0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

現(xiàn)代主要的醫(yī)療成像系統(tǒng)

電機(jī)控制設(shè)計(jì)加油站 ? 來源:xx ? 2019-03-23 09:04 ? 次閱讀

Wilhelm Conrad R?tgen于1895年發(fā)現(xiàn)了X射線,讓他獲得了第一個(gè)諾貝爾物理學(xué)獎(jiǎng),也為醫(yī)療成像領(lǐng)域奠定了基礎(chǔ)。自那以后,X射線技術(shù)已經(jīng)發(fā)展成為一門廣泛的科學(xué)學(xué)科,從最廣泛的意義上說,它是指眾多用于人體內(nèi)部的無創(chuàng)可視化技術(shù)。

本文討論一些主要的現(xiàn)代醫(yī)療成像系統(tǒng),這些系統(tǒng)雖然運(yùn)用完全不同的物理原理和處理技術(shù),但都有一個(gè)共同點(diǎn):采用模擬數(shù)據(jù)采集前端進(jìn)行信號(hào)調(diào)理,并將原始成像數(shù)據(jù)轉(zhuǎn)換到數(shù)字域。

這個(gè)微小的前端功能模塊雖然深藏于復(fù)雜機(jī)器內(nèi)部,但其性能卻會(huì)對(duì)整個(gè)系統(tǒng)的最終圖像質(zhì)量產(chǎn)生至關(guān)重要的影響。它的信號(hào)鏈包括一個(gè)檢測(cè)元件、一個(gè)低噪聲放大器(LNA)、一個(gè)濾波器和一個(gè)模數(shù)轉(zhuǎn)換器(ADC),而后者為本文討論的主題。

在醫(yī)療成像領(lǐng)域的電子設(shè)計(jì)中,數(shù)據(jù)轉(zhuǎn)換器的動(dòng)態(tài)范圍、分辨率、精度、線性度和噪聲要求帶來了最嚴(yán)苛的挑戰(zhàn)。本文討論在不同成像模式環(huán)境中的這些設(shè)計(jì)挑戰(zhàn),并概述了能夠?qū)崿F(xiàn)最佳工作性能的高級(jí)數(shù)據(jù)轉(zhuǎn)換器和集成解決方案。

數(shù)字射線照相

數(shù)字射線照相(DR)的物理原理與所有傳統(tǒng)的吸收式射線照相系統(tǒng)相同。穿過人體的X射線經(jīng)過具有不同射線穿透性的人體組織衰減并投射在平板探測(cè)器系統(tǒng)上,其原理如圖1所示。探測(cè)器將X射線光子轉(zhuǎn)換為與入射粒子能量成正比的電荷。生成的電信號(hào)經(jīng)放大并轉(zhuǎn)換到數(shù)字域中,以產(chǎn)生X射線圖像的精確數(shù)字表示。其圖像質(zhì)量取決于空間與強(qiáng)度維度中的信號(hào)采樣。

在空間維度中,最小采樣速率由探測(cè)器的像素矩陣大小和實(shí)時(shí)熒光透視成像的更新速率定義。具有數(shù)百萬像素和典型更新速率高達(dá)25 fps至30 fps的平板探測(cè)器采用通道多路復(fù)用和多個(gè)ADC,采樣速率高達(dá)數(shù)十MSPS,可在不犧牲精度的情況下滿足最短轉(zhuǎn)換時(shí)間要求。

在強(qiáng)度維度中,ADC的數(shù)字輸出信號(hào)代表在特定曝光時(shí)間內(nèi)給定像素所吸收的X射線光子的積分量。該值被分組為由ADC的位深度定義的離散電平的有限數(shù)值。另一個(gè)重要參數(shù)是信噪比(SNR),它定義了系統(tǒng)忠實(shí)地表示成像人體的解剖學(xué)特征的內(nèi)在能力。數(shù)字X射線系統(tǒng)采用14位至18位ADC,SNR水平范圍為70 dB至100 dB,具體取決于成像系統(tǒng)的類型及其要求。有各種各樣的離散ADC和集成模擬前端,可使各種類型的DR成像系統(tǒng)具有更高的動(dòng)態(tài)范圍、更精細(xì)的分辨率、更高的檢測(cè)效率和更低的噪聲。

