0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

70年來AI研究方面的苦澀教訓(xùn):我們過于依靠人類知識了

DPVg_AI_era ? 來源:lp ? 2019-03-18 09:39 ? 次閱讀

強(qiáng)化學(xué)習(xí)之父Richard S. Sutton認(rèn)為,過去70年來AI研究的最大教訓(xùn),就是我們過于依賴人類的既有知識,輕視了智能體本身的學(xué)習(xí)能力,將本該由智能體發(fā)揮自身作用“學(xué)習(xí)和搜索”變成了人類主導(dǎo)“記錄和灌輸”。未來這種現(xiàn)象應(yīng)該改變,也必須改變。

近日,強(qiáng)化學(xué)習(xí)之父、加拿大計算機(jī)科學(xué)家Richard S. Sutton在其個人網(wǎng)站上發(fā)文,指出了過去70年來AI研究方面的苦澀教訓(xùn):我們過于依靠人類知識了。

Sutton認(rèn)為,過去70年來,AI研究走過的最大彎路,就是過于重視人類既有經(jīng)驗和知識,研究人員在訓(xùn)練AI模型時,往往想將人類知識灌輸給智能體,而不是讓智能體自己去探索。這實際上只是個記錄的過程,并未實現(xiàn)真正的學(xué)習(xí)。

事實證明,這種基于人類知識的所謂”以人為本“的方法,并未收到很好的效果,尤其是在可用計算力迅猛增長的大背景下,在國際象棋、圍棋、計算機(jī)視覺等熱門領(lǐng)域,智能體本身已經(jīng)可以自己完成”規(guī)?;阉骱蛯W(xué)習(xí)“,取得的效果要遠(yuǎn)好于傳統(tǒng)方法。

Sutton由此認(rèn)為,過去的教訓(xùn)必須總結(jié),未來的研究中,應(yīng)該讓AI智能體能夠像我們一樣自己去發(fā)現(xiàn),而不是將我們發(fā)現(xiàn)的東西記下來,因為后者只會讓我們更難以了解發(fā)現(xiàn)的過程究竟是怎樣的。

以下為文章原文:

在過去70年中,人工智能研究中得出的一個最大教訓(xùn)是,通用化的方法最終往往是最有效的,而且能夠大幅提升性能。造成這個結(jié)果的最終原因是摩爾定律,或者說,是摩爾定律總結(jié)出的計算力隨時間的變化趨勢。

大多數(shù)人工智能研究都有個假設(shè)前提,即智能體的可用計算力是一個不變的常量,也就是說,提升性能的方法可能就只有利用人類自己的知識了。但是,如果項目周期比一般情況較長時,一定會有豐富的計算力可以投入使用。從短期來看,研究人員可以利用自己掌握的相關(guān)領(lǐng)域的人類知識來換取性能提升,但從長遠(yuǎn)來看,唯一重要的還是計算力。

我們完全沒有必要讓這兩者相互對立起來,但實際上,它們往往就是相互對立的。項目時間有限,把時間花在計算力上,就不能花在人類知識的利用上。研究人員在心理上往往會偏向某一種方式。人類知識方法往往使解決問題的方法變得復(fù)雜化,與利用利用計算力得出的通用化方法相比,適應(yīng)性上不如前者。

不少AI研究人員用了很長時間才明白這個教訓(xùn),所以我覺得這個問題值得單獨(dú)拿出來講一講。

過去70年AI研究的深刻教訓(xùn):靠人類知識,遠(yuǎn)不如靠智能體自己

1997年,IBM的計算機(jī)“深藍(lán)”擊敗了世界冠軍卡斯帕羅夫,“深藍(lán)”的開發(fā)就是基于大規(guī)模的深度搜索。而當(dāng)時,大多數(shù)計算機(jī)象棋研究人員采用的方法,都是利用人類對國際象棋特殊結(jié)構(gòu)的理解。

當(dāng)一個簡單的、基于搜索的方法在專門的軟硬件上顯示出強(qiáng)大性能時,彼時基于人類知識的國際象棋研究人員沮喪地表示,這次“野蠻搜索“可能壓倒了人類的經(jīng)驗和知識,取得了勝利,但這無論如何不是人們下棋的方式。這些研究人員一直希望基于“人類知識”的方法能夠獲勝,因為沒有實現(xiàn)這一點(diǎn),他們的失望溢于言表。

