0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

計(jì)算機(jī)大牛最喜歡的機(jī)器學(xué)習(xí)算法你知道是那些嗎

電子工程師 ? 來(lái)源:未知 ? 2019-03-17 10:29 ? 次閱讀

機(jī)器學(xué)習(xí)算法那么多,一個(gè)問(wèn)題的解決往往可能有好多算法的選擇。

這些算法有什么特點(diǎn)呢?特定的場(chǎng)景需要選擇哪一算法呢?

我們?yōu)榇蠹曳g了Quora上大牛們最喜歡的機(jī)器學(xué)習(xí)算法,一起欣賞。

Carlos Guestrin,亞馬遜計(jì)算機(jī)科學(xué)機(jī)器學(xué)習(xí)教授,Dato公司ceo及創(chuàng)始人 (Dato原名GraphLab,大數(shù)據(jù)分析云服務(wù)平臺(tái))

我并沒(méi)有最喜歡的機(jī)器學(xué)習(xí)算法,但有一些比較青睞的,比如:

最簡(jiǎn)潔的算法:感知器算法(Perceptron)。這種算法是Rosenblatt和他的同事們?cè)?0世紀(jì)50年代創(chuàng)造的。這個(gè)算法非常簡(jiǎn)單,但它是現(xiàn)在一些最成功的分類器的基礎(chǔ),包括支持SVM和邏輯回歸,它們都使用了隨機(jī)梯度下降法。感知器算法的收斂性證明是我在ML中見過(guò)的最優(yōu)雅的數(shù)學(xué)過(guò)程之一。

最有用的算法: Boosting,特別是提升決策樹。這種方法比較直觀,可以結(jié)合許多簡(jiǎn)單模型來(lái)構(gòu)建高精度機(jī)器學(xué)習(xí)模型。Boosting是機(jī)器學(xué)習(xí)中最具實(shí)踐性的方法,在工業(yè)中得到了廣泛的引用,可以用它處理相當(dāng)廣泛的數(shù)據(jù)類型,在數(shù)據(jù)規(guī)模上也沒(méi)有太多限制。在實(shí)際過(guò)程中的提高樹的可伸縮性應(yīng)用上,我建議考慮XGBoost。Boosting的證明過(guò)程也是非常優(yōu)雅的。

卷土重來(lái)的算法:卷積神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)。這種神經(jīng)網(wǎng)絡(luò)算法在20世紀(jì)80年代早期開始流行。從90年代后期到2000年代后期,大家對(duì)這種算法的興趣逐漸減弱,但在過(guò)去的5年里,這種算法出人意料的卷土重來(lái)。特別是,卷積神經(jīng)網(wǎng)絡(luò)建立了深度學(xué)習(xí)模型的核心,在計(jì)算機(jī)視覺(jué)語(yǔ)音識(shí)別方面有巨大影響力。

最優(yōu)美的算法:動(dòng)態(tài)規(guī)劃(Dynamic programming)(比如維特比, forward-backward, 變量消除以及belief propagation算法)。

在計(jì)算機(jī)科學(xué)中動(dòng)態(tài)規(guī)劃是最優(yōu)雅的一種算法,是通過(guò)搜索一個(gè)指數(shù)型大的空間來(lái)找到可選的解決方案。這種方法在機(jī)器學(xué)習(xí)中已經(jīng)得到了各種應(yīng)用,特別是圖形模型,如隱馬爾可夫模型、貝葉斯網(wǎng)絡(luò)和馬爾可夫網(wǎng)絡(luò)。

無(wú)與倫比的基準(zhǔn):鄰近算法。當(dāng)我們想顯示我們的曲線比別人好時(shí),一個(gè)辦法就是引入一個(gè)基準(zhǔn)來(lái)證明自己的方法更加準(zhǔn)確。鄰近算法實(shí)現(xiàn)起來(lái)非常簡(jiǎn)單。我們總是覺(jué)得自己的算法可以輕易的超過(guò)鄰近算法,但實(shí)際上很難!如果我們有足夠的數(shù)據(jù),鄰近算法非常有效果,在實(shí)踐中也是非常有用的。

