策指南》,持續(xù)推進(jìn)自動駕駛汽車的安全監(jiān)管與測試,并于2018年10月發(fā)布《為未來交通做準(zhǔn)備:自動駕駛汽車3.0》,加強自動駕駛汽車與整個交通出行體系的安全融合。日本在2017年發(fā)布《2017官民ITS構(gòu)想及路線圖》,公布日本自動駕駛汽車發(fā)展時間表,提出2020年實現(xiàn)高速公路L3級自動駕駛功能,并在特定區(qū)域?qū)崿F(xiàn)L4級自動駕駛應(yīng)用。國內(nèi)也已啟動自動駕駛汽車發(fā)展國家戰(zhàn)略規(guī)劃,《汽車產(chǎn)業(yè)中長期發(fā)展規(guī)劃》、《智能汽車創(chuàng)新發(fā)展戰(zhàn)略(征求意見稿)》、《車聯(lián)網(wǎng)(智能網(wǎng)聯(lián)汽車)產(chǎn)業(yè)發(fā)展行動計劃》等多部文件均對自動駕駛產(chǎn)業(yè)提出了清晰而具體的發(fā)展規(guī)劃。
地方政府“綠燈”頻開,自動駕駛政策、牌照和路測成為一場關(guān)于“城市名片”的競賽??紤]到汽車工業(yè)對于地方GDP的拉動作用以及自動駕駛的技術(shù)引領(lǐng)作用,國內(nèi)地方政府對于自動駕駛技術(shù)可謂“綠燈”頻開。根據(jù)億歐統(tǒng)計,截止2018年底,國內(nèi)已有12座城市和地區(qū)發(fā)放自動駕駛道路測試牌照,并鼓勵相關(guān)企業(yè)開展商業(yè)化的試運營下項目,為自動駕駛汽車相關(guān)的技術(shù)標(biāo)準(zhǔn)和法規(guī)體系的建立提供必要支持。除了路測的支持之外,例如北京市等先行城市還發(fā)布了地方政府版的產(chǎn)業(yè)扶持政策(《北京市智能網(wǎng)聯(lián)汽車創(chuàng)新發(fā)展行動方案(2019年-2022年)》),自動駕駛產(chǎn)業(yè)已經(jīng)成為一場關(guān)于“城市名片”的競賽。
國家層面指導(dǎo)意見有望出臺,監(jiān)管有望不再缺位,確保自動駕駛車輛上路的“合法性”。目前的交通法規(guī)都圍繞著一個關(guān)鍵要素——駕駛員,而且駕照、車險、交通法規(guī)等所有制度環(huán)節(jié)都假定“汽車是在人的操控下運行的”。而對于高等級自動駕駛汽車而言(駕駛權(quán)逐步更替成機器),在現(xiàn)有的制度下,會引發(fā)一系列現(xiàn)實的困境,例如:在交通事故中,如何判定哪輛車是事故責(zé)任方?自動駕駛車輛和傳統(tǒng)車輛的路權(quán)如何分配?自動駕駛車輛想要規(guī)模化的上路,離不開底層的法律監(jiān)管的創(chuàng)新,來確保其基本的合法性??梢哉f,相對于已出臺的眾多產(chǎn)業(yè)政策的大力支持,目前國內(nèi)在關(guān)于自動駕駛技術(shù)的法律監(jiān)管方面是缺位的。但考慮到國內(nèi)的整個法律體制相對于全球其他國家,更具有集中的、自上而下的監(jiān)管特點;具有不同職能部門之間可以實現(xiàn)更好協(xié)調(diào)的優(yōu)勢,我們樂觀地判斷,自動駕駛車輛上路合法性的監(jiān)管文件有望盡快出臺。最新的好消息是,交通部部長***在2019年2月28日表示,將力爭在國家層面出臺《自動駕駛發(fā)展指導(dǎo)意見》,有望徹底掃除自動駕駛車輛上路的法律障礙。整體上,高等級自動駕駛車輛上路合法化的路徑,將跟隨技術(shù)的成熟度逐漸放開,先從簡單的高速公路路況開始,逐步開放城區(qū)等復(fù)雜場景,直至全場景。
5.成本:有望驟降,從Demo跨越到準(zhǔn)量產(chǎn)階段
5.1.技術(shù)創(chuàng)新推動核心部件成本驟降
5.1.1. L3自動駕駛硬件改造成本有望降至2000美元/車以下
產(chǎn)業(yè)界普遍對于自動駕駛成本大幅度驟降持樂觀態(tài)度。政策法規(guī)、技術(shù)兩大難題越過之后,自動駕駛產(chǎn)業(yè)規(guī)?;涞氐淖詈笠蛔笊骄褪浅杀?。盡管目前高等級自動駕駛(L4)的單車改造成本仍然居高不下,但產(chǎn)業(yè)界對于自動駕駛成本隨著技術(shù)進(jìn)步大幅下降均持有樂觀態(tài)度。國際Tier1巨頭德爾福汽車CEO Kevin Clark此前曾表示,到2025年,德爾福希望將自動駕駛汽車的成本降低逾90%至5000美元左右。