圖1. 數(shù)字X射線探測(cè)器信號(hào)鏈。

計(jì)算機(jī)斷層掃描

計(jì)算機(jī)斷層掃描(CT)同樣采用電離輻射技術(shù),但與數(shù)字X射線技術(shù)不同的是,它基于扇型探測(cè)器系統(tǒng),與X射線源同步旋轉(zhuǎn),并利用更復(fù)雜的處理技術(shù)生成血管、軟組織等的高分辨率3D圖像。

CT探測(cè)器是整個(gè)系統(tǒng)架構(gòu)的核心組件,它實(shí)際上是CT系統(tǒng)的心臟。它由多個(gè)模塊組成,如圖2所示。每個(gè)模塊將入射的X射線轉(zhuǎn)換為電信號(hào),并路由到多通道模擬數(shù)據(jù)采集系統(tǒng)(ADAS)。每個(gè)模塊都包含一個(gè)閃爍晶體陣列、一個(gè)光電二極管陣列和含有多路復(fù)用至ADC的多個(gè)積分器通道的ADAS。ADAS必須具有極低的噪聲性能,以保持良好的空間分辨率,降低X射線劑量,并具有極低的電流輸出以實(shí)現(xiàn)高動(dòng)態(tài)范圍性能。為了避免圖像偽影并確保良好的對(duì)比度,轉(zhuǎn)換器前端必須具有出色的線性度性能并可提供低功耗工作模式,以降低熱敏型探測(cè)器的冷卻要求。

ADC必須具有至少24位的高分辨率才能獲得更優(yōu)質(zhì)、更清晰的圖像,同時(shí)還要具有快速采樣速率(短至100 μs),以便數(shù)字化探測(cè)器讀數(shù)。ADC采樣速率還必須支持多路復(fù)用,這樣就可以使用較少數(shù)量的轉(zhuǎn)換器,并且減小整個(gè)系統(tǒng)的尺寸和功耗。

正電子發(fā)射斷層掃描

正電子發(fā)射斷層掃描(PET)涉及由引入人體的放射性核素產(chǎn)生的電離輻射。它發(fā)射的正電子與組織中的電子碰撞,產(chǎn)生輻射方向大體相反的伽馬射線對(duì)。這些高能光子對(duì)同時(shí)撞擊相對(duì)的PET探測(cè)器,它們圍繞著支架口呈環(huán)狀排列。

PET探測(cè)器(如圖3所示)由一系列閃爍晶體和光電倍增管(PMT)組成,它們將伽馬射線轉(zhuǎn)換為電流,繼而轉(zhuǎn)換為電壓,然后通過可變?cè)鲆娣糯笃?VGA)放大并補(bǔ)償幅度變化。然后將產(chǎn)生的信號(hào)在ADC和比較器路徑之間分離,以提供能量和時(shí)序信息,供PET重合處理器用于重建體內(nèi)放射性示蹤劑濃度的3D圖像。

圖2. CT探測(cè)器模塊信號(hào)鏈。

圖3. PET電子前端信號(hào)鏈。

如果兩個(gè)光子的能量約為511 keV,并且其探測(cè)時(shí)間相差不到十億分之一秒,則它們可被歸類為相關(guān)光子。光子的能量和探測(cè)時(shí)間差對(duì)ADC提出了嚴(yán)格的要求,ADC必須具有10至12位的高分辨率,并且快速采樣速率通常需高于40 MSPS。低噪聲性能可最大程度地?cái)U(kuò)大動(dòng)態(tài)范圍,而低功耗工作模式則可減少散熱,這兩點(diǎn)對(duì)于PET成像也很重要。