計算機(jī)圍棋中也出現(xiàn)了類似的研究模式,不過比國際象棋遲來了20年。研究人員希望通過人類知識或棋局的獨(dú)有特征,來避開大規(guī)模搜索,但所有這些努力都證明是用錯了地方,而且,在搜索大規(guī)模應(yīng)用之后,這種錯誤顯得更加明顯了。

同樣重要的是,通過智能體的自我學(xué)習(xí)來學(xué)習(xí)價值功能。像大規(guī)模搜索一樣,AI需要通過自對弈和通用學(xué)習(xí)來提升性能,實現(xiàn)大規(guī)模的計算應(yīng)用。

搜索和學(xué)習(xí)是在AI研究中利用計算力的兩種最重要的技術(shù)。在計算機(jī)圍棋中,研究人員最初的方向也是利用人類知識,搜索用的比較少,很長時間以后,才通過搜索和學(xué)習(xí)獲得了更大的成功。

語音識別方面,早期的研究利用了一系列基于人類知識的專門方法:詞匯、音素、人類聲道知識等。而比較新的方法更偏向統(tǒng)計性,并且計算量更大,基于隱馬爾可夫模型(HMM)。與國際象棋和圍棋一樣,在語音識別領(lǐng)域,同樣是統(tǒng)計方法戰(zhàn)勝了基于人類知識的方法。這導(dǎo)致所有NLP研究在近幾十年內(nèi)發(fā)生了重大變化,統(tǒng)計和計算在這一領(lǐng)域占據(jù)了主導(dǎo)地位。最近的語音識別領(lǐng)域中,深度學(xué)習(xí)的興起是這個趨勢的最新體現(xiàn)。

深度學(xué)習(xí)方法對人類知識的依賴更少,應(yīng)用了更多的計算,以及對大量訓(xùn)練集的學(xué)習(xí),生成性能更高語音識別系統(tǒng)。和棋類對弈一樣,研究人員一開始總是想讓系統(tǒng)按照人類的思維的方式運(yùn)作,試圖將人類知識放輸入系統(tǒng),但事實證明,最終是適得其反,而且極大地浪費(fèi)了研究人員的時間。隨著計算力的迅速增長,研究人員也找到了能夠高效利用計算力的方式。

在計算機(jī)視覺領(lǐng)域也是如此,早期研究將“視覺”設(shè)想為搜索的邊緣或廣義圓柱體。但今天這一切都被拋棄了?,F(xiàn)代深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)僅使用卷積和某些不變性的概念,并且表現(xiàn)得更好。

這是一個很大的教訓(xùn)。我們?nèi)匀粵]有完全理解這個領(lǐng)域,因為我們會繼續(xù)犯下同樣的錯誤。要看到這一點(diǎn),并從中總結(jié)教訓(xùn),即建立我們認(rèn)為理解自身思考方式的體系,從長遠(yuǎn)來看解決不了問題,AI研究從重“人類知識”到重“計算和搜索”的演進(jìn)過程,已經(jīng)證明了這一點(diǎn)。

回顧過去,我們可以總結(jié)出下面幾點(diǎn)認(rèn)識:

1)AI研究人員經(jīng)常想要將知識傳給智能體

2)這個方式在短期內(nèi)總是會有效,研究人員本人可以獲得滿意結(jié)果。

3)從長遠(yuǎn)來看,這種方式對未來的性能提升沒有幫助,甚至有阻礙作用,

4)AI的突破性進(jìn)展最終要通過基于搜索和學(xué)習(xí)進(jìn)行規(guī)?;嬎愕姆椒▉韺崿F(xiàn)。

對于AI研究而言,最終的成功可能反而會充滿了苦澀,很多人往往理解不了,因為它戰(zhàn)勝的是“以人為本”的老方法。

要讓智能體自己去搜索和發(fā)現(xiàn),而不是靠人類

通用方法具備強(qiáng)大功能,即使可用計算力已經(jīng)非常強(qiáng)大,我們?nèi)匀豢梢酝ㄟ^增加計算力來擴(kuò)展的方法。而基于計算力的搜索和學(xué)習(xí)可以按照這一方向任意擴(kuò)展下去。

