0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機(jī)器學(xué)習(xí)沒(méi)有捷徑可循

電子工程師 ? 來(lái)源:工程師曾玲 ? 2019-05-02 15:01 ? 次閱讀

O'Reilly最新的調(diào)查數(shù)據(jù)顯示,大數(shù)據(jù)仍然只是1%,或者15%的企業(yè)游戲。大多數(shù)的企業(yè)(85%)依然沒(méi)有破解AI機(jī)器學(xué)習(xí)的密碼。僅僅只有15%的“見(jiàn)多識(shí)廣”的企業(yè)在生產(chǎn)過(guò)程中運(yùn)行一些數(shù)據(jù)模型超過(guò)了5年。更重要的是,這些企業(yè)更傾向于在一些重要的領(lǐng)域花費(fèi)時(shí)間和精力,比如模型偏差和數(shù)據(jù)隱私。相對(duì)而言,那些還屬于初學(xué)者之列的企業(yè)仍然還在努力嘗試著尋找啟動(dòng)按鈕。

不幸的是,對(duì)于那些希望通過(guò)自動(dòng)快捷方式比如Google的AutoML或者通過(guò)聘請(qǐng)咨詢(xún)公司縮小數(shù)據(jù)科學(xué)差距的企業(yè),我們給出的答案是:實(shí)現(xiàn)數(shù)據(jù)科學(xué)的確需要花費(fèi)時(shí)間,而且沒(méi)有捷徑可循。

聰明的企業(yè)專(zhuān)注于深層次數(shù)據(jù)

首先,值得注意的是,O'Reilly的調(diào)查數(shù)據(jù)來(lái)自于其自選的一群人:那些曾經(jīng)參加過(guò)O'Reilly活動(dòng)的,或者參加過(guò)該公司在線研討會(huì)或通過(guò)其他途徑與之有接觸的人。這些人群對(duì)于數(shù)據(jù)科學(xué)都有前瞻性的興趣,即使(按照調(diào)查數(shù)據(jù)的顯示)他們中的大部分人并沒(méi)有從事太多的相關(guān)工作。對(duì)于那些沉浸在大數(shù)據(jù)體驗(yàn)中的人來(lái)說(shuō),最好的客戶(hù)群體就是那些被稱(chēng)為“見(jiàn)多識(shí)廣”的企業(yè),它們?cè)谏a(chǎn)過(guò)程中使用的數(shù)據(jù)模型已經(jīng)運(yùn)行了5年以上。

從調(diào)查上可以發(fā)現(xiàn)一個(gè)有趣的現(xiàn)象,那就是這些企業(yè)是怎樣稱(chēng)呼他們自己的數(shù)據(jù)專(zhuān)家的。具有豐富數(shù)據(jù)經(jīng)驗(yàn)的企業(yè)稱(chēng)之為數(shù)據(jù)科學(xué)家。而那些思維尚停留在上世紀(jì)90年代“數(shù)據(jù)挖掘”模式的企業(yè)則更傾向于稱(chēng)其為“數(shù)據(jù)分析師”。如下圖所示。

機(jī)器學(xué)習(xí)沒(méi)有捷徑可循

調(diào)查發(fā)現(xiàn),無(wú)論企業(yè)選擇如何稱(chēng)呼他們的數(shù)據(jù)專(zhuān)家,企業(yè)在AI和機(jī)器學(xué)習(xí)方面的經(jīng)驗(yàn)越豐富,他們就越有可能依靠?jī)?nèi)部數(shù)據(jù)科學(xué)團(tuán)隊(duì)建立模型,如下圖所示。

機(jī)器學(xué)習(xí)沒(méi)有捷徑可循

幾乎沒(méi)人關(guān)注云機(jī)器學(xué)習(xí)服務(wù)(至少現(xiàn)在還沒(méi)有)。那些只有2年以下生產(chǎn)經(jīng)驗(yàn)的企業(yè)傾向于依賴(lài)外部的顧問(wèn)來(lái)搭建機(jī)器學(xué)習(xí)模型。對(duì)于這樣的企業(yè)而言,這種感覺(jué)就像一種不用投入人力而享受數(shù)據(jù)科學(xué)收益的機(jī)會(huì),但這是一個(gè)非常愚蠢的方法。

企業(yè)的數(shù)據(jù)越復(fù)雜,其數(shù)據(jù)科學(xué)團(tuán)隊(duì)就越能建立模型,并評(píng)估項(xiàng)目成功的關(guān)鍵指標(biāo)??v觀所有的企業(yè),產(chǎn)品經(jīng)理對(duì)于項(xiàng)目成功的作用是36%,管理團(tuán)隊(duì)的數(shù)據(jù)是29%,數(shù)據(jù)科學(xué)團(tuán)隊(duì)的貢獻(xiàn)是21%。