預(yù)計至2025年,L3的自動駕駛硬件改造成本約在1900美元/車。參考三菱日聯(lián)摩根士丹利(MUMSS)、英飛凌、IHS、蔚來資本等多方產(chǎn)業(yè)報告以及多位產(chǎn)業(yè)鏈專家調(diào)研,我們拆解高等級自動駕駛(L3及以上)的核心部件配置以及價格趨勢做出預(yù)測。其中,自動駕駛硬件改造成本最高的核心部件是激光雷達(dá)和計算平臺,也是現(xiàn)階段自動駕駛成本居高不下的最大障礙。從產(chǎn)業(yè)發(fā)展趨勢來看,隨著固態(tài)激光雷達(dá)等新的技術(shù)路線替代傳統(tǒng)機械式雷達(dá),工藝成本有望顯著下降,帶動價格曲線下行;計算平臺則由于芯片設(shè)計廠考慮攤銷前期的研發(fā)成本,在小批量量產(chǎn)期間定價較高;在大規(guī)模量產(chǎn)后價格有望全面下降。綜合來看,我們預(yù)計技術(shù)創(chuàng)新將推動核心部件成本驟降,至2025年,L3-l4的自動駕駛硬件改造成本約在1900-4400美元/車。
5.1.2. 核心部件成本趨勢分析
核心部件——攝像頭、毫米波雷達(dá)、超聲波雷達(dá)、及GPS&IMU的價格曲線及趨勢。以上4個部件的生產(chǎn)工藝、技術(shù)路線較為成熟,產(chǎn)業(yè)競爭充分,隨著產(chǎn)量上升帶來的規(guī)模效應(yīng)釋放,預(yù)計價格將穩(wěn)步下降。
核心部件——計算平臺,隨著大規(guī)模量產(chǎn),價格將大幅下降。市場對于自動駕駛量產(chǎn)的一大疑慮就是作為核心硬件的自動駕駛芯片的單價遲遲沒有達(dá)到合理的水平,導(dǎo)致自動駕駛的整體解決方案成本超過消費者可以承受的合理范圍,會對自動駕駛的大規(guī)模普及造成嚴(yán)重的影響。我們認(rèn)為,鑒于芯片的出貨定價與量產(chǎn)情況有著密切的關(guān)系,不必過分擔(dān)憂芯片的出貨價格??紤]到自動駕駛計算平臺高昂的研發(fā)成本(英偉達(dá)最新一代的Xavier芯片研發(fā)投入高達(dá)20億美金),芯片廠必然會在尚未大規(guī)模量產(chǎn)的初期選擇高定價的模式,來部分覆蓋前期的投入。而一旦達(dá)到大規(guī)模量產(chǎn)(比如年出貨量達(dá)到100萬顆),則芯片廠能夠很快回本前期的投入,芯片的定價之后有望與成本相掛鉤,價格會急劇下降。
核心部件——激光雷達(dá),合理的技術(shù)路徑帶動成本降低。激光雷達(dá)部件現(xiàn)階段成本較高,以行業(yè)主要企業(yè)Velodyne的激光雷達(dá)為例,按照線束的密度進(jìn)行報價——8萬美元(64線)、4萬美元(32線)、4千美元(16線)。Velodyne的激光雷達(dá)報價居高不下的原因,并非激光雷達(dá)的物料成本,而在于其采用了傳統(tǒng)的機械式掃描的技術(shù)方案——機械式激光雷達(dá)的光學(xué)系統(tǒng)的裝配和標(biāo)定過程要求高度嚴(yán)謹(jǐn)?shù)臋C械系統(tǒng)校準(zhǔn),同時,量產(chǎn)的一致性要求也會導(dǎo)致產(chǎn)能低下。現(xiàn)階段,產(chǎn)業(yè)界的一致看法是打造出一臺售價低廉的激光雷達(dá)關(guān)鍵就是將傳統(tǒng)的旋轉(zhuǎn)式機械設(shè)計換成固態(tài)設(shè)計,這樣能大量減少可移動部件,激光雷達(dá)的結(jié)構(gòu)和量產(chǎn)簡單了,成本也就自然降低了。在新的技術(shù)路徑下,眾多產(chǎn)業(yè)界的廠商(包括Velodyne)均預(yù)測未來激光雷達(dá)的量產(chǎn)成本將下調(diào)到數(shù)百美金/顆。
5.2. 政府助力車路協(xié)同(V2X)基建普及,顯著降低單車改造成本
“聰明”的車+“智能”的路,車路協(xié)同(V2X)發(fā)展將顯著降低單車改造成本。目前大部分對于自動駕駛硬件改造成本的討論都停留在單車智能的技術(shù)路線和視角。實際上,國內(nèi)的自動駕駛技術(shù)路線是智能網(wǎng)聯(lián)的路線,即“單車智能”與“車路協(xié)同”協(xié)同發(fā)展。車路協(xié)同的價值和意義在于,如果說自動駕駛單車智能的價值是讓路上的車輛都能變成由“二十年駕齡老司機”駕駛的話,那么車路協(xié)同則像是又給每輛車配備了一個開了“天眼”的交警,“他”將站在“完美”視角保障安全、疏導(dǎo)交通,高效分配道路資源。以一個交通路況復(fù)雜的路口為例,人類司機和自動駕駛車車載傳感器由于視角和視線的局限,都只能感知到路況信息的一部分,那些看不到的障礙物造成了危險隱患;如果車路協(xié)同配備了“完美視角”路側(cè)感知設(shè)備以后,利用高清攝像頭等多種傳感器加上邊緣計算設(shè)備的識別能力,可以感知到路口范圍內(nèi)全部的交通參與方,并實現(xiàn)多種分析功能,把這些信息通過V2X通信實時的共享給路口的全部車輛,即可最大限度消除危險隱患?!败嚶穮f(xié)同”技術(shù)的演進(jìn)和基礎(chǔ)設(shè)施的普及,將會顯著降低單車智能的改造成本。根據(jù)百度的預(yù)測,在車路協(xié)同的基礎(chǔ)上,自動駕駛的研發(fā)成本可以降低30%,接管數(shù)會下降62%,預(yù)計可讓自動駕駛提前2-3年在中國落地。
