上海潤(rùn)欣科技股份有限公司創(chuàng)研社
本文詳細(xì)介紹了,如何在Apollo3 SDK v2.0平臺(tái)上增加對(duì)復(fù)旦微FM25Q128 SPI Flash支持的方法。本文將結(jié)合軟件和硬件,闡述如何通過(guò)Apollo3片上串行外設(shè)MSPI接口以Quad SPI模式訪問(wèn)SPI Flash的底層驅(qū)動(dòng)代碼的實(shí)現(xiàn)步驟。
1、 什么是MSPI
MSPI,即Multi-bit SPI的縮寫,是Apollo3新引入的串行外設(shè),可以支持單線SPI,Dual SPI,Quad SPI,以及八線Octal SPI(可以是單個(gè)Octal設(shè)備,也可以是兩個(gè)Quad Pair組成的Octal 設(shè)備)等模式,最高速率24MHz,可以外接串行存儲(chǔ)設(shè)備,如PSRAM,SPI Nor Flash等,支持XIP片上直接運(yùn)行代碼。MPSI支持全部的4種SPI CPOL/CPHA模式,即模式0-3。支持DMA。支持Command Queue。2個(gè)片選,以Quad-SPI為例,MSPI最多支持兩路Quad-SPI,這兩路共用一個(gè)MSPI CLK。兩路QSPI分時(shí)操作。MSPI具體的管腳復(fù)用圖如下圖1,
圖1 MSPI管腳復(fù)用圖
2、 MSPI連接SPI Flash,Quad SPI四線模式,如圖2
圖2 MSPI采用Quad SPI接口連接外部SPI Flash器件原理圖
3、根據(jù)以上圖2所示硬件原理圖,我們需要對(duì)SDK中的BSP庫(kù)進(jìn)行相應(yīng)的修改,將MSPI使用到的相關(guān)管腳一一進(jìn)行分配和初始化,如這里用到的:
GP1 --- CE0 (片選)
GP26 --- DQ1(數(shù)據(jù)IO1, SPI DO)
GP4 --- DQ2 (數(shù)據(jù)IO2,SPI WP#)
GP22 --- DQ0 (數(shù)據(jù)IO0,SPI DI)
GP23 --- DQ3 (數(shù)據(jù)IO3,SPI HOLD#)
打開(kāi)SDK v2.0目錄下的工程libam_bsp,找到文件am_bsp_pins.h,按照上面分配的管腳修改定義:
再在同一工程里面找到am_bsp_pins.c文件,逐一修改以上管腳對(duì)應(yīng)的屬性結(jié)構(gòu)體,如下:
如果不需要修改其他外設(shè)接口的管腳定義,保存文件后退出編輯模式,SDK v2.0下的示例代碼默認(rèn)包含BSP和HAL庫(kù)文件進(jìn)行編譯,所以,這里需要重新將libam_bsp工程進(jìn)行重新編譯,假設(shè)我們使用Keil MDK編譯器,那么生成的庫(kù)文件為libam_bsp.lib,可以直接包含到其他的Keil MDK示例工程下進(jìn)行使用。IAR生成的庫(kù)文件為libam_bsp.a。
4、了解復(fù)旦微 SPI Flash器件FM25Q128的基本特性
FM25Q128是復(fù)旦微電子生產(chǎn)的串行SPI接口Nor Flash存儲(chǔ)器,支持單線SPI, 雙線Dual SPI和四線Quad SPI(QPI)模式,我們采用的是Quad SPI,即器件的QPI模式(4-4-4)。
FM25Q128的容量為128Mbit(16MB),單個(gè)Sector扇區(qū)大小為4KB,支持32KB或者64KB大小的Block塊,可編程頁(yè)大小為256字節(jié)。Sector扇區(qū),Block塊大小和數(shù)量的宏定義詳見(jiàn)如下代碼:
我們采用的芯片封裝和引腳定義如下圖3所示;
圖3 FM25Q125芯片引腳定義圖
請(qǐng)?zhí)貏e注意管腳WP#和HOLD#/RESET#(DQ3)的描述
出廠時(shí),QE位為0,芯片處于單線SPI模式,硬件上,芯片的Pin3為WP#信號(hào),Pin7為HOLD#/RESET#信號(hào),繼續(xù)了解WP#和HOLD#硬件關(guān)鍵的特點(diǎn),
SPI模式下,如果WP#管腳為低,則禁止改寫Status狀態(tài)寄存器的值;當(dāng)HOLD#為低時(shí),即使芯片CS片選腳被激活,芯片仍將進(jìn)入暫停模式,SPI總線無(wú)法正常訪問(wèn)SPI Flash,包括讀取Status狀態(tài)寄存器的值,芯片相當(dāng)于進(jìn)入了復(fù)位狀態(tài)。因?yàn)樾酒鰪S默認(rèn)模式是單線SPI模式,因此,我們需要先通過(guò)Apollo3的MSPI接口的單線SPI模式(1-1-1)來(lái)初始化器件,讓器件進(jìn)入QPI模式(4-4-4)后,然后再使用Quad SPI進(jìn)行訪問(wèn)SPI Flash,以實(shí)現(xiàn)利用最高的效率訪問(wèn)SPI Flash外設(shè)。SPI的不同接口類型在傳輸指令碼、地址碼、數(shù)據(jù)碼時(shí)所使用的傳輸通道數(shù)量不同,如下圖4所示:
圖 4 SPI不同接口類型的區(qū)別
FM25Q128上電初始化流程如下圖所示,要使能芯片的QPI模式,需要使能狀態(tài)寄存器Status Register-2中的bit1位QE,然后使用0x38命令使能進(jìn)入QPI模式。退出QPI模式可以發(fā)送0xFF命令或者發(fā)送軟件復(fù)位序列0x66 + 0x99,如下圖5所示。
圖5 FM25Q125上電初始化流程
如上所述,初次上電后,Flash芯片處于單線SPI模式,WP#和HOLD#管腳可能影響狀態(tài)寄存器的寫入操作,實(shí)際調(diào)試底層驅(qū)動(dòng)代碼的過(guò)程中,筆者也發(fā)現(xiàn)了這個(gè)問(wèn)題,由于HOLD#沒(méi)有外接上拉電阻,在SPI模式下Flash芯片的HOLD#腳電平不穩(wěn),導(dǎo)致讀寫狀態(tài)寄存器時(shí)而正常,時(shí)而失敗,開(kāi)發(fā)板正常,客戶的板子失敗等現(xiàn)象,調(diào)試了很長(zhǎng)時(shí)間才發(fā)現(xiàn)問(wèn)題根源在于此。我們可以將Apollo3芯片的MSPI接口配置成SPI模式,并將連接到FM25Q128的DQ2(WP#)和DQ3(HOLD#/RESET#)的管腳GP4和GP23配置成GPIO輸出,使能內(nèi)部上拉電阻,并且同時(shí)輸出高電平,讓WP#和HOLD#管腳處于非激活狀態(tài)。