磁共振成像

磁共振成像(MRI)是一種無創(chuàng)醫(yī)療成像技術(shù),它依賴于核磁共振現(xiàn)象,并且無需使用電離輻射,這使之有別于DR、CT和PET系統(tǒng)。MR信號(hào)的載波頻率直接與主磁場(chǎng)強(qiáng)度成比例,其商用掃描儀頻率范圍為12.8 MHz至298.2 MHz。信號(hào)帶寬由頻率編碼方向的視場(chǎng)定義,變化范圍從幾kHz到幾十kHz。

這對(duì)接收器前端提出了特殊的要求,該前端通?;诰哂休^低速率SAR ADC的超外差式架構(gòu)(見圖4)。然而,模數(shù)轉(zhuǎn)換的最新進(jìn)展使快速低功耗多通道流水線ADC能夠在最常見的頻率范圍內(nèi)以16位深度、超過100 MSPS的轉(zhuǎn)換速率對(duì)MR信號(hào)直接進(jìn)行數(shù)字轉(zhuǎn)換。其動(dòng)態(tài)范圍要求非常嚴(yán)苛,通常超過100 dB。通過對(duì)MR信號(hào)過采樣可以提高分辨率、增加SNR,并消除頻率編碼方向的混疊偽像,從而增強(qiáng)圖像質(zhì)量。為獲得快速掃描采集時(shí)間,可應(yīng)用基于欠采樣的壓縮檢測(cè)技術(shù)。

超聲波掃描術(shù)

超聲波掃描術(shù)或醫(yī)學(xué)超聲的物理原理與本文中討論的所有其他成像模式不同。它使用頻率范圍為1 MHz至18 MHz的聲波脈沖。這些聲波掃描人體內(nèi)部組織并以不同強(qiáng)度的回波進(jìn)行反射。實(shí)時(shí)獲取這些回波,并顯示為超聲波掃描圖,其中可能包含不同類型信息,如聲阻抗、血流量、組織隨時(shí)間的活動(dòng)狀態(tài)或其僵硬程度。

醫(yī)療超聲前端(如圖5所示)的關(guān)鍵功能模塊由集成的多通道模擬前端(AFE)表示,它包括低噪聲放大器、可變?cè)鲆娣糯笃?/u>、抗混疊濾波器(AAF)、ADC和解調(diào)器。對(duì)AFE最重要的要求之一是動(dòng)態(tài)范圍。根據(jù)成像模式,該要求可能需要達(dá)到70 dB至160 dB,以便區(qū)分血液信號(hào)與探頭和身體組織運(yùn)動(dòng)所產(chǎn)生的背景噪聲。因此,ADC必須具有高分辨率、高采樣速率和低總諧波失真(THD),以保持超聲信號(hào)的動(dòng)態(tài)保真度。超聲前端的高通道密度還要求必須具有低功耗特性。面向醫(yī)療超聲設(shè)備提供的一系列集成式AFE可實(shí)現(xiàn)最佳圖像質(zhì)量,并降低功耗、系統(tǒng)尺寸和成本。

圖4. MRI超外差式接收器信號(hào)鏈。

結(jié)論

醫(yī)療成像對(duì)電子設(shè)計(jì)提出了極為嚴(yán)苛的要求。以低成本和緊湊的封裝提供低功耗、低噪聲、高動(dòng)態(tài)范圍和高分辨率性能,是本文討論的現(xiàn)代醫(yī)療成像系統(tǒng)要求所決定的發(fā)展趨勢(shì)。ADI公司可滿足這些要求,為關(guān)鍵的信號(hào)鏈功能模塊提供高度集成的解決方案,推動(dòng)實(shí)現(xiàn)一流的臨床成像設(shè)備,這些設(shè)備日益成為當(dāng)今國際醫(yī)療保健系統(tǒng)不可或缺的一部分。下列產(chǎn)品適用于本文提到的各種醫(yī)療成像模式。