Fran?ois Chollet,谷歌深度學(xué)習(xí)研究專家,Keras作者

矩陣分解——一個(gè)簡(jiǎn)單而美麗的降維方法,而降維是認(rèn)知的本質(zhì)。

矩陣分解在推薦系統(tǒng)得到了很大應(yīng)用。另一個(gè)應(yīng)用是分解特征的互信息對(duì)的矩陣,或更為常見的逐點(diǎn)互信息。我從2010年開始處理視頻數(shù)據(jù)的時(shí)候就開始用了。可用于特征提取、計(jì)算單詞嵌入、計(jì)算標(biāo)簽嵌入(我最近的論文的主題就是這個(gè)),等等。

在卷積中,矩陣分解是圖像、視頻的無(wú)監(jiān)督特征的優(yōu)秀的提取器。但有個(gè)問(wèn)題,它從根本上來(lái)說(shuō)是比較淺的算法。一旦監(jiān)督標(biāo)簽可用,深度神經(jīng)網(wǎng)絡(luò)將很快超越它。

Yann LeCun,F(xiàn)acebook人工智能研究院主管,紐約大學(xué)教授

Backprop,反向傳播算法。

Ian Goodfellow,谷歌大腦高級(jí)研究員

我喜歡dropout,在一個(gè)簡(jiǎn)單模型中構(gòu)建一個(gè)指數(shù)型的大集成是非常優(yōu)雅的。在近似集成預(yù)測(cè)結(jié)果時(shí),權(quán)重除以2的技巧效果很好。我不太理解在深度非線性模型中其效果如此好的理論原因,但它的效果真的很好。

Claudia Perlich,Dstillery首席科學(xué)家,紐約大學(xué)客座教授

毫無(wú)疑問(wèn),我最喜歡邏輯回歸,包括隨機(jī)梯度下降、特征散列以及懲罰。

在深度學(xué)習(xí)如此火爆的時(shí)代,我的這個(gè)回答肯定讓人費(fèi)解,來(lái)告訴你們?cè)颍?/p>

1995年到1998年,我使用神經(jīng)網(wǎng)絡(luò);1998年到2002年,我一般使用基于方法的樹;從2002年以后,就開始慢慢使用邏輯回歸了,還包括線性回歸、分量回歸、泊松回歸等。2003年,我在Machine Learning上發(fā)表了一篇文章,使用 35個(gè)數(shù)據(jù)集(在那時(shí)這樣的數(shù)據(jù)量還是比較大的)上,對(duì)比基于方法的樹、基于邏輯回歸分別得到的結(jié)果。

簡(jiǎn)要結(jié)論——如果信號(hào)噪聲比較高,那么決策樹效果更好。但如果有非常雜亂的問(wèn)題,最好的模型的AUC小于0.8,那么邏輯回歸的效果總是比決策樹好。最終結(jié)果在意料之中,如果信號(hào)太弱,高方差模型就會(huì)失效。

所以這個(gè)試驗(yàn)說(shuō)明了什么?我需要處理的問(wèn)題類型是比較雜亂的,并且可預(yù)測(cè)性低。一般都是處于隨機(jī)確定性(象棋??)的條件下,像所謂的股票市場(chǎng)。根據(jù)數(shù)據(jù)不同,不同問(wèn)題的可預(yù)測(cè)性也不同。這已經(jīng)不簡(jiǎn)單是算法問(wèn)題,而是對(duì)世界的概念表述。

我感興趣的大多數(shù)問(wèn)題非常類似于股市的某一個(gè)極端。深度學(xué)習(xí)在另一端效果非常好——比如判斷圖片中是否是一只貓。在不確定的問(wèn)題中,偏差權(quán)衡仍然經(jīng)常結(jié)束了更多的偏差,也就是,你希望得到一個(gè)簡(jiǎn)單的、非常受限的模型。這里就用到邏輯回歸了。我發(fā)現(xiàn),添加復(fù)雜特征來(lái)加強(qiáng)簡(jiǎn)單線性模型,比限制一個(gè)強(qiáng)大的高方差模型更容易。而每一次我贏過(guò)的數(shù)據(jù)挖掘比賽,我都使用了線性模型。