我們先通過(guò)閱讀Datasheet來(lái)了解一下Apollo3的GPIO口結(jié)構(gòu),以及內(nèi)部上拉電阻的配置。
Apollo3的所有的GPIO都可以通過(guò)軟件來(lái)配置(PADnPULL)使能內(nèi)部上拉電阻(除了GPIO20為下拉),上拉電阻默認(rèn)狀態(tài)是禁用的。另外,包含有I2C功能的GPIO的內(nèi)部上拉電阻是可以選擇四種不同阻值的。我們用到的GP4和GP23不包含I2C功能,因此不能選擇上拉電阻的阻值。經(jīng)過(guò)與AmbiqMicro原廠工程師溝通,了解到內(nèi)部通用上拉電阻的阻值大約為63KΩ,這個(gè)內(nèi)部的弱上拉足可以保證在SPI模式初始化SPI Flash時(shí),WP#和HOLD#/RESET#管腳穩(wěn)定為高電平狀態(tài)。參考代碼如下:
#define AM_BSP_GPIO_GP23 23
#define AM_BSP_GPIO_GP4 4
const am_hal_gpio_pincfg_t g_AM_BSP_GPIO_GP23_HOLD =
{
.uFuncSel = AM_HAL_PIN_23_GPIO,
.eDriveStrength = AM_HAL_GPIO_PIN_DRIVESTRENGTH_8MA,
.ePullup = AM_HAL_GPIO_PIN_PULLUP_WEAK,
.eGPOutcfg = AM_HAL_GPIO_PIN_OUTCFG_PUSHPULL,
.eGPInput = AM_HAL_GPIO_PIN_INPUT_NONE
};
const am_hal_gpio_pincfg_t g_AM_BSP_GPIO_GP4_WP =
{
.uFuncSel = AM_HAL_PIN_4_GPIO,
.eDriveStrength = AM_HAL_GPIO_PIN_DRIVESTRENGTH_8MA,
.ePullup = AM_HAL_GPIO_PIN_PULLUP_WEAK,
.eGPOutcfg = AM_HAL_GPIO_PIN_OUTCFG_PUSHPULL,
.eGPInput = AM_HAL_GPIO_PIN_INPUT_NONE
};
static void ConfigGP23AsGpioOutputForPullHighHoldPin (void)
{
//
// Configure the pin as a push-pull GPIO output.
//
am_hal_gpio_pinconfig(AM_BSP_GPIO_GP23, g_AM_BSP_GPIO_GP23_HOLD);
//
// Disable the output driver, and set the output value to the high level
// state. Note that for Apollo3 GPIOs in push-pull mode, the output
// enable, normally a tri-state control, instead functions as an enable
// for Fast GPIO. Its state does not matter on previous chips, so for
// normal GPIO usage on Apollo3, it must be disabled.
//
am_hal_gpio_state_write(AM_BSP_GPIO_GP23, AM_HAL_GPIO_OUTPUT_TRISTATE_DISABLE);
am_hal_gpio_state_write(AM_BSP_GPIO_GP23, AM_HAL_GPIO_OUTPUT_SET); // pull high
}
static void ConfigGP4AsGpioOutputForPullHighWPPin (void)
{
//
// Configure the pin as a push-pull GPIO output.
//
am_hal_gpio_pinconfig(AM_BSP_GPIO_GP4, g_AM_BSP_GPIO_GP4_WP); //
// Disable the output driver, and set the output value to the high level
// state. Note that for Apollo3 GPIOs in push-pull mode, the output
// enable, normally a tri-state control, instead functions as an enable
// for Fast GPIO. Its state does not matter on previous chips, so for
// normal GPIO usage on Apollo3, it must be disabled.
//
am_hal_gpio_state_write(AM_BSP_GPIO_GP4, AM_HAL_GPIO_OUTPUT_TRISTATE_DISABLE);
am_hal_gpio_state_write(AM_BSP_GPIO_GP4, AM_HAL_GPIO_OUTPUT_SET); // pull high
}
代碼詳見(jiàn)SDK v2.0目錄下的示例工程mspi_quad_example,文件am_devices_mspi_flash.c。
5、 在SDK v2.0示例代碼mspi_quad_example的基礎(chǔ)上添加FM25Q128的支持
am_devices_mspi_flash.h文件中增加器件型號(hào)宏定義:#define FUDAN_FM25Q128
以及器件支持的相關(guān)操作命令,ID碼以及容量宏定義
#if defined (FUDAN_FM25Q128)
//*******************************************************************
//
// Device specific identification.