車路協(xié)同(V2X)已經(jīng)成為國家重點發(fā)展戰(zhàn)略,5G基建點火助力。目前發(fā)展車路協(xié)同技術(shù)及其應(yīng)用已納入交通部智能交通系統(tǒng)發(fā)展戰(zhàn)略。國家的在建項目有:新一代國家交通控制網(wǎng)和智慧公路試點工程/北京冬奧會、雄安新區(qū)項目等。從車路協(xié)同的技術(shù)體系來看,我們認(rèn)為,5G的普及將進(jìn)一步提升車路協(xié)同的技術(shù)價值。根據(jù)中移動測算,自動駕駛車輛以每小時60英里(約96.56公里/小時)的速度行駛,在使用5G通訊網(wǎng)絡(luò)的情況下,其收到某一反饋信息后實際上只移動了3厘米左右?,F(xiàn)有4G網(wǎng)絡(luò)時延條件之下,時速100公里的汽車,從發(fā)現(xiàn)障礙到啟動制動系統(tǒng)至少移動1.4米。2019年以來政府提出了科技新“基建”的政策發(fā)展方針。發(fā)改委副主任連維良表示今年將的“建設(shè)”的重點有五個方面,“加強新型基礎(chǔ)設(shè)施建設(shè)”居于首位(包括5G的商用),我們預(yù)計政府將有財政資金配套產(chǎn)業(yè)政策扶持5G產(chǎn)業(yè),快速完善科技新“基建”,為自動駕駛產(chǎn)業(yè)鋪路。政府的保駕護航下,國內(nèi)有望擁有全球最領(lǐng)先的自動駕駛基礎(chǔ)設(shè)施(5G+V2X)。
5.3. 從封閉到開放,聯(lián)合研發(fā)分?jǐn)傞_發(fā)成本
從封閉到開放,車企合縱連橫,聯(lián)合研發(fā)分?jǐn)傞_發(fā)成本。自動駕駛研發(fā)對于軟硬件投入的門檻之高、投資回報周期之長無需贅言。整車廠選擇自研的優(yōu)勢在于垂直整合,利于持續(xù)迭代,但劣勢在于成本高,研發(fā)周期長。能否擔(dān)負(fù)起初期一次性的研發(fā)成本,并在整個汽車銷售過程中將其攤薄,這是車廠需要解決的問題。實際上,與其自身冒險的大規(guī)模投入,車企間從封閉到開放,合縱連橫組建聯(lián)盟,分?jǐn)偀o人駕駛先期的風(fēng)險成本,縮短技術(shù)創(chuàng)新周期,形成規(guī)模效應(yīng),搶占時間窗口,成為產(chǎn)業(yè)新趨勢。在共同利益的驅(qū)動下,我們已經(jīng)看到奔馳、寶馬、通用、本田、大眾、福特等一線車廠,在自動駕駛技術(shù)研發(fā)領(lǐng)域達(dá)成戰(zhàn)略合作協(xié)議,預(yù)計后續(xù)將有更多的車企加入到聯(lián)盟中。
6.市場:蓄勢待發(fā),大幕將啟
6.1.態(tài)度開放,需求旺盛,中國或成全球自動駕駛第一大市場
國內(nèi)消費者對于自動駕駛的接受程度、需求、支付意愿均居于全球前列。1)接受程度。根據(jù)艾瑞的調(diào)研報告,相對于較為保守的美國消費市場,國內(nèi)消費者對于自動駕駛持更加開放的態(tài)度,尤其在數(shù)據(jù)、安全性等領(lǐng)域;2)需求:騰訊人工智能與自動駕駛消費者調(diào)研,則表明國內(nèi)消費者對于自動駕駛的需求較為普遍,近60%的人口對自動駕駛有需求。從調(diào)研樣本來看,自動駕駛對女性與大年齡層消費人群存在更強的需求吸引力,在經(jīng)濟更發(fā)達(dá)且交通環(huán)境更復(fù)雜的一二線城市中接受程度更高;3)支付意愿。麥肯錫在2018年4月的調(diào)研顯示,49%的中國消費者認(rèn)為全自動駕駛“非常重要”。國內(nèi)消費者愿意為購買自動駕駛車輛支付高達(dá)4600美元的溢價,而美國和德國則分別為3900美元和2900美元。
中國已經(jīng)是全球最大的汽車市場,有望成為全球自動駕駛市場第一大市場。從1956年中國第一輛解放牌卡車在一汽下線開始,經(jīng)過60多年的努力,從自力更生到以市場換技術(shù)、合資建廠,再到自主研發(fā),如今中國已經(jīng)成為世界上汽車產(chǎn)銷量最多的國家,根據(jù)wind數(shù)據(jù),約占全球汽車市場1/3。盡管2018年國內(nèi)汽車銷量市場首度出現(xiàn)負(fù)增長,但考慮到“汽車下鄉(xiāng)”政策的托底,以及消費升級的趨勢,我們對國內(nèi)汽車市場的未來仍然保持樂觀態(tài)度。巨大的消費市場疊加旺盛的自動駕駛需求,我們預(yù)計中國在未來同樣將成為全球自動駕駛第一大市場。
6.2. 商業(yè)化路徑之車廠前裝:進(jìn)入大規(guī)模量產(chǎn)前夕,規(guī)模有望超過1400億美金
6.2.1. 車廠大規(guī)模自動駕駛計劃進(jìn)入倒計時