對(duì)于那些經(jīng)驗(yàn)豐富的企業(yè)來(lái)說(shuō),產(chǎn)品經(jīng)理的作用依然占到34%,數(shù)據(jù)科學(xué)團(tuán)隊(duì)27%,幾乎與管理團(tuán)隊(duì)(28%)相同。

對(duì)那些缺乏經(jīng)驗(yàn)的企業(yè)而言,管理團(tuán)隊(duì)占到31%,數(shù)據(jù)科學(xué)團(tuán)隊(duì)占比較少(16%)。這不是個(gè)問(wèn)題,事實(shí)是這些數(shù)據(jù)科學(xué)團(tuán)隊(duì)最適合計(jì)算出如何使用數(shù)據(jù)并衡量其成功。

太多時(shí)候,是外行指導(dǎo)外行

這種依賴(lài)管理層來(lái)推動(dòng)數(shù)據(jù)科學(xué)的想法引起了人們的注意。調(diào)查顯示,不少高管自稱(chēng)是數(shù)據(jù)驅(qū)動(dòng)的,但卻無(wú)視了數(shù)據(jù)其實(shí)并不支持那些靠直覺(jué)驅(qū)使的決策(62%的人承認(rèn)這么做)。

那些缺乏大數(shù)據(jù)悟性的企業(yè)似乎愿意口頭提供數(shù)據(jù),但他們根本不明白有效數(shù)據(jù)科學(xué)的細(xì)微差別。他們?nèi)狈Ρ貍涞慕?jīng)驗(yàn)來(lái)確保可以獲得有意義的、無(wú)偏見(jiàn)的數(shù)據(jù)洞察力。

關(guān)于如何理解機(jī)器學(xué)習(xí)模型,以及如何相信該模型所導(dǎo)致的結(jié)果,更多有成熟經(jīng)驗(yàn)的企業(yè)顯然掌握了Gartner博客網(wǎng)絡(luò)中的一位博主Andrew White的評(píng)估方法:

AI的創(chuàng)新之處就在于AI可以重新定義新的基線,換句話說(shuō)就是那些我們認(rèn)為太過(guò)復(fù)雜的東西和非常規(guī)的東西,目前都可以利用AI來(lái)實(shí)現(xiàn)。和之前的技術(shù)相比,AI應(yīng)該可以處理更加復(fù)雜而且具有認(rèn)知能力的工作。

這個(gè)新的現(xiàn)實(shí)只有在AI自動(dòng)處理的結(jié)果是合理的時(shí)候才有意義。如果這個(gè)新奇的工具所得出的決策和結(jié)果讓人類(lèi)無(wú)法理解,那人們就會(huì)放棄這個(gè)工具。因此在某種程度上,能否理解AI所做出的決策也非常重要。

然而,理解決策和理解算法如何工作是兩回事。人是可以掌握輸入、選擇、權(quán)重以及結(jié)果的原理的,而即便算法能夠在一定程度上將所有這些結(jié)合到一起,但我們依然無(wú)法證明這一進(jìn)程。如果結(jié)果和輸入之間的差距太大,那么人對(duì)算法的信任就很有可能會(huì)喪失——這是人的天性。

想要達(dá)到這種理解水平是無(wú)法通過(guò)花錢(qián)雇傭咨詢(xún)顧問(wèn)能實(shí)現(xiàn)的。云端也不是現(xiàn)成的。運(yùn)用工具比如Google的AutoML可以“使得那些具有有限機(jī)器學(xué)習(xí)專(zhuān)長(zhǎng)經(jīng)驗(yàn)的開(kāi)發(fā)者能訓(xùn)練針對(duì)其業(yè)務(wù)需求的高質(zhì)量模型。”這聽(tīng)起來(lái)非常好,但是想要從數(shù)據(jù)科學(xué)中受益需要有數(shù)據(jù)科學(xué)的經(jīng)驗(yàn)。這不僅僅是調(diào)整模型的問(wèn)題,更需要知道如何實(shí)現(xiàn),這需要大量的試錯(cuò)經(jīng)驗(yàn)。

另外,從事數(shù)據(jù)科學(xué)需要有人文的心態(tài),再次強(qiáng)調(diào),需要經(jīng)驗(yàn)。沒(méi)有捷徑可循。實(shí)際上,這意味著那些早期投資于數(shù)據(jù)科學(xué)的企業(yè)應(yīng)該發(fā)現(xiàn)自己領(lǐng)先于那些沒(méi)有競(jìng)爭(zhēng)優(yōu)勢(shì)的同行——這種差異很可能會(huì)持續(xù)下去。

