0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

探索了神經(jīng)科學技術(shù)的相關(guān)應(yīng)用,以確定人工神經(jīng)網(wǎng)絡(luò)中信息是如何結(jié)構(gòu)化的

電子工程師 ? 來源:lq ? 2019-01-15 16:06 ? 次閱讀

當談及人工神經(jīng)網(wǎng)絡(luò),黑箱問題總會引起熱議,人們對黑箱問題的評價褒貶不一。

有人認為黑盒是神經(jīng)網(wǎng)絡(luò)的優(yōu)勢,這代表神經(jīng)網(wǎng)絡(luò)的自主學習性,代表其自動學習以及自動完善的特性。但大部分人認為,黑箱問題需要被解決,當我們將神經(jīng)網(wǎng)絡(luò)應(yīng)用到一些對安全性,穩(wěn)定性要求很高的行業(yè),如醫(yī)療,我們就必須進行精準控制,出現(xiàn)錯誤或問題時,我們要對內(nèi)部結(jié)構(gòu)進行分析改正,這時黑箱問題就希望得到解決。

圖|Lillian, Meyes & Meisen

來自 RWTH Aachen(亞琛工業(yè)大學)機械工程學院下信息管理研究所的研究人員們在解決黑箱問題上提出了自己的見解,他們探索了神經(jīng)科學技術(shù)的相關(guān)應(yīng)用,以確定人工神經(jīng)網(wǎng)絡(luò)中信息是如何結(jié)構(gòu)化的。

在他們發(fā)表在 arXiv 上的論文中,研究者在人工神經(jīng)網(wǎng)絡(luò)中使用了名為“消融”(ablation)的技術(shù),原本是應(yīng)用于神經(jīng)科學的一種技術(shù),即在神經(jīng)網(wǎng)絡(luò)中切除大腦的某些神經(jīng)元來確定它們的功能。。

“我們的想法源自于神經(jīng)科學領(lǐng)域的研究,該領(lǐng)域的主要目標是理解我們的大腦是如何工作的。”Richard Meyes 和 Tobias Meisen 兩位研究者說道。“許多關(guān)于大腦功能的見解看法都是通過消融研究獲得的,本質(zhì)上來說,消融即選擇性地切除或破壞大腦特定區(qū)域的組織,以可控的方式進行消融,檢測大腦該部分對諸如言語生成、運動等日常工作的影響?!?/p>

在此之前,消融已經(jīng)被應(yīng)用在一些人工神經(jīng)網(wǎng)絡(luò)的研究中,但這些研究主要關(guān)注于調(diào)整神經(jīng)網(wǎng)絡(luò)層和改變其結(jié)構(gòu),因此更像是參數(shù)搜索而不是生物學的消融法。

Mayes Meisen 以及他們的同事 Peter Lillian 進行這項實驗的目的是想從生物學的角度檢驗人工神經(jīng)網(wǎng)絡(luò),評估它們的結(jié)構(gòu)以及不同組成部分的不同功能。最后,他們決定用消融來做這個測試,這種技術(shù)在神經(jīng)科學研究中使用了 200 多年。

在 Mayes Meisen 和他同事的研究中,研究人員希望以破壞神經(jīng)網(wǎng)絡(luò)的特定區(qū)域的方法,觀察該區(qū)域如何影響性能。最終,通過這些觀測結(jié)果對人工神經(jīng)網(wǎng)絡(luò)和生物神經(jīng)網(wǎng)絡(luò)的組織形式進行比較。

“在人工神經(jīng)網(wǎng)絡(luò)上應(yīng)用消融的方法十分簡單的,”Meyes 和 Meisen 解釋道。“首先,我們訓(xùn)練神經(jīng)網(wǎng)絡(luò)來完成特定的任務(wù),比如說識別手寫數(shù)字。第二步,我們切除網(wǎng)絡(luò)的某一部分,然后評估由這種破壞導(dǎo)致的性能變化。第三步,我們確定網(wǎng)絡(luò)性能的改變和被破壞的位置之間是否有聯(lián)系。通過這種方法,我們發(fā)現(xiàn)網(wǎng)絡(luò)的某些特定能力,比如控制機器人執(zhí)行前進動作,是通過局部網(wǎng)絡(luò)控制的?!?/p>

圖| 當每個部分被切除后,切除該部分后的輸出結(jié)果會被保存下來。(圖片來源:論文)