除了性能比較好,線性模型還比較可靠、需要的控制更少,不過(guò)還要用隨機(jī)梯度下降法和懲罰。這些是很重要的,因?yàn)樵诠I(yè)上,我們根本不可能花3個(gè)月的時(shí)間來(lái)建立一個(gè)完美的模型。

最后,在線性模型上,我可以更好的理解一切如何運(yùn)行。

Alex Smola,卡內(nèi)基梅隆大學(xué)教授,1-Page首席科學(xué)家

可能大家都最喜歡感知器算法,由它發(fā)展出其他很多重要的算法,比如:

核函數(shù)方法(只是轉(zhuǎn)換預(yù)處理)

深度網(wǎng)絡(luò)(只是增加了更多的層)

隨機(jī)梯度下降法(只改變目標(biāo)函數(shù))

學(xué)習(xí)理論(保證了更新)

感知器算法如下:

假設(shè)一個(gè)線性函數(shù)f(x)=?w,x?+b,我們要估計(jì)向量w和常數(shù)b,當(dāng)?shù)玫椒诸?時(shí),f為正數(shù),得到分類?1時(shí),f為負(fù)數(shù)。然后我們可以做如下步驟:

初始化w和b為零(或其他可能更好的值);

繼續(xù)遍歷(x,y),直到?jīng)]有錯(cuò)誤;

如果 yf(x)<0,那么更新 w+=yx,b+=y。

該算法是收斂的,所花時(shí)間長(zhǎng)短取決于問(wèn)題有多難,從技術(shù)上來(lái)講就是將正數(shù)和負(fù)數(shù)集合分開的困難程度。但是解決所有的錯(cuò)誤更重要。

Xavier Amatriain,前ML研究人員,目前在Quora帶領(lǐng)工程師

我喜歡簡(jiǎn)單而靈活的算法。如果一定要選一個(gè),我最喜歡集成(Ensemble)算法,我個(gè)人認(rèn)為它是“大師級(jí)別”。無(wú)論我們從哪個(gè)算法開始,總可以用集成算法來(lái)提高它。集成算法獲得了Netflix獎(jiǎng),經(jīng)常表現(xiàn)優(yōu)異,也相對(duì)容易理解、優(yōu)化和檢查。

但如果要選一個(gè)“超級(jí)算法”,我選另一個(gè)——邏輯回歸。邏輯回歸很簡(jiǎn)單,但很有效并且有彈性,可以用在很多地方,包括分類、排序。

Thorsten Joachims,康奈爾大學(xué)教授,主要研究人類行為的機(jī)器學(xué)習(xí)

我目前使用的學(xué)習(xí)算法并不是我最喜歡的,因?yàn)樗鼈兌加幸粋€(gè)缺陷。這些優(yōu)異又重要的機(jī)器學(xué)習(xí)算法中,都有個(gè)巨大的帕累托邊界。

事實(shí)上,基本的機(jī)器學(xué)習(xí)理論告訴我們,沒(méi)有一個(gè)單獨(dú)的機(jī)器學(xué)習(xí)算法可以很好的解決所有問(wèn)題。如果訓(xùn)練樣本相對(duì)比較少,又有非常高維的稀疏數(shù)據(jù)(例如按主題分類的文本),可以使用一個(gè)正規(guī)化的線性模型,比如SVM或邏輯回歸。但如果有大量的訓(xùn)練樣本與低維的稠密數(shù)據(jù)(如語(yǔ)音識(shí)別、視覺(jué)),可以使用深度網(wǎng)絡(luò)。

Ricardo Vladimiro,Miniclip 游戲分析和數(shù)據(jù)科學(xué)負(fù)責(zé)人

注:Miniclip,瑞士在線游戲公司,2015年被騰訊控股。

隨機(jī)森林。學(xué)習(xí)隨機(jī)森林對(duì)我來(lái)說(shuō)是個(gè)非常享受的過(guò)程。最后的總體效果也很有意義。我覺(jué)得決策樹實(shí)在是很可愛(ài)。對(duì)特征進(jìn)行Bootstrap經(jīng)常會(huì)讓我驚嘆。這真的很神奇。我覺(jué)得我對(duì)于隨機(jī)森林已經(jīng)有感情了,因?yàn)槲以谌绱硕潭痰臅r(shí)間內(nèi)學(xué)到了很多東西。

Ps:我知道我對(duì)決策樹的看法有點(diǎn)極端。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 算法
    +關(guān)注

    關(guān)注

    23

    文章

    4622

    瀏覽量

    93057
  • 計(jì)算機(jī)
    +關(guān)注

    關(guān)注

    19

    文章

    7519

    瀏覽量

    88213
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8425

    瀏覽量

    132770

原文標(biāo)題:Quora上的大牛們最喜歡哪種機(jī)器學(xué)習(xí)算法?