* ADAS1256:這款高度集成的模擬前端包含256個(gè)通道,帶有低噪聲積分器、低通濾波器和相關(guān)雙采樣器(多路復(fù)用到高速16位ADC中)。它是一個(gè)完整的電荷-數(shù)字轉(zhuǎn)換解決方案,針對(duì)可直接安裝在數(shù)字X射線面板上的DR應(yīng)用而設(shè)計(jì)。* 針對(duì)分立式DR系統(tǒng),18位PulSAR? ADC AD7960提供99 dB的SNR和5 MSPS的采樣速率,可提供無與倫比的性能,以滿足最高動(dòng)態(tài)范圍的噪聲和線性度要求。16位、雙通道AD9269和14位、16通道AD9249流水線ADC分別可提供高達(dá)80 MSPS和65 MSPS的采樣速率,以實(shí)現(xiàn)高速熒光透視系統(tǒng)。* ADAS1135和ADAS1134:這兩款高度集成的256通道和128通道數(shù)據(jù)采集系統(tǒng)由低噪聲/低功耗/低輸入電流積分器、同步采樣保持器件以及具有可配置采樣速率和最高24位分辨率的兩個(gè)高速ADC組成,提供出色的線性度,可最大限度地提高CT應(yīng)用的圖像質(zhì)量。* AD9228、AD9637、AD9219和AD9212:這幾款12位和10位多通道ADC的采樣速率從40 MSPS到80 MSPS,經(jīng)過優(yōu)化后具有出色的動(dòng)態(tài)性能和低功耗,可滿足PET要求。* AD9656:這款16位、四通道流水線ADC提供高達(dá)125 MSPS的轉(zhuǎn)換速率,針對(duì)傳統(tǒng)的直接數(shù)字轉(zhuǎn)換MRI系統(tǒng)架構(gòu)進(jìn)行了優(yōu)化,具有出色的動(dòng)態(tài)性能和低功耗特性。* AD9671:這款8通道集成式接收器前端專為低成本、低功耗的醫(yī)療超聲應(yīng)用而設(shè)計(jì),采用14位ADC,采樣速率最高可達(dá)125 MSPS。每個(gè)通道都經(jīng)過優(yōu)化,在連續(xù)波模式下具有160dBFS/√Hz的高動(dòng)態(tài)性能和62.5 mW的低功率,適合要求小尺寸封裝的應(yīng)用

圖5. 醫(yī)療超聲前端信號(hào)鏈。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 探測(cè)器
    +關(guān)注

    關(guān)注

    14

    文章

    2641

    瀏覽量

    73028
  • 超聲波
    +關(guān)注

    關(guān)注

    63

    文章

    3017

    瀏覽量

    138397

原文標(biāo)題:用于醫(yī)療成像系統(tǒng)的高性能數(shù)據(jù)轉(zhuǎn)換器

文章出處:【微信號(hào):motorcontrol365,微信公眾號(hào):電機(jī)控制設(shè)計(jì)加油站】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    開源算法效果不佳,醫(yī)療行業(yè)泡罩外觀檢測(cè)怎么做?

    隨著醫(yī)療技術(shù)的不斷進(jìn)步和對(duì)醫(yī)療產(chǎn)品質(zhì)量要求的日益嚴(yán)格,工業(yè)AI視覺外觀檢測(cè)技術(shù)在醫(yī)療領(lǐng)域的應(yīng)用越來越廣泛,涉及從醫(yī)療器械的精密制造到藥品包裝的嚴(yán)格監(jiān)控等多個(gè)環(huán)節(jié)。
    的頭像 發(fā)表于 12-20 14:23 ?334次閱讀
    開源算法效果不佳,<b class='flag-5'>醫(yī)療</b>行業(yè)泡罩外觀檢測(cè)怎么做?

    醫(yī)療電子技術(shù):創(chuàng)新與挑戰(zhàn)

    醫(yī)療電子技術(shù)正迅速發(fā)展,成為現(xiàn)代醫(yī)療體系的關(guān)鍵組成部分。智能化、無線化、微創(chuàng)化和個(gè)性化是其主要發(fā)展趨勢(shì)。然而,數(shù)據(jù)安全與隱私保護(hù)、法規(guī)與標(biāo)準(zhǔn)以及人才培養(yǎng)等問題仍然是該領(lǐng)域面臨的
    的頭像 發(fā)表于 12-10 12:53 ?178次閱讀