通過對訓(xùn)練用于在線圈中導(dǎo)航的人工神經(jīng)網(wǎng)絡(luò)進行消融操作,并檢查這種干預(yù)措施對輸出產(chǎn)生的影響,研究者獲得了一系列有趣的發(fā)現(xiàn)——結(jié)果顯示人工神經(jīng)網(wǎng)絡(luò)和生物的神經(jīng)網(wǎng)絡(luò)之間的確存在聯(lián)系和相似之處。這些相似之處與網(wǎng)絡(luò)如何自我安排和存儲信息有關(guān)。

Meyes 和 Meisen 說道:“最令我們感興趣的發(fā)現(xiàn)是,一般來說被損壞的神經(jīng)網(wǎng)絡(luò)性能會下降,但網(wǎng)絡(luò)的某些特定能力,比如識別數(shù)字,其中部分被損壞反而會增強識別能力。我們的研究表明,我們可以通過消融正確區(qū)域用以增加一個神經(jīng)網(wǎng)絡(luò)的性能。此外,研究還表明,神經(jīng)科學研究得方法在人工神經(jīng)網(wǎng)絡(luò)研究上的應(yīng)用,或許可以為理解人工智能開辟新的視角?!?/p>

盡管 Meyes, Meisen 和 Lillian 得到了喜人的結(jié)果,但他們的研究也存在一定的局限性。比如說,他們的研究受限于使用強化學習,依賴于實時的機器人訓(xùn)練模型,這僅僅只是檢驗生物神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)的第一步。

未來的研究工作或許可以更詳細、更大規(guī)模地研究人工神經(jīng)網(wǎng)絡(luò)與大腦神經(jīng)網(wǎng)絡(luò)之間的聯(lián)系。

“我們計劃繼續(xù)探索通過利用神經(jīng)科學來啟發(fā)人工神經(jīng)網(wǎng)絡(luò)研究的研究方向,”Meyes 和 Meisen 說道。“我們接下來的計劃是將人工神經(jīng)網(wǎng)絡(luò)中的活動可視化,就像大腦的活動可以用例如 fMRI 的成像方法可視化一樣。目標是使神經(jīng)網(wǎng)絡(luò)的決策過程更加透明,從而獲得對人工神經(jīng)網(wǎng)絡(luò)進行更全面的了解?!?/p>

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

原文標題:對人工神經(jīng)網(wǎng)絡(luò)“開刀”,利用神經(jīng)科學消融法檢測人工神經(jīng)網(wǎng)絡(luò)

文章出處:【微信號:deeptechchina,微信公眾號:deeptechchina】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹傳統(tǒng)機器學習的基礎(chǔ)知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01
    的頭像 發(fā)表于 01-09 10:24 ?262次閱讀
    <b class='flag-5'>人工</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    LSTM神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)與工作機制

    結(jié)構(gòu)與工作機制的介紹: 一、LSTM神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu) LSTM神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)主要包括以下幾個部分: 記憶單元(Memory Cell) :
    的頭像 發(fā)表于 11-13 10:05 ?566次閱讀

    Moku人工神經(jīng)網(wǎng)絡(luò)101

    不熟悉神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識,或者想了解神經(jīng)網(wǎng)絡(luò)如何優(yōu)化加速實驗研究,請繼續(xù)閱讀,探索基于深度學習的現(xiàn)代智能實驗的廣闊應(yīng)用前景。什么是神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-01 08:06 ?350次閱讀
    Moku<b class='flag-5'>人工</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>101

    遞歸神經(jīng)網(wǎng)絡(luò)和循環(huán)神經(jīng)網(wǎng)絡(luò)的模型結(jié)構(gòu)

    遞歸神經(jīng)網(wǎng)絡(luò)是一種旨在處理分層結(jié)構(gòu)神經(jīng)網(wǎng)絡(luò),使其特別適合涉及樹狀或嵌套數(shù)據(jù)的任務(wù)。這些網(wǎng)絡(luò)明確地模擬了層次結(jié)構(gòu)中的關(guān)系和依賴關(guān)系,例如語言
    的頭像 發(fā)表于 07-10 17:21 ?748次閱讀
    遞歸<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>和循環(huán)<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的模型<b class='flag-5'>結(jié)構(gòu)</b>