自動駕駛產(chǎn)業(yè)進(jìn)入大范圍量產(chǎn)前夕,2020/2021年將成為主機廠量產(chǎn)的重要節(jié)點。觀察自動駕駛產(chǎn)業(yè)主流企業(yè)(Tier1/2、車廠)的量產(chǎn)時間表,2020/2021年是絕大部分企業(yè)高等級自動駕駛(Level3/4)量產(chǎn)的節(jié)點??梢哉f,自動駕駛產(chǎn)業(yè)已經(jīng)進(jìn)入大范圍量產(chǎn)前夕。
以2020、2021年為界,國內(nèi)自動駕駛產(chǎn)業(yè)鏈即將開啟黃金10年發(fā)展期。結(jié)合國家《汽車產(chǎn)業(yè)中長期發(fā)展規(guī)劃》、《智能汽車創(chuàng)新發(fā)展戰(zhàn)略》(征求意見稿)以及產(chǎn)業(yè)鏈調(diào)研的結(jié)果。我們認(rèn)為,以2020、2021年為界,國內(nèi)自動駕駛產(chǎn)業(yè)鏈即將開啟黃金10年發(fā)展期。
6.2.2. 2030年自動駕駛前裝市場空間有望達(dá)到1400億美金
L3級別及以上的自動駕駛前裝套件預(yù)計報價將在3000-10000美金/套。現(xiàn)階段已經(jīng)量產(chǎn)的自動駕駛系統(tǒng)中,實現(xiàn)L2+功能的通用-凱迪拉克CT6的智能駕駛配置包的報價在5000美金/套;特斯拉的AutoPilot系統(tǒng),根據(jù)不同的實現(xiàn)功能,分別報價在5000美金/套、8000美金/套。奧迪A8代表現(xiàn)階段量產(chǎn)的自動駕駛的最高水平,已經(jīng)達(dá)到L3級別,可以實現(xiàn)在高速公路上,以60公里/小時的速度完成自動駕駛功能,讓駕駛員完全可以不用手握方形盤而去做其他的事情,在遇到緊急情況的時候,車輛會發(fā)出接管請求,并且給駕駛員提供 8-10 秒的時間評估路況,重新接管車輛進(jìn)行控制,其報價在10000美金/套。參考上述車廠的自動駕駛前裝套件報價,我們預(yù)計在大規(guī)模普及之后,L3級別及以上的自動駕駛前裝套件預(yù)計報價將在3000-10000美金/套。當(dāng)然,不排除成本大幅降低后,整車廠將降低報價,讓利消費者。
國內(nèi)自動駕駛前裝套件的市場規(guī)模2030年有望突破1400億美金。根據(jù)前文所預(yù)測的國內(nèi)自動駕駛滲透率曲線以及自動駕駛前裝套件預(yù)計報價,只估算L3及以上的高等級自動駕駛的前裝套件的國內(nèi)市場規(guī)模,我們預(yù)測在2030年有望突破1400億美金。
6.3. 商業(yè)化路徑之MaaS:終極場景,潛力無限
6.3.1. Waymo開啟Robo-taxi元年
Waymo 正式商業(yè)化試運營,開啟Robo-taxi元年。在Waymo首席執(zhí)行官John Krafcik看來,Waymo在產(chǎn)業(yè)中的角色不止是“賣水人”,更是“掘金者”。Waymo的L4級別自動駕駛車輛,實際上就是生產(chǎn)力工具,可以為C端用戶提供MaaS(Mobility as a servie,無縫出行服務(wù))自動駕駛網(wǎng)約車服務(wù)(Robo-taxi),并從中獲利。從2009年成立以來,經(jīng)過近10年的技術(shù)打磨,2018年12月5日,John Krafcik發(fā)布內(nèi)部信宣布自動駕駛服務(wù)正式商用,推出自自動駕駛網(wǎng)約車服務(wù)(Robo-taxi)——Waymo One。雖然定價還在測試中,但是模式基本基于行程時間和距離,這和Uber、Lyft以及中國的滴滴是類似的定價模式。據(jù)The Verge實驗,大約8分鐘、3英里的行程在Waymo One上需要花費7美元,定價與Uber和Lyft相差不大。從整個乘車體驗流暢性來看,The Verge報道認(rèn)為已經(jīng)基本上等同于正常人在開車,技術(shù)變得更為成熟了,例如:遇到減速帶會減速、改變車道會加速、人行道前會讓人(如果太靠近斑馬線會倒車),如此人性化讓人感受到機器的溫暖。
Robo-taxi徹底變革傳統(tǒng)車企的商業(yè)模式,潛力無限。Robo-taxi的商業(yè)模式徹底完成了對于傳統(tǒng)汽車制造商商業(yè)模式的顛覆。根據(jù)馭勢科技CEO測算,同樣是一輛車,傳統(tǒng)的汽車廠商每賣出一臺車?yán)麧櫴?400美金,假設(shè)這臺車在生命周期當(dāng)中開14-15萬英里,也就是說傳統(tǒng)車廠在整個汽車的生命周期中,賺取的利潤是0.01美元/公里。以Waymo為代表的Robo-taxi模式,因為自動駕駛帶來的人力成本的節(jié)約以及效率的提升,在整個汽車的生命周期中,收費可以達(dá)到1.25美金/英里(值得一提的是,除了基準(zhǔn)的出行服務(wù)收費模型外,MaaS未來還可以在車內(nèi)提供有償?shù)膴蕵讽椖炕驈V告項目來獲得收入),而期間運營成本隨著自動駕駛技術(shù)升級將顯著下降。當(dāng)成本下降到,自動駕駛每公里的總成本將與司機駕駛傳統(tǒng)汽車的成本大致持平的平衡點時,市場的平衡將被打破,Robo-taxi的商業(yè)模式將開始顯露出威力。