//
//*******************************************************************
#define AM_DEVICES_MSPI_FLASH_ID 0x001840A1
#define AM_DEVICES_MSPI_FLASH_ID_MASK 0x00FFFFFF
//*******************************************************************
//
// Device specific definitions for flash commands
//
//*******************************************************************
#define AM_DEVICES_MSPI_FLASH_READ_STATUS_REGISTER1 0x05 // RDSR1, read STATUS_REGISTER 1
#define AM_DEVICES_MSPI_FLASH_READ_STATUS_REGISTER2 0x35 // RDSR2, read STATUS_REGISTER 2
#define AM_DEVICES_MSPI_FLASH_READ_STATUS_REGISTER3 0x15 // RDSR3, read STATUS_REGISTER 3
#define AM_DEVICES_MSPI_FLASH_WRITE_STATUS_REGISTER1 0x01 // WRSR1, write STATUS_REGISTER 1
#define AM_DEVICES_MSPI_FLASH_WRITE_STATUS_REGISTER2 0x31 // WRSR2, write STATUS_REGISTER 2
#define AM_DEVICES_MSPI_FLASH_WRITE_STATUS_REGISTER3 0x11 // WRSR3, write STATUS_REGISTER 3
#define AM_DEVICES_MSPI_FLASH_ENABLE_QPI_MODE 0x38 // EQIO, Enable QPI
#define AM_DEVICES_MSPI_FLASH_DISABLE_QPI_MODE 0xFF // Disable QPI
#define AM_DEVICES_MSPI_FLASH_ENABLE_RESET 0x66 // Enable Reset
#define AM_DEVICES_MSPI_FLASH_RESET 0x99 // Reset
#define AM_DEVICES_MSPI_FLASH_WRITE_ENABLE_VOLATILE 0x50 // Write Enable for Volatile Status Register
//*******************************************************************
//
// Device specific definitions for the Configuration register(s)
//
//*******************************************************************
#define AM_DEVICES_MSPI_CLEAR_STATUS_REGISTER1 (0x00) // the value to clear the status register-1
#define AM_DEVICES_MSPI_ENABLE_QUAD_STATUS_REGISTER2 (0xF2) // LC = 11b, dummy cycles = 4 for quad enable, 0 for spi mdode
#define AM_DEVICES_MSPI_CLEAR_STATUS_REGISTER3 (0xFC) // to clear the status register-3, the reserved bits will be bypassed
//*******************************************************************
//
// Device specific definitions for the flash size information
//
//*******************************************************************
#define AM_DEVICES_MSPI_FLASH_PAGE_SIZE 0x100 // 256 bytes, minimum program unit
#define AM_DEVICES_MSPI_FLASH_SECTOR_SIZE 0x1000 // 4K bytes
#define AM_DEVICES_MSPI_FLASH_BLOCK_SIZE 0x10000 // 64K bytes.
#define AM_DEVICES_MSPI_FLASH_MAX_SECTORS 4096 // Sectors within 3-byte address range. 4096 * 4KB = 16MB
#define AM_DEVICES_MSPI_FLASH_MAX_BLOCKS 256 // 256 * 64KB = 16MB
#endif
上電后初始化先清除SR1和SR3中的相應(yīng)的狀態(tài)位和錯(cuò)誤標(biāo)志位。
說(shuō)明:狀態(tài)寄存器SR2-3中的有些位標(biāo)注為R,其為Reserved Bit,即保留位,不能被軟件改寫,建議采用先讀出SR2-3的值,再使用與或操作置位或者清除可以改寫的位,同時(shí)保留那些原有標(biāo)注R的位的值。
am_devices_mspi_flash.c文件中增加對(duì)FM25Q128支持的初始化代碼:
SPI接口初始化宏定義:
// Configure the MSPI for Serial operation during initialization
am_hal_mspi_dev_config_t SerialCE0MSPIConfig = // MSPI SERIAL CE0(SPI mode)
{
.eSpiMode = AM_HAL_MSPI_SPI_MODE_0,
.eClockFreq = AM_HAL_MSPI_CLK_3MHZ, // lower speed rate for more stable initialization operation
#if defined(MICRON_N25Q256A)
.ui8TurnAround = 3,
#elif defined (CYPRESS_S25FS064S)
.ui8TurnAround = 3,
#elif defined (MACRONIX_MX25U12835F)
.ui8TurnAround = 8,
#elif defined (FUDAN_FM25Q128)
.ui8TurnAround = 8, // The dummy clocks is 8 under SPI mode by default. will update automatically
#endif
.eAddrCfg = AM_HAL_MSPI_ADDR_3_BYTE,
.eInstrCfg = AM_HAL_MSPI_INSTR_1_BYTE,
.eDeviceConfig = AM_HAL_MSPI_FLASH_SERIAL_CE0,
.bSeparateIO = true,
.bSendInstr = true,
.bSendAddr = true,
.bTurnaround = true,
.ui8ReadInstr = AM_DEVICES_MSPI_FLASH_FAST_READ,
.ui8WriteInstr = AM_DEVICES_MSPI_FLASH_PAGE_PROGRAM,
.ui32TCBSize = 0,
.pTCB = NULL,
.scramblingStartAddr = 0,
.scramblingEndAddr = 0,
};
上電后,選擇將MSPI配置為CE0,單線SPI模式,各參數(shù)說(shuō)明如下:
AM_HAL_MSPI_SPI_MODE_0: 配置為SPI Mode
AM_HAL_MSPI_CLK_3MHZ: 配置較低的SPI速率提高穩(wěn)定性和兼容性
.ui8TurnAround = 8:芯片出廠LC默認(rèn)值為00,對(duì)應(yīng)的SPI模式下dummy cycles為8
AM_HAL_MSPI_ADDR_3_BYTE: 24位即3字節(jié)地址碼
AM_HAL_MSPI_INSTR_1_BYTE: 1字節(jié)指令碼
AM_HAL_MSPI_FLASH_SERIAL_CE0: 單線SPI模式,片選通道CE0
FM25Q128初始化代碼如下:
//*******************************************************************
//
// FUDAN FM25Q128 Support
// Added by Roger
//
//*******************************************************************
#if defined (FUDAN_FM25Q128)
//
// Device specific initialization function.