第二個教訓(xùn)是,人類思維的實際內(nèi)容的復(fù)雜程度是無可比擬的,我們不應(yīng)該在嘗試尋找關(guān)于思維內(nèi)容的簡單方法,如對空間、對象,多智能體或?qū)ΨQ性的思維內(nèi)容的簡單方法。

所有這些在本質(zhì)上都是復(fù)雜的外部世界的一部分,它們的復(fù)雜性是無窮無盡的,我們應(yīng)該集中精力構(gòu)建可以找到并捕獲這種任意復(fù)雜性的”元方法“。構(gòu)建這種“元方法”的關(guān)鍵在于,智能體能夠找到很好的近似結(jié)果,但是具體執(zhí)行搜索、進(jìn)行發(fā)現(xiàn)的應(yīng)該是智能體自己,而不是我們。我們希望AI智能體能夠像我們一樣自己去發(fā)現(xiàn),而不是將我們發(fā)現(xiàn)的東西記下來,因為后者只會讓我們更難以了解發(fā)現(xiàn)的過程究竟是怎樣的。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • AI
    AI
    +關(guān)注

    關(guān)注

    87

    文章

    31028

    瀏覽量

    269365
  • 智能體
    +關(guān)注

    關(guān)注

    1

    文章

    152

    瀏覽量

    10592
  • 強(qiáng)化學(xué)習(xí)

    關(guān)注

    4

    文章

    267

    瀏覽量

    11266

原文標(biāo)題:強(qiáng)化學(xué)習(xí)之父:AI研究70年教訓(xùn)深刻,未來探索要靠智能體自己

文章出處:【微信號:AI_era,微信公眾號:新智元】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    馬斯克預(yù)言:AI將全面超越人類智力

    ,到2025底之前,AI的智力水平將有望超越單個人類的智力。而到了2027至2028間,AI
    的頭像 發(fā)表于 12-28 14:23 ?212次閱讀

    AI在環(huán)境可持續(xù)發(fā)展方面的作用

    近日,《聯(lián)合國氣候變化框架公約》締約方會議第二十九次會議(COP29)在阿塞拜疆巴庫落下帷幕,與會者們齊聚于此,共同應(yīng)對氣候變化。AI 在環(huán)境可持續(xù)發(fā)展方面的作用成為了本屆大會關(guān)注的焦點(diǎn)。
    的頭像 發(fā)表于 11-27 11:24 ?291次閱讀

    【書籍評測活動NO.51】具身智能機(jī)器人系統(tǒng) | 了解AI的下一個浪潮!

    學(xué)習(xí)并優(yōu)化自己的行為,以更好地服務(wù)家庭成員。 具身智能的發(fā)展如何? 近年來,具身智能機(jī)器人的發(fā)展呈現(xiàn)出強(qiáng)勁勢頭,尤其是在智能化和自主決策能力方面。 自 2010 以來,具身智能機(jī)器人已經(jīng)從簡單模仿
    發(fā)表于 11-11 10:20

    雷迪埃已有70多年的歷史,讓我們來看看70年來的發(fā)展歷程吧!

    行業(yè)芯事行業(yè)資訊
    上海雷迪埃
    發(fā)布于 :2024年10月16日 11:30:18

    AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第4章-AI與生命科學(xué)讀后感

    農(nóng)業(yè)、環(huán)保等,為人類社會的可持續(xù)發(fā)展做出貢獻(xiàn)。 總結(jié) 《AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第4章關(guān)于AI與生命科學(xué)的部分,為我們展示
    發(fā)表于 10-14 09:21

    AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第二章AI for Science的技術(shù)支撐學(xué)習(xí)心得

    的重要作用和價值,同時也看到了其面臨的挑戰(zhàn)和未來發(fā)展方向。這次學(xué)習(xí)不僅豐富我的知識儲備,還激發(fā)了我對AI for Science未來發(fā)展的期待和熱情。我相信,在不久的將來,AI fo
    發(fā)表于 10-14 09:16

    名單公布!【書籍評測活動NO.44】AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新

    芯片設(shè)計的自動化水平、優(yōu)化半導(dǎo)體制造和封測的工藝和水平、尋找新一代半導(dǎo)體材料等方面提供幫助。 第6章介紹人工智能在化石能源科學(xué)研究、可再生能源科學(xué)研究、能源轉(zhuǎn)型三個
    發(fā)表于 09-09 13:54