對(duì)于那些希望迎頭趕上的企業(yè),Gartner分析師Svetlana Sicular最為經(jīng)典的忠告仍然在耳邊回響:“企業(yè)應(yīng)該在內(nèi)部多看看。其實(shí)內(nèi)部已經(jīng)有人比那些神秘的數(shù)據(jù)科學(xué)家更了解自己的數(shù)據(jù)?!敝灰髽I(yè)明白要在企業(yè)完成好的數(shù)據(jù)科學(xué)需要花費(fèi)時(shí)間,并且給予其人員學(xué)習(xí)和成長(zhǎng)的空間,他們就不再需要尋找捷徑。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1796

    文章

    47643

    瀏覽量

    239861
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8438

    瀏覽量

    132970
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    嵌入式機(jī)器學(xué)習(xí)的應(yīng)用特性與軟件開(kāi)發(fā)環(huán)境

    作者:DigiKey Editor 在許多嵌入式系統(tǒng)中,必須采用嵌入式機(jī)器學(xué)習(xí)(Embedded Machine Learning)技術(shù),這是指將機(jī)器學(xué)習(xí)模型部署在資源受限的設(shè)備(如微
    的頭像 發(fā)表于 01-25 17:05 ?129次閱讀
    嵌入式<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>的應(yīng)用特性與軟件開(kāi)發(fā)環(huán)境

    傳統(tǒng)機(jī)器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    在上一篇文章中,我們介紹了機(jī)器學(xué)習(xí)的關(guān)鍵概念術(shù)語(yǔ)。在本文中,我們會(huì)介紹傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法特征,供各位老師選擇。 01 傳統(tǒng)機(jī)器
    的頭像 發(fā)表于 12-30 09:16 ?359次閱讀
    傳統(tǒng)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    如何選擇云原生機(jī)器學(xué)習(xí)平臺(tái)

    當(dāng)今,云原生機(jī)器學(xué)習(xí)平臺(tái)因其彈性擴(kuò)展、高效部署、低成本運(yùn)營(yíng)等優(yōu)勢(shì),逐漸成為企業(yè)構(gòu)建和部署機(jī)器學(xué)習(xí)應(yīng)用的首選。然而,市場(chǎng)上的云原生機(jī)器
    的頭像 發(fā)表于 12-25 11:54 ?151次閱讀

    電力風(fēng)電場(chǎng)的可循環(huán)使用接地裝置

    電子發(fā)燒友網(wǎng)站提供《電力風(fēng)電場(chǎng)的可循環(huán)使用接地裝置.docx》資料免費(fèi)下載
    發(fā)表于 12-16 15:05 ?0次下載

    什么是機(jī)器學(xué)習(xí)?通過(guò)機(jī)器學(xué)習(xí)方法能解決哪些問(wèn)題?

    來(lái)源:Master編程樹(shù)“機(jī)器學(xué)習(xí)”最初的研究動(dòng)機(jī)是讓計(jì)算機(jī)系統(tǒng)具有人的學(xué)習(xí)能力以便實(shí)現(xiàn)人工智能。因?yàn)?b class='flag-5'>沒(méi)有學(xué)習(xí)能力的系統(tǒng)很難被認(rèn)為是具有智能
    的頭像 發(fā)表于 11-16 01:07 ?491次閱讀
    什么是<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>?通過(guò)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法能解決哪些問(wèn)題?

    NPU與機(jī)器學(xué)習(xí)算法的關(guān)系

    在人工智能領(lǐng)域,機(jī)器學(xué)習(xí)算法是實(shí)現(xiàn)智能系統(tǒng)的核心。隨著數(shù)據(jù)量的激增和算法復(fù)雜度的提升,對(duì)計(jì)算資源的需求也在不斷增長(zhǎng)。NPU作為一種專(zhuān)門(mén)為深度學(xué)習(xí)機(jī)器
    的頭像 發(fā)表于 11-15 09:19 ?580次閱讀

    具身智能與機(jī)器學(xué)習(xí)的關(guān)系

    具身智能(Embodied Intelligence)和機(jī)器學(xué)習(xí)(Machine Learning)是人工智能領(lǐng)域的兩個(gè)重要概念,它們之間存在著密切的關(guān)系。 1. 具身智能的定義 具身智能是指智能體
    的頭像 發(fā)表于 10-27 10:33 ?478次閱讀