//
uint32_t am_device_init_flash(am_hal_mspi_dev_config_t *psMSPISettings)
{
uint32_t ui32Status = AM_HAL_STATUS_SUCCESS;
// workaround for the HOLD# pin bug
// When read the SPI Flash device at the first time powered-on, the device will present as SPI mode
// If the WP# or Hold# pin is tied directly to a low level (such as, connect to the ground) during standard SPI
// or Dual SPI operation, the QE bit should never be set to a 1.
// Pull the WP# and HOLD# pin of SPI Flash as a high level to prevent hold state
ConfigGP23AsGpioOutputForPullHighHoldPin(); // added by Roger
ConfigGP4AsGpioOutputForPullHighWPPin(); // added by Roger
#if 1
//
// Reset the Fudan FM25Q128. using the existing api
//
if (AM_HAL_STATUS_SUCCESS != am_devices_mspi_flash_reset())
{
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
// software reset code
#else
ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_ENABLE_RESET, false, 0, g_PIOBuffer, 0); // Enable reset
if (AM_HAL_STATUS_SUCCESS != ui32Status)
{
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_RESET, false, 0, g_PIOBuffer, 0); // Reset
if (AM_HAL_STATUS_SUCCESS != ui32Status)
{
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
#endif
am_util_delay_us(1000); // for stable concern, delay 1000us after software reset
g_ui32SR1 = 0;
g_ui32SR2 = 0;
g_ui32SR3 = 0;
am_util_stdio_printf("Dump out the STATUS REGISTER 1 - 3 before configurating:\n\r");
ui32Status = am_device_command_read(AM_DEVICES_MSPI_FLASH_READ_STATUS_REGISTER1, false, 0, (uint32_t *)&g_ui32SR1, 1);
am_util_stdio_printf("STATUS REGISTER 1 is 0x%02X\n", (uint8_t)g_ui32SR1);
ui32Status = am_device_command_read(AM_DEVICES_MSPI_FLASH_READ_STATUS_REGISTER2, false, 0, (uint32_t *)&g_ui32SR2, 1);
am_util_stdio_printf("STATUS REGISTER 2 is 0x%02X\n", (uint8_t)g_ui32SR2);
ui32Status = am_device_command_read(AM_DEVICES_MSPI_FLASH_READ_STATUS_REGISTER3, false, 0, (uint32_t *)&g_ui32SR3, 1);
am_util_stdio_printf("STATUS REGISTER 3 is 0x%02X\n", (uint8_t)g_ui32SR3);
//
// Enable writing to the Status/Configuration register.
//
ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_WRITE_ENABLE, false, 0, g_PIOBuffer, 0); // Non-Volatile
//ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_WRITE_ENABLE_VOLATILE, false, 0, g_PIOBuffer, 0); // Volatile
if (AM_HAL_STATUS_SUCCESS != ui32Status)
{
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
//
// Configure the Fudan FM25Q128 Status Register-1.
//
g_PIOBuffer[0] = AM_DEVICES_MSPI_CLEAR_STATUS_REGISTER1 ; // Write status register + Data (0x00) --> Clear
ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_WRITE_STATUS_REGISTER1, false, 0, g_PIOBuffer, 1); // SR1
if (AM_HAL_STATUS_SUCCESS != ui32Status)
{
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
//
// Enable writing to the Status/Configuration register.
//
//ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_WRITE_ENABLE, false, 0, g_PIOBuffer, 0); // Non-Volatile
ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_WRITE_ENABLE_VOLATILE, false, 0, g_PIOBuffer, 0); // Volatile
if (AM_HAL_STATUS_SUCCESS != ui32Status)
{
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
//
// Configure the Fudan FM25Q128 Status Register-3.
//
g_PIOBuffer[0] = g_ui32SR3 & ~AM_DEVICES_MSPI_CLEAR_STATUS_REGISTER3;
ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_WRITE_STATUS_REGISTER3, false, 0, g_PIOBuffer, 1);
if (AM_HAL_STATUS_SUCCESS != ui32Status)
{
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
// SPI mode does not need to config the QE bit, move the QE setting to the quad SPI initial code
#if 0
//
// Enable writing to the Status/Configuration register.
//
ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_WRITE_ENABLE, false, 0, g_PIOBuffer, 0); // Non-Volatile
//ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_WRITE_ENABLE_VOLATILE, false, 0, g_PIOBuffer, 0); // Volatile
if (AM_HAL_STATUS_SUCCESS != ui32Status)
{
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
//
// Configure the Fudan FM25Q128 Status Register-2.