    BP神經(jīng)網(wǎng)絡(luò)人工神經(jīng)網(wǎng)絡(luò)的區(qū)別

    BP神經(jīng)網(wǎng)絡(luò)人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡稱ANNs)之間的關(guān)系與區(qū)別,是神經(jīng)網(wǎng)絡(luò)領(lǐng)域中一個基礎(chǔ)且重要的話題。本文將從定義、
    的頭像 發(fā)表于 07-10 15:20 ?1274次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的案例分析

    元之間的連接和信息傳遞機制,實現(xiàn)對復(fù)雜數(shù)據(jù)的處理、模式識別及預(yù)測等功能。本文將通過幾個具體案例分析,詳細探討人工神經(jīng)網(wǎng)絡(luò)在不同領(lǐng)域的應(yīng)用,同時簡要介紹深度學習中的正則方法,以期為讀者
    的頭像 發(fā)表于 07-08 18:20 ?886次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的工作原理及應(yīng)用

    人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks, ANNs)是一種受到生物神經(jīng)網(wǎng)絡(luò)啟發(fā)的計算模型,用于模擬人腦處理信息的方式。它們在許多領(lǐng)域都有廣泛的應(yīng)用,包括圖像
    的頭像 發(fā)表于 07-05 09:25 ?810次閱讀

    人工神經(jīng)網(wǎng)絡(luò)模型的分類有哪些

    詳細介紹人工神經(jīng)網(wǎng)絡(luò)的分類,包括前饋神經(jīng)網(wǎng)絡(luò)、卷積神經(jīng)網(wǎng)絡(luò)、循環(huán)神經(jīng)網(wǎng)絡(luò)、深度神經(jīng)網(wǎng)絡(luò)、生成對抗
    的頭像 發(fā)表于 07-05 09:13 ?1332次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的工作原理和基本特征

    通過模擬大腦神經(jīng)網(wǎng)絡(luò)處理、記憶信息的方式來進行信息處理,是現(xiàn)代神經(jīng)科學研究成果基礎(chǔ)上提出的一種非線性、自適應(yīng)信息處理系統(tǒng)。
    的頭像 發(fā)表于 07-04 13:08 ?1770次閱讀

    人工智能神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)是什么

    人工智能神經(jīng)網(wǎng)絡(luò)是一種模擬人腦神經(jīng)網(wǎng)絡(luò)的計算模型,其結(jié)構(gòu)和功能非常復(fù)雜。 引言 人工智能神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-04 09:37 ?658次閱讀

    神經(jīng)網(wǎng)絡(luò)人工智能的關(guān)系是什么

    神經(jīng)網(wǎng)絡(luò)人工智能的關(guān)系是密不可分的。神經(jīng)網(wǎng)絡(luò)人工智能的一種重要實現(xiàn)方式,而人工智能則是神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-03 10:25 ?1292次閱讀

    bp神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)區(qū)別是什么

    結(jié)構(gòu)、原理、應(yīng)用場景等方面都存在一定的差異。以下是對這兩種神經(jīng)網(wǎng)絡(luò)的比較: 基本結(jié)構(gòu) BP神經(jīng)網(wǎng)絡(luò)是一種多層前饋神經(jīng)網(wǎng)絡(luò),由輸入層、隱藏層和
    的頭像 發(fā)表于 07-03 10:12 ?1326次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    能力。隨著深度學習技術(shù)的不斷發(fā)展,神經(jīng)網(wǎng)絡(luò)已經(jīng)成為人工智能領(lǐng)域的重要技術(shù)之一。卷積神經(jīng)網(wǎng)絡(luò)和B
    的頭像 發(fā)表于 07-02 14:24 ?4657次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的含義和用途是

    人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡稱ANNs)是一種受生物神經(jīng)網(wǎng)絡(luò)啟發(fā)而構(gòu)建的數(shù)學模型,它通過模擬人腦神經(jīng)元的連接和
    的頭像 發(fā)表于 07-02 10:07 ?965次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的工作原理是什么

    和學習。本文將詳細介紹人工神經(jīng)網(wǎng)絡(luò)的工作原理,包括其基本概念、結(jié)構(gòu)、學習算法和應(yīng)用領(lǐng)域。 基本概念 1.1 神經(jīng)神經(jīng)元是
    的頭像 發(fā)表于 07-02 10:06 ?1408次閱讀