    人工智能、機(jī)器學(xué)習(xí)和深度學(xué)習(xí)存在什么區(qū)別

    人工智能指的是在某種程度上顯示出類(lèi)似人類(lèi)智能的設(shè)備。AI有很多技術(shù),但其中一個(gè)很大的子集是機(jī)器學(xué)習(xí)——讓算法從數(shù)據(jù)中學(xué)習(xí)。
    發(fā)表于 10-24 17:22 ?2521次閱讀
    人工智能、<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>和深度<b class='flag-5'>學(xué)習(xí)</b>存在什么區(qū)別

    【「時(shí)間序列與機(jī)器學(xué)習(xí)」閱讀體驗(yàn)】+ 簡(jiǎn)單建議

    這本書(shū)以其系統(tǒng)性的框架和深入淺出的講解,為讀者繪制了一幅時(shí)間序列分析與機(jī)器學(xué)習(xí)融合應(yīng)用的宏偉藍(lán)圖。作者不僅扎實(shí)地構(gòu)建了時(shí)間序列分析的基礎(chǔ)知識(shí),更巧妙地展示了機(jī)器學(xué)習(xí)如何在這一領(lǐng)域發(fā)揮巨
    發(fā)表于 08-12 11:21

    人工智能、機(jī)器學(xué)習(xí)和深度學(xué)習(xí)是什么

    在科技日新月異的今天,人工智能(Artificial Intelligence, AI)、機(jī)器學(xué)習(xí)(Machine Learning, ML)和深度學(xué)習(xí)(Deep Learning, DL)已成為
    的頭像 發(fā)表于 07-03 18:22 ?1399次閱讀

    機(jī)器學(xué)習(xí)算法原理詳解

    機(jī)器學(xué)習(xí)作為人工智能的一個(gè)重要分支,其目標(biāo)是通過(guò)讓計(jì)算機(jī)自動(dòng)從數(shù)據(jù)中學(xué)習(xí)并改進(jìn)其性能,而無(wú)需進(jìn)行明確的編程。本文將深入解讀幾種常見(jiàn)的機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 07-02 11:25 ?1303次閱讀

    深度學(xué)習(xí)與傳統(tǒng)機(jī)器學(xué)習(xí)的對(duì)比

    在人工智能的浪潮中,機(jī)器學(xué)習(xí)和深度學(xué)習(xí)無(wú)疑是兩大核心驅(qū)動(dòng)力。它們各自以其獨(dú)特的方式推動(dòng)著技術(shù)的進(jìn)步,為眾多領(lǐng)域帶來(lái)了革命性的變化。然而,盡管它們都屬于機(jī)器
    的頭像 發(fā)表于 07-01 11:40 ?1514次閱讀

    機(jī)器學(xué)習(xí)的經(jīng)典算法與應(yīng)用

    關(guān)于數(shù)據(jù)機(jī)器學(xué)習(xí)就是喂入算法和數(shù)據(jù),讓算法從數(shù)據(jù)中尋找一種相應(yīng)的關(guān)系。Iris鳶尾花數(shù)據(jù)集是一個(gè)經(jīng)典數(shù)據(jù)集,在統(tǒng)計(jì)學(xué)習(xí)機(jī)器學(xué)習(xí)領(lǐng)域都經(jīng)常被
    的頭像 發(fā)表于 06-27 08:27 ?1714次閱讀
    <b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>的經(jīng)典算法與應(yīng)用

    請(qǐng)問(wèn)PSoC? Creator IDE可以支持IMAGIMOB機(jī)器學(xué)習(xí)嗎?

    我的項(xiàng)目使用 POSC62 MCU 進(jìn)行開(kāi)發(fā),由于 UDB 模塊是需求的重要組成部分,所以我選擇了PSoC? Creator IDE 來(lái)進(jìn)行項(xiàng)目開(kāi)發(fā)。 但現(xiàn)在,由于需要擴(kuò)展,我不得不使用機(jī)器學(xué)習(xí)模塊
    發(fā)表于 05-20 08:06

    機(jī)器學(xué)習(xí)8大調(diào)參技巧

    今天給大家一篇關(guān)于機(jī)器學(xué)習(xí)調(diào)參技巧的文章。超參數(shù)調(diào)優(yōu)是機(jī)器學(xué)習(xí)例程中的基本步驟之一。該方法也稱(chēng)為超參數(shù)優(yōu)化,需要搜索超參數(shù)的最佳配置以實(shí)現(xiàn)最佳性能。
    的頭像 發(fā)表于 03-23 08:26 ?680次閱讀
    <b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>8大調(diào)參技巧