//
g_PIOBuffer[0] = (uint8_t)g_ui32SR2 | AM_DEVICES_MSPI_ENABLE_QUAD_STATUS_REGISTER2; // Setting LC and Enable QE(QUAD ENABLE)
ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_WRITE_STATUS_REGISTER2, false, 0, g_PIOBuffer, 1);
if (AM_HAL_STATUS_SUCCESS != ui32Status)
{
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
#endif
am_util_stdio_printf("Dump out the STATUS REGISTER 1 & 3 after having been overwritten:\n\r");
g_ui32SR1 = 0;
g_ui32SR2 = 0;
g_ui32SR3 = 0;
ui32Status = am_device_command_read(AM_DEVICES_MSPI_FLASH_READ_STATUS_REGISTER1, false, 0, (uint32_t *)&g_ui32SR1, 1);
am_util_stdio_printf("STATUS REGISTER 1 is 0x%02X\n", (uint8_t)g_ui32SR1);
ui32Status = am_device_command_read(AM_DEVICES_MSPI_FLASH_READ_STATUS_REGISTER2, false, 0, (uint32_t *)&g_ui32SR2, 1);
am_util_stdio_printf("STATUS REGISTER 2 is 0x%02X\n", (uint8_t)g_ui32SR2);
ui32Status = am_device_command_read(AM_DEVICES_MSPI_FLASH_READ_STATUS_REGISTER3, false, 0, (uint32_t *)&g_ui32SR3, 1);
am_util_stdio_printf("STATUS REGISTER 3 is 0x%02X\n", (uint8_t)g_ui32SR3);
switch (psMSPISettings->eDeviceConfig)
{
case AM_HAL_MSPI_FLASH_SERIAL_CE0:
case AM_HAL_MSPI_FLASH_SERIAL_CE1:
// Nothing to do. Device defaults to SPI mode for initializing SPI flash device. Disable QPI mode
ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_DISABLE_QPI_MODE, false, 0, g_PIOBuffer, 0); // Disable QPI, return to SPI
if (AM_HAL_STATUS_SUCCESS != ui32Status)
{
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
break;
case AM_HAL_MSPI_FLASH_DUAL_CE0:
case AM_HAL_MSPI_FLASH_DUAL_CE1:
// Device does not support Dual mode.
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
//break;
case AM_HAL_MSPI_FLASH_QUAD_CE0:
case AM_HAL_MSPI_FLASH_QUAD_CE1:
case AM_HAL_MSPI_FLASH_QUADPAIRED:
case AM_HAL_MSPI_FLASH_QUADPAIRED_SERIAL:
am_util_stdio_printf("Check the QE bit in STATUS REGISTER 2.\n");
// check the QE bit in SR2
if ( ((uint8_t)g_ui32SR2 & (1<<1)) == 0)
{
am_util_stdio_printf("Config the STATUS REGISTER 2 for Quad SPI mode.\n");
//
// Enable writing to the Status/Configuration register.
//
ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_WRITE_ENABLE, false, 0, g_PIOBuffer, 0); // Non-Volatile
//ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_WRITE_ENABLE_VOLATILE, false, 0, g_PIOBuffer, 0); // Volatile
if (AM_HAL_STATUS_SUCCESS != ui32Status)
{
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
//
// Configure the Fudan FM25Q128 Status Register-2.
//
g_PIOBuffer[0] = (uint8_t)g_ui32SR2 | AM_DEVICES_MSPI_ENABLE_QUAD_STATUS_REGISTER2; // default LC Setting and Enable QE(QUAD ENABLE)
ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_WRITE_STATUS_REGISTER2, false, 0, g_PIOBuffer, 1);
if (AM_HAL_STATUS_SUCCESS != ui32Status)
{
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
}
else
{
am_util_stdio_printf("QE bit in the STATUS REGISTER 2 has already been enabled.\n");
}
am_util_stdio_printf("Get the value of STATUS REGISTER 2:\n");
ui32Status = am_device_command_read(AM_DEVICES_MSPI_FLASH_READ_STATUS_REGISTER2, false, 0, (uint32_t *)&g_ui32SR2, 1);
am_util_stdio_printf("STATUS REGISTER 2 is 0x%02X\n", (uint8_t)g_ui32SR2);
ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_ENABLE_QPI_MODE, false, 0, g_PIOBuffer, 0); // Enable QPI
if (AM_HAL_STATUS_SUCCESS != ui32Status)
{
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
break;
case AM_HAL_MSPI_FLASH_OCTAL_CE0:
case AM_HAL_MSPI_FLASH_OCTAL_CE1:
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
//break;
}
return AM_DEVICES_MSPI_FLASH_STATUS_SUCCESS;
}
//
// Device specific de-initialization function.
//
uint32_t am_device_deinit_flash(am_hal_mspi_dev_config_t *psMSPISettings)
{
uint32_t ui32Status;
//
// Reset the Fudan FM25Q128
//
ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_ENABLE_RESET, false, 0, g_PIOBuffer, 0); // Enable reset
if (AM_HAL_STATUS_SUCCESS != ui32Status)
{
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_RESET, false, 0, g_PIOBuffer, 0); // Reset
if (AM_HAL_STATUS_SUCCESS != ui32Status)
{
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
// added by Roger
am_util_delay_us(1000); // delay 1000us after software reset
//
// Configure the Fudan FM25Q128 Device mode.