    醫(yī)療器械中電磁干擾的來源及影響

    )、磁共振成像(MRI)、牙科設(shè)備、除顫器和神經(jīng)刺激等醫(yī)療程序都會(huì)產(chǎn)生電磁干擾。手機(jī)可能會(huì)干擾心臟起搏器和植入式神經(jīng)刺激器等植入式醫(yī)療器械現(xiàn)代醫(yī)療
    的頭像 發(fā)表于 11-30 01:03 ?733次閱讀
    <b class='flag-5'>醫(yī)療</b>器械中電磁干擾的來源及影響

    FPGA在醫(yī)療成像設(shè)備中的應(yīng)用

    隨著醫(yī)療科技的飛速發(fā)展,醫(yī)療成像設(shè)備在醫(yī)學(xué)診斷和治療中扮演著至關(guān)重要的角色。從傳統(tǒng)的X射線到先進(jìn)的計(jì)算機(jī)斷層掃描(CT)、磁共振成像(MRI)乃至四維
    的頭像 發(fā)表于 11-07 09:00 ?343次閱讀

    遙感傳感器的主要成像投影方式有哪些

    之間存在一定的角度,成像時(shí),傳感器的視場(chǎng)角覆蓋的區(qū)域會(huì)隨著距離的增加而擴(kuò)大。 應(yīng)用:航空攝影和一些衛(wèi)星成像系統(tǒng),如光學(xué)相機(jī)。 正射投影(Orthographic Projection) : 特點(diǎn):在這種投影方式下,傳感器與地球表
    的頭像 發(fā)表于 09-04 14:23 ?670次閱讀

    解決醫(yī)療成像應(yīng)用中的電源設(shè)計(jì)難題

    電子發(fā)燒友網(wǎng)站提供《解決醫(yī)療成像應(yīng)用中的電源設(shè)計(jì)難題.pdf》資料免費(fèi)下載
    發(fā)表于 09-04 10:26 ?0次下載
    解決<b class='flag-5'>醫(yī)療</b><b class='flag-5'>成像</b>應(yīng)用中的電源設(shè)計(jì)難題

    無人機(jī)機(jī)載高光譜成像系統(tǒng)的應(yīng)用及優(yōu)勢(shì)

      隨著無人機(jī)技術(shù)的快速發(fā)展,基于無人機(jī)平臺(tái)的高光譜成像系統(tǒng)在多個(gè)領(lǐng)域中得到了廣泛應(yīng)用。本文將介紹一款小型多旋翼無人機(jī)機(jī)載高光譜成像系統(tǒng),該系統(tǒng)
    的頭像 發(fā)表于 08-15 15:03 ?704次閱讀
    無人機(jī)機(jī)載高光譜<b class='flag-5'>成像</b><b class='flag-5'>系統(tǒng)</b>的應(yīng)用及優(yōu)勢(shì)

    國產(chǎn)ADC兼容AD7193用于成像醫(yī)療設(shè)備

    國產(chǎn)ADC兼容AD7193用于成像醫(yī)療設(shè)備
    的頭像 發(fā)表于 06-07 10:10 ?421次閱讀
    國產(chǎn)ADC兼容AD7193用于<b class='flag-5'>成像</b><b class='flag-5'>醫(yī)療</b>設(shè)備

    紅外熱成像助力現(xiàn)代化智慧養(yǎng)殖

    主要優(yōu)點(diǎn)在于,我們可以全天候?qū)崟r(shí)檢測(cè)養(yǎng)豬場(chǎng)的溫度,并設(shè)置溫度報(bào)警閾值。一旦檢測(cè)到異常溫度,系統(tǒng)會(huì)立即觸發(fā)報(bào)警,通知值班人員迅速進(jìn)行處理,從而最大限度地減少疾病的蔓
    的頭像 發(fā)表于 05-16 17:22 ?241次閱讀
    紅外熱<b class='flag-5'>成像</b>助力<b class='flag-5'>現(xiàn)代</b>化智慧養(yǎng)殖