文章出處:【微信號(hào):BigDataDigest,微信公眾號(hào):大數(shù)據(jù)文摘】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    【我是電子發(fā)燒友】七步帶你認(rèn)識(shí)計(jì)算機(jī)視覺(jué)(Computer Vision)

    的是計(jì)算機(jī)視覺(jué)幾乎全部與計(jì)算機(jī)編程有關(guān)。也可以在Coursera上選修《概率繪圖模型》一課,這門課程相對(duì)較難(講得比較深入),也可以在學(xué)習(xí)
    發(fā)表于 06-14 21:06

    高級(jí)機(jī)器學(xué)習(xí)算法工程師--【北京】

    職位描述:1. 負(fù)責(zé)計(jì)算機(jī)視覺(jué)&機(jī)器學(xué)習(xí)(包括深度學(xué)習(xí)算法的開發(fā)與性能提升,負(fù)責(zé)下述研究課題中的一項(xiàng)或多項(xiàng),包括但不限于:人臉識(shí)別、檢測(cè)、
    發(fā)表于 12-07 14:34

    計(jì)算機(jī)編程 精選資料分享

    的書看。比如說(shuō)如果對(duì)C相當(dāng)感興趣,可以進(jìn)修C++、VC++、C#等。而“網(wǎng)絡(luò)工程師”是比較吃香的一種人。 當(dāng)然了,為了學(xué)習(xí)計(jì)算機(jī)把其他都拋開是不對(duì)的?!氨葼枴どw茨不是就沒(méi)上大學(xué)么
    發(fā)表于 07-15 06:09

    計(jì)算機(jī)有哪些功能

    一句話概括:計(jì)算機(jī)體系結(jié)構(gòu)講的是計(jì)算機(jī)有哪些功能(包括指令集、數(shù)據(jù)類型、存儲(chǔ)器尋址技術(shù)、I/O機(jī)理等等),是抽象的;計(jì)算機(jī)組成原理講的是計(jì)算機(jī)功能是如何實(shí)現(xiàn)的,是具體的。例如:一臺(tái)
    發(fā)表于 07-16 07:45

    微型計(jì)算機(jī)那些機(jī)器內(nèi)部做些什么呢

    的兒童玩具也使用微型計(jì)算機(jī)。那么,究竟微型計(jì)算機(jī)那些機(jī)器內(nèi)部做些什么呢?微型計(jì)算機(jī)控制硬件,這是這些設(shè)備運(yùn)行的關(guān)鍵。例如,它接收來(lái)自按鈕和
    發(fā)表于 09-10 09:24

    計(jì)算機(jī)分類

    XX計(jì)算機(jī)應(yīng)用基礎(chǔ)模擬題「附答案」 (14頁(yè)) 本資源提供全文預(yù)覽,點(diǎn)擊全文預(yù)覽即可全文預(yù)覽,如果喜歡文檔就下載吧,查找使用更方便哦!14.9 積分XX計(jì)算機(jī)應(yīng)用基礎(chǔ)模擬題「附答案」      一
    發(fā)表于 09-10 06:58

    什么是機(jī)器學(xué)習(xí)? 機(jī)器學(xué)習(xí)基礎(chǔ)入門

    微控制器和單板計(jì)算機(jī)等受限設(shè)備上的機(jī)器學(xué)習(xí))的出現(xiàn),機(jī)器學(xué)習(xí)已經(jīng)與所有類型的工程師相關(guān),包括那些
    發(fā)表于 06-21 11:06

    機(jī)器學(xué)習(xí)計(jì)算機(jī)免疫中的應(yīng)用

    機(jī)器學(xué)習(xí)研究的是通過(guò)經(jīng)驗(yàn)自動(dòng)改進(jìn)的計(jì)算機(jī)算法。本文提出對(duì) FICSEM 的一種改進(jìn)方法:FICSEM2。FICSEM 是一種單例學(xué)習(xí)方法。適
    發(fā)表于 09-01 15:59 ?8次下載

    什么是計(jì)算機(jī)算法?