//
ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_WRITE_ENABLE, false, 0, g_PIOBuffer, 0);
if (AM_HAL_STATUS_SUCCESS != ui32Status)
{
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
switch (psMSPISettings->eDeviceConfig)
{
case AM_HAL_MSPI_FLASH_SERIAL_CE0:
case AM_HAL_MSPI_FLASH_SERIAL_CE1:
// Nothing to do. Device defaults to SPI mode.
break;
case AM_HAL_MSPI_FLASH_DUAL_CE0:
case AM_HAL_MSPI_FLASH_DUAL_CE1:
// Device does not support Dual mode.
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
//break;
case AM_HAL_MSPI_FLASH_QUAD_CE0:
case AM_HAL_MSPI_FLASH_QUAD_CE1:
case AM_HAL_MSPI_FLASH_QUADPAIRED:
case AM_HAL_MSPI_FLASH_QUADPAIRED_SERIAL:
ui32Status = am_device_command_write(AM_DEVICES_MSPI_FLASH_DISABLE_QPI_MODE, false, 0, g_PIOBuffer, 0);
if (AM_HAL_STATUS_SUCCESS != ui32Status)
{
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
break;
case AM_HAL_MSPI_FLASH_OCTAL_CE0:
case AM_HAL_MSPI_FLASH_OCTAL_CE1:
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
//break;
}
return AM_DEVICES_MSPI_FLASH_STATUS_SUCCESS;
}
#endif
uint32_t
am_devices_mspi_flash_init(am_hal_mspi_dev_config_t *psMSPISettings, void **pHandle)
{
uint32_t ui32Status;
//
// Enable fault detection.
//
#if AM_APOLLO3_MCUCTRL
am_hal_mcuctrl_control(AM_HAL_MCUCTRL_CONTROL_FAULT_CAPTURE_ENABLE, 0);
#else
am_hal_mcuctrl_fault_capture_enable();
#endif
//
// Configure the MSPI for Serial or Quad-Paired Serial operation during initialization.
//
switch (psMSPISettings->eDeviceConfig)
{
case AM_HAL_MSPI_FLASH_SERIAL_CE0: // Select CE0 SPI mode
case AM_HAL_MSPI_FLASH_DUAL_CE0:
case AM_HAL_MSPI_FLASH_QUAD_CE0: // Select CE0 Quad mode
case AM_HAL_MSPI_FLASH_OCTAL_CE0:
g_psMSPISettings = SerialCE0MSPIConfig; // Configure the MSPI for Serial operation during initialization
if (AM_HAL_STATUS_SUCCESS != am_hal_mspi_initialize(AM_DEVICES_MSPI_FLASH_MSPI_INSTANCE, &g_pMSPIHandle))
{
am_util_stdio_printf("Error - Failed to initialize MSPI.\n");
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
if (AM_HAL_STATUS_SUCCESS != am_hal_mspi_power_control(g_pMSPIHandle, AM_HAL_SYSCTRL_WAKE, false))
{
am_util_stdio_printf("Error - Failed to power on MSPI.\n");
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
if (AM_HAL_STATUS_SUCCESS != am_hal_mspi_device_configure(g_pMSPIHandle, &SerialCE0MSPIConfig))
{
am_util_stdio_printf("Error - Failed to configure MSPI.\n");
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
if (AM_HAL_STATUS_SUCCESS != am_hal_mspi_enable(g_pMSPIHandle))
{
am_util_stdio_printf("Error - Failed to enable MSPI.\n");
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
am_bsp_mspi_pins_enable(SerialCE0MSPIConfig.eDeviceConfig); // Set up the MSPI pins for CE0
break;
case AM_HAL_MSPI_FLASH_SERIAL_CE1:
case AM_HAL_MSPI_FLASH_DUAL_CE1:
case AM_HAL_MSPI_FLASH_QUAD_CE1:
case AM_HAL_MSPI_FLASH_OCTAL_CE1:
g_psMSPISettings = SerialCE1MSPIConfig;
if (AM_HAL_STATUS_SUCCESS != am_hal_mspi_initialize(AM_DEVICES_MSPI_FLASH_MSPI_INSTANCE, &g_pMSPIHandle))
{
am_util_stdio_printf("Error - Failed to initialize MSPI.\n");
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
if (AM_HAL_STATUS_SUCCESS != am_hal_mspi_power_control(g_pMSPIHandle, AM_HAL_SYSCTRL_WAKE, false))
{
am_util_stdio_printf("Error - Failed to power on MSPI.\n");
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
if (AM_HAL_STATUS_SUCCESS != am_hal_mspi_device_configure(g_pMSPIHandle, &SerialCE1MSPIConfig))
{
am_util_stdio_printf("Error - Failed to configure MSPI.\n");
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
if (AM_HAL_STATUS_SUCCESS != am_hal_mspi_enable(g_pMSPIHandle))
{
am_util_stdio_printf("Error - Failed to enable MSPI.\n");
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
am_bsp_mspi_pins_enable(SerialCE1MSPIConfig.eDeviceConfig); // Set up the MSPI pins for CE1
break;
case AM_HAL_MSPI_FLASH_QUADPAIRED:
g_psMSPISettings = QuadPairedSerialMSPIConfig;
if (AM_HAL_STATUS_SUCCESS != am_hal_mspi_initialize(AM_DEVICES_MSPI_FLASH_MSPI_INSTANCE, &g_pMSPIHandle))
{
am_util_stdio_printf("Error - Failed to initialize MSPI.\n");
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
if (AM_HAL_STATUS_SUCCESS != am_hal_mspi_power_control(g_pMSPIHandle, AM_HAL_SYSCTRL_WAKE, false))
{
am_util_stdio_printf("Error - Failed to power on MSPI.\n");
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
if (AM_HAL_STATUS_SUCCESS != am_hal_mspi_device_configure(g_pMSPIHandle, &QuadPairedSerialMSPIConfig))
{
am_util_stdio_printf("Error - Failed to configure MSPI.\n");
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
if (AM_HAL_STATUS_SUCCESS != am_hal_mspi_enable(g_pMSPIHandle))
{
am_util_stdio_printf("Error - Failed to enable MSPI.\n");
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
am_bsp_mspi_pins_enable(QuadPairedSerialMSPIConfig.eDeviceConfig); // Set up the MSPI pins
break;
case AM_HAL_MSPI_FLASH_QUADPAIRED_SERIAL:
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
//break;
}
if (AM_HAL_STATUS_SUCCESS != am_devices_mspi_flash_reset()) // software reset the external flash device
{
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
// added by Roger
am_util_delay_us(1000); // for stable concern, delay 1000us after software reset
//
// Device specific MSPI Flash initialization.