6.3.2. 商用場景的MaaS有望率先落地
自動駕駛的落地場景,主要考慮三個方面:市場規(guī)模、技術(shù)難度、經(jīng)濟性。自動駕駛MaaS的落地場景十分多樣,乘用車場景主要以自動駕駛出租車(Robo-taxi)為主;商用場景根據(jù)不同的使用用途,可以劃分為港口貨運、園區(qū)擺渡車、高速公路物流、礦區(qū)、市政環(huán)衛(wèi)、最后一公里配送等。根據(jù)蔚來資本的研究,具備大的市場規(guī)模體量、技術(shù)難度相對較低、成本可接受具備經(jīng)濟性的場景將最快實現(xiàn)自動駕駛的落地。市場規(guī)模方面,蔚來資本對各個場景的自動駕駛規(guī)模進(jìn)行了估算。以長途物流為例,中國重型卡車的保有量570萬臺,假定用于長途物流的卡車占到30%,以每輛車2位司機,每位司機年工資15-20萬元估算,長途物流自動駕駛的潛在替代規(guī)模在5,000到7,000億元。而末端配送也是不可忽視的一塊市場。2018年預(yù)計中國的快遞業(yè)務(wù)量有望突破490億件,快遞業(yè)務(wù)收入達(dá)到5,950億元,而網(wǎng)絡(luò)外賣方面,市場份額第一的美團外賣號稱峰值日訂單量已達(dá)到2,000萬。結(jié)合末端配送每單的成本,蔚來資本預(yù)計最后一公里的自動駕駛配送市場規(guī)模超840億元。
產(chǎn)業(yè)快速爆發(fā)的轉(zhuǎn)折點將發(fā)生在自動駕駛成本低于人力成本之時。本質(zhì)上講,自動駕駛之于MaaS就是,初期高投入(自動駕駛車輛改造成本)換取后續(xù)人工費用降低和運營效率的提升。從經(jīng)濟性看,只有快速地達(dá)到可取代人力成本之時,某個細(xì)分自動駕駛場景才能快速爆發(fā)。當(dāng)前L4級自動駕駛硬件成本依然高昂,甚至比車輛自身成本還高,導(dǎo)致整體的經(jīng)濟性不高。而隨著技術(shù)實現(xiàn)成本的降低,在人力成本愈發(fā)高昂的宏觀背景下,自動駕駛MaaS將逐漸顯現(xiàn)出成本和效率上的優(yōu)勢。以長途物流為例,根據(jù)蔚來資本的測算,比較了普通卡車與自動駕駛卡車(原有2名司機,取代1名司機)的TCO(總擁有成本,Total Cost of Ownership)成本,當(dāng)自動駕駛改造降至20萬元/車時(年運維費為5.1萬元/車),自動駕駛卡車TCO成本將比普通卡車的TCO成本下降14%。
7.投資建議與重點推薦公司
7.1. 投資建議
自動駕駛是百年汽車工業(yè)的又一次偉大范式轉(zhuǎn)移,交通出行的生態(tài)體系、汽車產(chǎn)業(yè)鏈的游戲規(guī)則都將被重新定義。5G+AI技術(shù)創(chuàng)新的推動下,自動駕駛“黑科技”得以解鎖,跨越技術(shù)、成本、政策三座大山之后,迎來商業(yè)化的全面落地。我們預(yù)計,國內(nèi)自動駕駛產(chǎn)業(yè)將呈現(xiàn)指數(shù)級增長;與之伴隨的,自動駕駛的供應(yīng)鏈體系也啟動在即,無論是傳統(tǒng)的Tier1、Tier2供應(yīng)商、亦或者是新興的自動駕駛技術(shù)供應(yīng)商都將面臨黃金的發(fā)展機遇??紤]到自動駕駛作為復(fù)雜的工程體系,所涉及的技術(shù)環(huán)節(jié)眾多,我們建議優(yōu)先選擇“黃金賽道”(卡位繞不開、進(jìn)入壁壘高、市場空間大)中的“頂級賽手”,我們重點推薦四維圖新、千方科技、中科創(chuàng)達(dá)、中海達(dá)、德賽西威和格爾軟件,建議關(guān)注路暢科技、華陽集團、合眾思壯、華測導(dǎo)航、高新興等。
7.2.重點推薦公司
7.2.1. 四維圖新:國內(nèi)高精度地圖領(lǐng)軍企業(yè)
國內(nèi)高精度地圖領(lǐng)軍企業(yè)。參考此前深度報告《四維圖新:巨變前夜,大幕將啟》,從數(shù)據(jù)生態(tài)、制作&更新成本以及資質(zhì)等多個維度考察,公司在高精度地圖產(chǎn)業(yè)均有明顯的競爭優(yōu)勢。根據(jù)wind數(shù)據(jù),公司自上市以來,每年的研發(fā)投入占比均位居A股前十,巨額投入保障了公司業(yè)務(wù)的前瞻性和領(lǐng)先型。