    高光譜成像系統(tǒng)解析

    高光譜成像技術(shù),一種在多個(gè)行業(yè)中愈發(fā)重要的先進(jìn)技術(shù),提供了一種深入了解物體表面特性的全新方式。本文將詳細(xì)探討高光譜成像系統(tǒng)的工作原理、應(yīng)用及其帶來的革命性影響,揭示這一技術(shù)如何能夠識(shí)別并分析物體
    的頭像 發(fā)表于 04-16 14:59 ?740次閱讀
    高光譜<b class='flag-5'>成像</b><b class='flag-5'>系統(tǒng)</b>解析

    訊維融合處理器助力醫(yī)院構(gòu)建現(xiàn)代醫(yī)療監(jiān)控系統(tǒng)

    隨著醫(yī)療技術(shù)的不斷進(jìn)步和醫(yī)院管理要求的日益嚴(yán)格,構(gòu)建一套高效、穩(wěn)定、智能的醫(yī)療監(jiān)控系統(tǒng)已成為醫(yī)院現(xiàn)代化建設(shè)的迫切需求。在這一背景下,訊維融合處理器以其卓越的性能和獨(dú)特的功能,為醫(yī)院構(gòu)建
    的頭像 發(fā)表于 04-01 16:31 ?327次閱讀
    訊維融合處理器助力醫(yī)院構(gòu)建<b class='flag-5'>現(xiàn)代</b>化<b class='flag-5'>醫(yī)療</b>監(jiān)控<b class='flag-5'>系統(tǒng)</b>

    可編程振蕩器助力醫(yī)療成像提供準(zhǔn)確時(shí)序,兼容SiTime

    可編程振蕩器助力醫(yī)療成像提供準(zhǔn)確時(shí)序,兼容SiTime
    的頭像 發(fā)表于 03-18 10:13 ?429次閱讀
    可編程振蕩器助力<b class='flag-5'>醫(yī)療</b><b class='flag-5'>成像</b>提供準(zhǔn)確時(shí)序,兼容SiTime

    紅外熱成像技術(shù)在醫(yī)療健康領(lǐng)域的應(yīng)用

    你有沒有思考過為何我們?cè)?b class='flag-5'>醫(yī)療健康領(lǐng)域越來越頻繁地看到紅外熱成像技術(shù)的蹤影?這并不是偶然,因?yàn)檫@項(xiàng)科技的獨(dú)特優(yōu)點(diǎn)和巨大潛力已經(jīng)引起了醫(yī)療專家們的注目。讓我們一起深入探討一下這個(gè)主題,去理解這項(xiàng)技術(shù)
    的頭像 發(fā)表于 03-06 11:04 ?617次閱讀
    紅外熱<b class='flag-5'>成像</b>技術(shù)在<b class='flag-5'>醫(yī)療</b>健康領(lǐng)域的應(yīng)用

    比較分析:便攜式高光譜成像系統(tǒng)與傳統(tǒng)成像技術(shù)

    現(xiàn)代科學(xué)技術(shù)的探索中,便攜式高光譜成像系統(tǒng)與傳統(tǒng)成像技術(shù)的比較分析揭示了兩者在捕捉和解析大自然色彩方面的獨(dú)特優(yōu)勢(shì)和局限。作為科學(xué)研究和環(huán)境監(jiān)測(cè)的重要工具,便攜式高光譜
    的頭像 發(fā)表于 01-10 10:58 ?603次閱讀
    比較分析:便攜式高光譜<b class='flag-5'>成像</b><b class='flag-5'>系統(tǒng)</b>與傳統(tǒng)<b class='flag-5'>成像</b>技術(shù)

    現(xiàn)代獨(dú)立顯卡電力消耗的主要原因

    現(xiàn)代獨(dú)立顯卡電力消耗的主要原因 近年來,隨著科技的不斷發(fā)展和人們對(duì)高畫質(zhì)游戲和圖形處理需求的增加,獨(dú)立顯卡已經(jīng)成為電腦的必備硬件之一。然而,獨(dú)立顯卡的電力消耗問題也逐漸浮出水面。本文將詳細(xì)探討現(xiàn)代
    的頭像 發(fā)表于 01-09 13:52 ?566次閱讀