    平衡創(chuàng)新與倫理:AI時代的隱私保護(hù)和算法公平

    方面的立法和標(biāo)準(zhǔn)存在差異,這不僅給全球化的企業(yè)運(yùn)營帶來挑戰(zhàn),也影響了全球用戶權(quán)益的平等保護(hù)。國際組織應(yīng)當(dāng)發(fā)揮引領(lǐng)作用,推動制定統(tǒng)一的AI倫理框架,同時鼓勵各國根據(jù)自身國情調(diào)整和實施。 AI技術(shù)
    發(fā)表于 07-16 15:07

    羅杰·瑞迪:AI能力已遠(yuǎn)超我們人類

    ,AI作為一個新興且強(qiáng)大的“物種”,其能力已遠(yuǎn)遠(yuǎn)超越我們人類,這種超越不僅體現(xiàn)在計算能力上,更在于其持續(xù)學(xué)習(xí)、自我優(yōu)化的能力,預(yù)示著一個全新時代的到來。
    的頭像 發(fā)表于 07-05 14:10 ?350次閱讀

    藍(lán)牙模塊在車載導(dǎo)航方面的應(yīng)用知識分析

    藍(lán)牙模塊在車載導(dǎo)航方面的應(yīng)用知識分析 藍(lán)牙作為一種近距離通信技術(shù),目前已標(biāo)配車載行業(yè),如下從以下幾個藍(lán)牙協(xié)議方面講述下藍(lán)牙車載導(dǎo)航藍(lán)牙基礎(chǔ)知識學(xué)習(xí)介紹 1:HFP 全稱為Hands F
    的頭像 發(fā)表于 06-21 17:11 ?1012次閱讀

    智謀紀(jì) AI+Multi LED 打開人類健康新寶藏

    技術(shù)。 智謀紀(jì)創(chuàng)始人&CEO朱東亮先生受邀出席論壇,帶來題為《AI+ Multi LED,打開人類健康新寶藏》的專題演講。 演講精彩瞬間回顧:AI+ Multi LED,智謀紀(jì)AI照明
    的頭像 發(fā)表于 06-17 12:23 ?339次閱讀
    智謀紀(jì) <b class='flag-5'>AI</b>+Multi LED 打開<b class='flag-5'>人類</b>健康新寶藏

    學(xué)習(xí)串口屏需要了解哪些方面的知識

    學(xué)習(xí)串口屏需要掌握的知識主要包括以下幾個方面
    的頭像 發(fā)表于 06-05 09:41 ?442次閱讀
    學(xué)習(xí)串口屏需要了解哪些<b class='flag-5'>方面的</b><b class='flag-5'>知識</b>

    名單公布!【書籍評測活動NO.33】做了50軟件開發(fā),總結(jié)出60條經(jīng)驗教訓(xùn),每一條都太扎心!

    柯達(dá)公司工作了 18 ,曾擔(dān)任過攝影研究科學(xué)家、軟件開發(fā)人員、軟件經(jīng)理及軟件過程和質(zhì)量改進(jìn)領(lǐng)導(dǎo)。Karl 擁有伊利諾伊大學(xué)的有機(jī)化學(xué)博士學(xué)位。 Karl 共著 有
    發(fā)表于 05-17 14:36

    risc-v多核芯片在AI方面的應(yīng)用

    多核芯片在AI方面的應(yīng)用具有廣闊的前景和巨大的潛力。隨著技術(shù)的不斷進(jìn)步和應(yīng)用的深入,我們期待看到更多基于RISC-V多核芯片的AI解決方案在實際應(yīng)用中得到驗證和推廣。
    發(fā)表于 04-28 09:20

    NVIDIA在加速識因智能AI大模型落地應(yīng)用方面的重要作用介紹

    本案例介紹 NVIDIA 在加速識因智能 AI 大模型落地應(yīng)用方面的重要作用。生成式大模型已廣泛應(yīng)用于各領(lǐng)域,通過學(xué)習(xí)人類思維方式,能快速挖掘海量內(nèi)容,滿足不同需求。
    的頭像 發(fā)表于 03-29 15:28 ?642次閱讀