中標(biāo)寶馬訂單,拉開自動駕駛業(yè)務(wù)商業(yè)化變現(xiàn)序幕。公司2月12日公告,與寶馬簽署自動駕駛地圖協(xié)議,將為寶馬在中國銷售的2021-2024年量產(chǎn)上市的汽車提供Level3及以上自動駕駛地圖產(chǎn)品及在線發(fā)布與更新服務(wù)。該訂單充分印證了公司在自動駕駛地圖行業(yè)的絕對實力,也拉開了自動駕駛業(yè)務(wù)商業(yè)化變現(xiàn)序幕。無論是單車價值還是長期滲透率,高精度地圖相對傳統(tǒng)導(dǎo)航地圖業(yè)務(wù)均有數(shù)倍以上提升,僅前裝市場空間就具備數(shù)量級躍升潛力,公司成長空間將徹底打開。
自動駕駛地圖迎單價與滲透率的雙重提升,僅前裝市場空間就具備數(shù)量級躍升潛力。根據(jù)易觀數(shù)據(jù),2018年上半年傳統(tǒng)車載導(dǎo)航前裝市場滲透率僅為14.9%,而隨著L3級自動駕駛汽車逐步量產(chǎn)普及,前裝導(dǎo)航地圖將由給人看的選配品轉(zhuǎn)變?yōu)檐囕d系統(tǒng)的標(biāo)配品,滲透率存在6-7倍提升空間。根據(jù)產(chǎn)業(yè)鏈調(diào)研,僅考慮一次性前裝收費,高精度地圖單價保守估計在公司傳統(tǒng)導(dǎo)航地圖(約200元/車)的5-10倍。此外,由于高精度地圖要求“高鮮度”的特點,地圖需要動態(tài)甚至實時更新,這意味著地圖將不再是傳統(tǒng)導(dǎo)航地圖的一錘子的數(shù)據(jù)買賣(lisence),后續(xù)更新意味著數(shù)據(jù)服務(wù)收費的模式(service)。此次訂單合同中也明確提及公司將提供自動駕駛地圖更新服務(wù),直到相關(guān)車輛的服務(wù)周期結(jié)束為止。因此,除了一次性收費的單價提升之外,后續(xù)的數(shù)據(jù)服務(wù)收入同樣值得期待。
投資建議:釋放商譽減值風(fēng)險之后,公司2019年有望輕裝上陣,加速前行。維持“買入-A”評級。
風(fēng)險提示:芯片業(yè)務(wù)發(fā)展不及預(yù)期;高精度地圖行業(yè)競爭加??;車聯(lián)網(wǎng)業(yè)務(wù)變現(xiàn)速度低于預(yù)期;自動駕駛業(yè)務(wù)變現(xiàn)速度不及預(yù)期。
7.2.2. 千方科技:國內(nèi)交通信息化龍頭,積極布局V2X業(yè)務(wù)
國內(nèi)交通信息化龍頭,交通與安防雙輪驅(qū)動。公司是國內(nèi)交通信息化龍頭,業(yè)務(wù)覆蓋城市交通、公路交通、軌道交通、民航等領(lǐng)域的大交通產(chǎn)業(yè)布局,形成從產(chǎn)品到解決方案、從云端數(shù)據(jù)到出行者、從硬件基礎(chǔ)設(shè)施到軟件智慧中樞的完整產(chǎn)業(yè)鏈。在完成了對國內(nèi)安防行業(yè)領(lǐng)軍企業(yè)——宇視科技的并購之后,公司踐行“一體兩翼”發(fā)展戰(zhàn)略,即以大數(shù)據(jù)+人工智能為核心優(yōu)勢,持續(xù)拓展“兩翼——智慧交通和智能安防”兩大業(yè)務(wù)領(lǐng)域。
具備完整的V2X產(chǎn)品線。公司緊跟智能網(wǎng)聯(lián)汽車(自動駕駛)發(fā)展趨勢,推出了V2X系列產(chǎn)品,涵蓋了網(wǎng)聯(lián)化路網(wǎng)設(shè)施與車載終端、智能化交通管理與行車服務(wù)等多領(lǐng)域,可面向車路協(xié)同與智能網(wǎng)聯(lián)汽車產(chǎn)業(yè)提供安全、高效、環(huán)保的全系列產(chǎn)品與服務(wù)支持。目前,公司V2X系列產(chǎn)品已在“國家智能汽車與智慧交通(京冀)示范區(qū)海淀基地”、“國家智能汽車與智慧交通(京冀)示范區(qū)亦莊基地”投入應(yīng)用。示范區(qū)搭載公司V2X網(wǎng)聯(lián)通信設(shè)備與系統(tǒng),按照T1-T5級別測試需求建設(shè),支持網(wǎng)聯(lián)駕駛研發(fā)測試。
投資建議:公司作為國內(nèi)交通信息化領(lǐng)域的龍頭,V2X業(yè)務(wù)深耕多年,具有完善的V2X產(chǎn)品線。公司將充分受益自動駕駛產(chǎn)業(yè)的蓬勃發(fā)展以及國家對V2X的投入。交通與安防雙輪驅(qū)動公司快速發(fā)展,維持“買入-A”評級。
7.2.3. 中科創(chuàng)達(dá):全球領(lǐng)先的智能駕駛艙軟件解決方案提供商
內(nèi)生外延前瞻布局智能車載業(yè)務(wù)。公司是全球領(lǐng)先的智能終端操作系統(tǒng)及平臺技術(shù)提供商。2013年起公司開始涉足智能車載領(lǐng)域并加速布局。一方面,公司與汽車電子行業(yè)內(nèi)領(lǐng)先企業(yè)展開緊密合作,如Qualcomm、瑞薩、德州儀器、恩智浦、STMicro、百度、QNX、OpenSynergy,索尼等,快速完善智能駕駛產(chǎn)業(yè)鏈的對接;另一方面,公司通過收購愛普新思和Rightware等企業(yè),與自身核心技術(shù)實現(xiàn)優(yōu)勢互補。公司可以為汽車廠商和tier1提供從操作系統(tǒng)開發(fā)、核心技術(shù)授權(quán)到應(yīng)用定制的包括汽車娛樂系統(tǒng)、智能儀表盤、綜合駕駛艙、InfoADAS和音頻產(chǎn)品在內(nèi)的整體智能駕駛艙軟件解決方案和服務(wù)。目前,全球采用公司智能駕駛艙解決方案的客戶超過70家,覆蓋了歐洲、美國、中國、日本和韓國,在中國已經(jīng)超過了30家。有多款產(chǎn)品已經(jīng)量產(chǎn)或者逐漸進(jìn)入量產(chǎn)階段。