// Added by Roger
//
ui32Status = am_device_init_flash(psMSPISettings);
if (AM_HAL_STATUS_SUCCESS != ui32Status)
{
am_util_stdio_printf("Error - Failed to initial device specific MSPI Flash.\n");
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
//
// Initialize the MSPI settings for the SPI FLASH.
//
g_psMSPISettings = *psMSPISettings;
// Disable MSPI before re-configuring it
ui32Status = am_hal_mspi_disable(g_pMSPIHandle);
if (AM_HAL_STATUS_SUCCESS != ui32Status)
{
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
// added by Roger
#if defined (FUDAN_FM25Q128)
am_util_stdio_printf("Status Register 2 is 0x%02X.\n",(uint8_t)g_ui32SR2);
if ((g_psMSPISettings.eDeviceConfig == AM_HAL_MSPI_FLASH_QUAD_CE0) || (g_psMSPISettings.eDeviceConfig == AM_HAL_MSPI_FLASH_QUAD_CE1))
{
am_util_stdio_printf("MSPI operation with Quad SPI mode.\n");
// added by Roger, for updating the dummy clocks according to the LC setting under QPI mode
switch (((uint8_t)g_ui32SR2 & 0xC0) >> 6)
{
case 0: // LC = 00
g_psMSPISettings.ui8TurnAround = 6;
break;
case 1: // LC = 01
g_psMSPISettings.ui8TurnAround = 8;
break;
case 2: // LC = 10
g_psMSPISettings.ui8TurnAround = 10;
break;
case 3: // LC = 11
g_psMSPISettings.ui8TurnAround = 4;
break;
default:
g_psMSPISettings.ui8TurnAround = 6;
break;
}
}
if ((g_psMSPISettings.eDeviceConfig == AM_HAL_MSPI_FLASH_SERIAL_CE0) || (g_psMSPISettings.eDeviceConfig == AM_HAL_MSPI_FLASH_SERIAL_CE1))
{
am_util_stdio_printf("MSPI operation with SPI mode.\n");
// added by Roger, for updating the dummy clocks according to the LC setting under SPI mode
switch (((uint8_t)g_ui32SR2 & 0xC0) >>6)
{
case 0: // LC = 00
case 1: // LC = 01
case 2: // LC = 10
g_psMSPISettings.ui8TurnAround = 8;
break;
case 3: // LC = 11
g_psMSPISettings.ui8TurnAround = 0;
break;
default:
g_psMSPISettings.ui8TurnAround = 8;
break;
}
}
am_util_stdio_printf("g_psMSPISettings.ui8TurnAround = 0x%02X.\n", g_psMSPISettings.ui8TurnAround);
#endif
//
// Re-Configure the MSPI for the requested operation mode.
//
//ui32Status = am_hal_mspi_device_configure(g_pMSPIHandle, psMSPISettings);
ui32Status = am_hal_mspi_device_configure(g_pMSPIHandle, &g_psMSPISettings); // modified by Roger
if (AM_HAL_STATUS_SUCCESS != ui32Status)
{
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
// Re-Enable MSPI
ui32Status = am_hal_mspi_enable(g_pMSPIHandle);
if (AM_HAL_STATUS_SUCCESS != ui32Status)
{
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
//
// Configure the MSPI pins.
//
am_bsp_mspi_pins_enable(g_psMSPISettings.eDeviceConfig); // Set up the MSPI pins
//
// Enable MSPI interrupts.
//
#if MSPI_USE_CQ
ui32Status = am_hal_mspi_interrupt_clear(g_pMSPIHandle, AM_HAL_MSPI_INT_CQUPD | AM_HAL_MSPI_INT_ERR );
if (AM_HAL_STATUS_SUCCESS != ui32Status)
{
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
ui32Status = am_hal_mspi_interrupt_enable(g_pMSPIHandle, AM_HAL_MSPI_INT_CQUPD | AM_HAL_MSPI_INT_ERR );
if (AM_HAL_STATUS_SUCCESS != ui32Status)
{
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
#else
ui32Status = am_hal_mspi_interrupt_clear(g_pMSPIHandle, AM_HAL_MSPI_INT_ERR | AM_HAL_MSPI_INT_DMACMP | AM_HAL_MSPI_INT_CMDCMP );
if (AM_HAL_STATUS_SUCCESS != ui32Status)
{
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
ui32Status = am_hal_mspi_interrupt_enable(g_pMSPIHandle, AM_HAL_MSPI_INT_ERR | AM_HAL_MSPI_INT_DMACMP | AM_HAL_MSPI_INT_CMDCMP );
if (AM_HAL_STATUS_SUCCESS != ui32Status)
{
return AM_DEVICES_MSPI_FLASH_STATUS_ERROR;
}
#endif
#if AM_CMSIS_REGS
NVIC_EnableIRQ(MSPI_IRQn);
#else // AM_CMSIS_REGS
am_hal_interrupt_enable(AM_HAL_INTERRUPT_MSPI);
#endif // AM_CMSIS_REGS
am_hal_interrupt_master_enable();
//
// Return the handle.