    什么是計(jì)算機(jī)算法?要使計(jì)算機(jī)工作,您就必須編寫計(jì)算機(jī)程序。要編寫計(jì)算機(jī)程序,您就必須一步步地告訴計(jì)算機(jī)
    發(fā)表于 08-03 08:50 ?3112次閱讀

    知道機(jī)器深度學(xué)習(xí) 那你知道全新的進(jìn)化算法

    基于目前人類在神經(jīng)網(wǎng)絡(luò)算法機(jī)器深度學(xué)習(xí)取得的成就,很容易讓人產(chǎn)生計(jì)算機(jī)科學(xué)只包含這兩部分的錯(cuò)覺(jué)。一種全新的算法甚至比深度
    的頭像 發(fā)表于 08-06 08:27 ?3264次閱讀
    <b class='flag-5'>你</b><b class='flag-5'>知道</b><b class='flag-5'>機(jī)器</b>深度<b class='flag-5'>學(xué)習(xí)</b> 那你<b class='flag-5'>知道</b>全新的進(jìn)化<b class='flag-5'>算法</b>嗎

    計(jì)算機(jī)學(xué)習(xí)經(jīng)歷的分享

    錢多的工作很多,這個(gè)不是學(xué)習(xí)的真正理由。沒(méi)有金剛鉆別攬瓷器活,我來(lái)說(shuō)下怎么判斷是否能在計(jì)算機(jī)行業(yè)吃到一碗飯。 首先說(shuō)下我的故事,我是怎么對(duì)計(jì)算機(jī)感興趣的。 小時(shí)候就喜歡拆收音機(jī),
    的頭像 發(fā)表于 10-15 10:13 ?2643次閱讀

    攻讀計(jì)算機(jī)視覺(jué)和機(jī)器學(xué)習(xí)碩士有啥好的?

    人工智能就業(yè)市場(chǎng)持續(xù)火熱,越來(lái)越多的學(xué)子投身這一領(lǐng)域。然而,攻讀計(jì)算機(jī)視覺(jué)和機(jī)器學(xué)習(xí)研究生需要哪些先決條件?將學(xué)到哪些知識(shí)?攻讀機(jī)器
    的頭像 發(fā)表于 06-19 09:25 ?3367次閱讀

    你們知道計(jì)算機(jī)是如何識(shí)別寫的代碼的嗎?

    學(xué)習(xí)編程其實(shí)就是學(xué)高級(jí)語(yǔ)言,即那些為人類設(shè)計(jì)的計(jì)算機(jī)語(yǔ)言。 但是,計(jì)算機(jī)不理解高級(jí)語(yǔ)言,必須通過(guò)編譯器轉(zhuǎn)成二進(jìn)制代碼,才能運(yùn)行。學(xué)會(huì)高級(jí)語(yǔ)言,并不等于理解
    的頭像 發(fā)表于 07-06 10:03 ?2789次閱讀

    機(jī)器學(xué)習(xí)算法入門 機(jī)器學(xué)習(xí)算法介紹 機(jī)器學(xué)習(xí)算法對(duì)比

    ,討論一些主要的機(jī)器學(xué)習(xí)算法,以及比較它們之間的優(yōu)缺點(diǎn),以便于您選擇適合的算法。 一、機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 08-17 16:27 ?968次閱讀

    機(jī)器學(xué)習(xí)有哪些算法機(jī)器學(xué)習(xí)分類算法有哪些?機(jī)器學(xué)習(xí)預(yù)判有哪些算法?

    機(jī)器學(xué)習(xí)有哪些算法機(jī)器學(xué)習(xí)分類算法有哪些?機(jī)器
    的頭像 發(fā)表于 08-17 16:30 ?2014次閱讀