受益于軟件定義汽車的產(chǎn)業(yè)趨勢。大眾汽車集團CEO日前宣布大眾將變?yōu)橐患臆浖?qū)動的公司,并宣布重新組建集團的獨立的軟件部門。我們認(rèn)為,軟件定義汽車的產(chǎn)業(yè)趨勢已經(jīng)明晰,而作為汽車軟件層面的整合提供商——中科創(chuàng)達(dá)將全面受益于未來汽車的軟件含量將逐步提升。需要強調(diào)的是,不同于傳統(tǒng)的智能手機業(yè)務(wù),公司車載業(yè)務(wù)提供的軟件解決方案的產(chǎn)品化程度目前已經(jīng)超過一半以上,商業(yè)模式也在往Loyalty收費等模式升級,隨著業(yè)務(wù)的持續(xù)擴張,規(guī)模效應(yīng)有望逐步顯現(xiàn)。
投資建議:我們十分看好公司在智能汽車領(lǐng)域的發(fā)展前景,預(yù)計2018-2019年EPS分別為0.4、0.56元,維持“買入-A”評級,6個月目標(biāo)價40元。
風(fēng)險提示:智能車載業(yè)務(wù)發(fā)展低于預(yù)期。
7.2.4. 中海達(dá):高精度定位龍頭,邁入自動駕駛新時代
傳統(tǒng)高精度定位龍頭,高精度地圖應(yīng)用驅(qū)動公司業(yè)績快速增長。公司是國內(nèi)高精度定位設(shè)備龍頭企業(yè)。圍繞高精度地圖軟件的應(yīng)用需求目前還處于發(fā)展初期,未來隨著智慧城市、智慧旅游、航空、港口等行業(yè)需求不斷增長,高精度地圖應(yīng)用有望驅(qū)動公司業(yè)績增長提速。
全球高精度定位領(lǐng)導(dǎo)者Trimble是公司成長的標(biāo)桿。Trimble是全球高精度龍頭企業(yè),也是公司成長的標(biāo)桿,目前市值100億美元。Trimble正在兩個領(lǐng)域進(jìn)行拓展:1)給通用汽車SuperCruise系統(tǒng)提供高精度定位設(shè)備;2)高精度地位軟件應(yīng)用已經(jīng)開始向SaaS化轉(zhuǎn)型。
高精度定位業(yè)務(wù)受益于自動駕駛產(chǎn)業(yè)落地。2020-2021年是大部分車企高等級自動駕駛(Level3/4)量產(chǎn)的節(jié)點。無論是以谷歌Waymo、百度Apollo為代表的互聯(lián)網(wǎng)企業(yè)自動駕駛解決方案,還是傳統(tǒng)車廠的自動駕駛解決方案,GNSS/IMU都是必選設(shè)備。公司在高精度定位及測繪領(lǐng)域積累了大量的GNSS/IMU技術(shù),擁有核心的定位、射頻和基帶算法。
投資建議:國內(nèi)高精度地圖應(yīng)用剛剛起步,隨著智慧城市、智慧旅游、航空、港口等行業(yè)需求不斷增加,公司業(yè)績增長有望提速。此外,自動駕駛時代正在到來,公司長期積累的大量技術(shù)有望加速落地,維持“買入-A”評級,6個月目標(biāo)價20元。
風(fēng)險提示:自動駕駛產(chǎn)業(yè)進(jìn)度低于預(yù)期;高精度地圖軟件應(yīng)用落地低于預(yù)期。
7.2.5. 德賽西威:車機先行者,加碼智能網(wǎng)聯(lián)
公司是國內(nèi)車載信息娛樂系統(tǒng)先行者,先合資后獨資,24年的合資經(jīng)歷為公司導(dǎo)入了核心穩(wěn)定、高瞻遠(yuǎn)矚的管理層、提供了一定的技術(shù)儲備以及優(yōu)質(zhì)的合資與外資整車廠客戶資源,使其具備明顯先發(fā)優(yōu)勢。公司不止步于傳統(tǒng)車載信息娛樂系統(tǒng)業(yè)務(wù),目前正在夯實主業(yè)的基礎(chǔ)上深化智能駕駛艙、ADAS和車聯(lián)網(wǎng)三大戰(zhàn)略布局。
車載信息娛樂系統(tǒng)普及,公司市占率有望提升。當(dāng)前車載信息娛樂系統(tǒng)滲透率60%,隨著產(chǎn)品日益普及,行業(yè)不斷擴容。根據(jù)偉世通,2018年車載信息娛樂系統(tǒng)全球市場規(guī)模約1300億元,中國市場規(guī)模約390億元,未來5年行業(yè)規(guī)模將保持4.3%的復(fù)合增速增長,目前全球市場主要為哈曼、愛信精機、歌樂、偉世通等多家外資占據(jù),國內(nèi)市場則由合資與自主瓜分,公司較自主具備先發(fā)優(yōu)勢與技術(shù)優(yōu)勢,較合資與外資具備響應(yīng)速度及價格較低優(yōu)勢,預(yù)計國內(nèi)市占率有望提升。