//
*pHandle = g_pMSPIHandle;
//
// Return the status.
//
return AM_DEVICES_MSPI_FLASH_STATUS_SUCCESS;
}
至此,FM25Q128的底層驅(qū)動(dòng)代碼與SDK中的MSPI外設(shè)API已經(jīng)對(duì)接完成,我們可以操作以下的API對(duì)Flash進(jìn)行擦除扇區(qū),擦除塊,擦除全片,讀,寫等測(cè)試。
//SPI Flash初始化
uint32_t
am_devices_mspi_flash_init(am_hal_mspi_dev_config_t *psMSPISettings, void **pHandle);
// 獲取SPI Flash的器件ID碼
uint32_t
am_devices_mspi_flash_id(void);
// SPI Flash扇區(qū)擦除。注意:實(shí)際上是調(diào)用的Block塊擦除命令0xD8,擦除單位為64KB
uint32_t
am_devices_mspi_flash_sector_erase(uint32_t ui32SectorAddress);
// SPI Flash全片擦除
uint32_t am_devices_mspi_flash_mass_erase(void);
// 讀取SPI Flash內(nèi)容
uint32_t
am_devices_mspi_flash_read(uint8_t *pui8RxBuffer,
uint32_t ui32ReadAddress,
uint32_t ui32NumBytes,
bool bWaitForCompletion);
// SPI Flash寫入內(nèi)容
uint32_t
am_devices_mspi_flash_write(uint8_t *pui8TxBuffer,
uint32_t ui32WriteAddress,
uint32_t ui32NumBytes);
SPI Flash的相關(guān)API操作Demo詳見(jiàn)mspi_quad_example工程下的mspi_quad_example.c文件。注意:開(kāi)啟宏定義#define TEST_QUAD_SPI,即為測(cè)試Quad SPI模式讀寫SPI Flash;如果注釋掉該宏,則為單線SPI模式讀寫SPI Flash。SPI Flash操作成功后,通過(guò)J-Link的SWO輸出log信息顯示操作結(jié)果,截圖如下:
后記:
整理一下調(diào)試過(guò)程中遇到的一些坑:
1、SDK v2.0與v1.2.12啟動(dòng)代碼startup_keil.s作了改動(dòng),直接將SDK v1.2.12中調(diào)試好的驅(qū)動(dòng)代碼放到v2.0中進(jìn)行編譯,導(dǎo)致無(wú)法進(jìn)入MSPI中斷服務(wù)程序,讀取Flash內(nèi)容時(shí)卡死,原因是SDK v2.0中把MSPI中斷服務(wù)函數(shù)名稱修改了:void am_mspi0_isr(void)
2、新的片子FM25Q128在初始化過(guò)程中無(wú)法正常讀取和修改狀態(tài)寄存器,這是因?yàn)樾酒J(rèn)QE=0,芯片處于單線SPI模式,Pin3為WP#腳,Pin7位Hold#/RESET#腳,由于Pin7電壓不穩(wěn)定,或者處于低電平狀態(tài),導(dǎo)致芯片進(jìn)入RESET狀態(tài),MSPI無(wú)法正確訪問(wèn)Flash狀態(tài)寄存器,導(dǎo)致讀寫失??!初始化為SPI后,將MCU連接到SPI Flash的Pin3和Pin7的IO設(shè)置為GPIO輸出并使能內(nèi)部上拉,輸出高電平,初始化SPI Flash操作過(guò)程中,拉高WP#和HOLD#/RESET#管腳,讓Flash芯片處于非寫保護(hù)和RESET/HOLD狀態(tài)。代碼片段示例如下:
-
SPI Flash
+關(guān)注
關(guān)注
1文章
13瀏覽量
10451
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
AMEYA360:兆易創(chuàng)新推出GD25NE系列SPI NOR Flash
高效電梯語(yǔ)音播報(bào):基于復(fù)旦微FM33LF016的DAC音頻方案

復(fù)旦微榮獲ISO26262:2018功能安全ASIL B產(chǎn)品認(rèn)證證書

昂科燒錄器支持FuDanWei復(fù)旦微電子的低功耗微控制器FM33FR024

STM32CUBEMX(13)--SPI,W25Q128外部Flash移植
物聯(lián)網(wǎng)行業(yè)中Nor Flash的軟件設(shè)計(jì)分享_W25Q128的軟件設(shè)計(jì)方案

W25Q128FV中文手冊(cè)
用spi_flash_read接口去訪問(wèn)SPI外掛的FLASH,無(wú)法返回是怎么回事?
FLASH芯片從W25Q80BL換為W25Q80DV后,系統(tǒng)運(yùn)行經(jīng)常崩潰怎么解決?
ESP32外部flash與spi外設(shè)沖突怎么解決?
【GD32H757Z海棠派開(kāi)發(fā)板使用手冊(cè)】第十一講 SPI-SPI NOR FLASH讀寫實(shí)驗(yàn)

【GD32F470紫藤派開(kāi)發(fā)板使用手冊(cè)】第十一講 SPI-SPI NOR FLASH讀寫實(shí)驗(yàn)

評(píng)論