深化三大戰(zhàn)略布局:1)產(chǎn)品線縱向延伸,智能駕駛艙雛形初顯。公司先后涉足車載信息娛樂系統(tǒng)、駕駛信息顯示系統(tǒng),立足于主業(yè)延伸出的智能駕駛艙雛形初顯,目前多屏互動已獲得訂單,且已推出2代概念智能駕駛艙;2)進(jìn)軍ADAS,軟硬一體化。公司在ADAS上的布局亦具備前瞻性,軟件核心算法和硬件開發(fā)能力是公司進(jìn)軍ADAS的制勝法寶,目前已具備高清攝像頭、毫米波雷達(dá)、自動泊車融合方案的量產(chǎn)能力,部分產(chǎn)品已實現(xiàn)銷售;3)收購德國ATBB公司,助力三大戰(zhàn)略落地。高性能的智能天線是實現(xiàn)車輛信息交互的關(guān)鍵技術(shù),ATBB公司在天線制造領(lǐng)域有著雄厚的技術(shù)積累與人才儲備,收購ATBB公司有助于強化公司車聯(lián)網(wǎng)布局。
投資建議:預(yù)計公司2018-2020年EPS分別為0.76、0.82、0.98元,6個月目標(biāo)價34元,維持“買入-A”評級。
風(fēng)險提示:下游汽車需求回暖或不達(dá)預(yù)期,新業(yè)務(wù)開拓或不及預(yù)期。
7.2.6. 格爾軟件:國內(nèi)領(lǐng)先的車聯(lián)網(wǎng)信息安全提供商
PKI領(lǐng)域龍頭,服務(wù)政務(wù)、軍工等核心領(lǐng)域。公司專注于信息安全行業(yè) PKI 領(lǐng)域,主要從事以公鑰基礎(chǔ)設(shè)施 PKI為核心,為政務(wù)、金融、軍工等重要行業(yè)客戶提供基于 PKI 的信息安全系列產(chǎn)品、安全服務(wù)和信息安全整體解決方案。公司與吉大正元、衛(wèi)士通等同為國內(nèi)PKI領(lǐng)域龍頭企業(yè),主營業(yè)務(wù)包括PKI基礎(chǔ)設(shè)施、PKI安全應(yīng)用產(chǎn)品和通用安全產(chǎn)品等。
聯(lián)手上汽,打造車聯(lián)網(wǎng)信息安全平臺。車聯(lián)網(wǎng)以“兩端一云”為主體,涉及車-云通信、車-車通信、車-人通信、車-路通信、車內(nèi)通信五個通信場景,數(shù)據(jù)安全和隱私保護貫穿于車聯(lián)網(wǎng)的各個環(huán)節(jié),是車聯(lián)網(wǎng)網(wǎng)絡(luò)安全的重要內(nèi)容。公司與上汽集團進(jìn)行深度合作,參與上汽云數(shù)據(jù)中心車聯(lián)網(wǎng)項目,為其建設(shè)云端PKI體系,包含證書綜合管理系統(tǒng)和數(shù)字證書認(rèn)證系統(tǒng)、簽名聯(lián)簽系統(tǒng),從云平臺簽發(fā)可信證書寫入車載安全環(huán)境,用于“車—云”雙向認(rèn)證和安全通信,提供SSL、TLS傳輸層加密功能,增加攻擊者竊聽破解的難度,保障通信安全。
PKI應(yīng)用空間巨大,龍頭效應(yīng)帶來業(yè)績增長動力。PKI 技術(shù)作為信息安全領(lǐng)域的核心技術(shù)之一,以身份認(rèn)證與訪問控制等功能實現(xiàn)對安全數(shù)據(jù)的防護目的。然而,作為PKI主要應(yīng)用領(lǐng)域,目前軍工和政府部門對于PKI技術(shù)主要集中于涉密等核心機關(guān),而隨著國家對于信息安全的重視程度日益加強,未來PKI的核心應(yīng)用具備巨大的橫向拓展空間。公司作為PKI行業(yè)的龍頭企業(yè),近四年凈利潤復(fù)合增長率為18.54%,同時通過加大研發(fā)投入和人員儲備等方式,將受益于行業(yè)空間不斷打開。
投資建議:公司深耕PKI技術(shù)多年,在車聯(lián)網(wǎng)等領(lǐng)域有望拓展出產(chǎn)品的全新應(yīng)用空間,帶動業(yè)績增長。預(yù)計2018、2019年EPS分別為1.44,1.86元,給予“買入-A”評級。
風(fēng)險提示:車聯(lián)網(wǎng)領(lǐng)域拓展不達(dá)預(yù)期;PKI行業(yè)應(yīng)用空間拓展不達(dá)預(yù)期。
-
汽車工業(yè)
+關(guān)注
關(guān)注
2文章
117瀏覽量
29903 -
自動駕駛
+關(guān)注
關(guān)注
784文章
13866瀏覽量
166597
原文標(biāo)題:自動駕駛:百年汽車產(chǎn)業(yè)的“iPhone”時刻
文章出處:【微信號:IV_Technology,微信公眾號:智車科技】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
發(fā)布評論請先 登錄
相關(guān)推薦
評論