0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

了解深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的現(xiàn)狀,英特爾FPGA實(shí)施神經(jīng)網(wǎng)絡(luò)的必然之選

電子工程師 ? 來源:lq ? 2018-12-17 16:03 ? 次閱讀

在腦認(rèn)知科學(xué)中有這么一個(gè)觀點(diǎn),如果幾個(gè)神經(jīng)元之間經(jīng)常構(gòu)成連通路,且通過這幾個(gè)神經(jīng)元進(jìn)行信息傳遞不如兩者直接通過在彼此中間“搭橋”進(jìn)行信息傳遞來得快,那么大腦結(jié)構(gòu)就會(huì)根據(jù)細(xì)胞結(jié)構(gòu)上信息傳遞的頻率在兩者之間幫助生出一個(gè)神經(jīng)元來幫助更高效的獲取與處理大腦信息。

從上面這個(gè)內(nèi)容中我們可以發(fā)現(xiàn),現(xiàn)在人工智能的發(fā)展并不足夠完美,但我們依然受類似的生物系統(tǒng)啟發(fā)從而提出神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),并將之用于人工智能技術(shù)的發(fā)展?,F(xiàn)在,通過融合強(qiáng)大計(jì)算資源和用于神經(jīng)元的新型架構(gòu),神經(jīng)網(wǎng)絡(luò)已然在計(jì)算機(jī)視覺和機(jī)器翻譯等很多領(lǐng)域都取得了最先進(jìn)的成果。

然而相對來說,這樣的技術(shù)發(fā)展可都有各種嚴(yán)格的要求,尤其速度。那么我們現(xiàn)代人在大數(shù)據(jù)噴發(fā)的今天,是怎么做到計(jì)算與速度兩者皆備的呢?在此之前,我們不妨先來了解深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的現(xiàn)狀。

深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)現(xiàn)狀

深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)系統(tǒng)目前已能夠?yàn)樵S多人提供最佳解決方案,并已用于圖像識別和自然語言處理的大型計(jì)算問題。更多的人使用傳統(tǒng)的處理來模仿神經(jīng)網(wǎng)絡(luò)并創(chuàng)建一個(gè)系統(tǒng),并通過觀察來學(xué)習(xí)。雖然我們在這個(gè)領(lǐng)域已經(jīng)取得了很大進(jìn)展,但基于Web的神經(jīng)網(wǎng)絡(luò)高性能系統(tǒng)開發(fā)等多種技術(shù),在功耗,成本和性能方面仍然存在重大挑戰(zhàn)。

此外,最廣泛使用的深度學(xué)習(xí)系統(tǒng)是卷積神經(jīng)網(wǎng)絡(luò)(細(xì)胞神經(jīng)網(wǎng)絡(luò))。這些系統(tǒng)使用神經(jīng)元的前饋人工網(wǎng)絡(luò)執(zhí)行圖像識別。如有線電視新聞網(wǎng)是由層組成。其中,池化層通過最大值或值平均,池化減少變化圖像特定區(qū)域的共同特征。CNN層的數(shù)量與圖像識別的準(zhǔn)確性相關(guān);更多圖層需要更多系統(tǒng)性能。這些層可以獨(dú)立運(yùn)行。

圖1:二維卷積層

多核處理系統(tǒng)使用外部存儲器緩沖每層之間的數(shù)據(jù),這需要大量的內(nèi)存與帶寬。到目前為止,神經(jīng)網(wǎng)絡(luò)中性能最強(qiáng)的功能是卷積自己。傳統(tǒng)的處理器內(nèi)核必須為每個(gè)內(nèi)核執(zhí)行大量指令。卷積需要大量的處理與帶寬。

實(shí)現(xiàn)CNN的有效實(shí)施有兩個(gè)主要挑戰(zhàn)。首先是能夠在管道中執(zhí)行函數(shù),將數(shù)據(jù)從上一個(gè)層傳遞到下一個(gè)。第二是有效地執(zhí)行卷積函數(shù)。另外,這些功能應(yīng)該用一種方法構(gòu)建允許輕松重新編程不同類型的硬件和移植到未來的高級硬件,否則,每個(gè)新的實(shí)現(xiàn)都需要廣泛的重新優(yōu)化。

英特爾FPGA,實(shí)施神經(jīng)網(wǎng)絡(luò)的必然之選

在英特爾公司,F(xiàn)PGA 當(dāng)稱實(shí)施神經(jīng)網(wǎng)絡(luò)的必然之選,它可在同一設(shè)備上處理計(jì)算、邏輯和存儲資源中的不同算法。與其它同行對手的裝置相比,其性能更快,用戶可通過硬件來完成核心部分運(yùn)算。加上軟件開發(fā)者可使用 OpenCL?1C 級編程標(biāo)準(zhǔn),將 FPGA 作為標(biāo)準(zhǔn) CPU 的加速器,更加無需處理硬件級設(shè)計(jì)。

“Why?因?yàn)樗軐⒂?jì)算,邏輯和內(nèi)存資源結(jié)合在一起共同使用。再加上英特爾?FPGASDK的幫助,使得它能夠適用于各種加速應(yīng)用并使用更多復(fù)雜的算法。軟件開發(fā)人員也可以使用OpenCL C級編程標(biāo)準(zhǔn)?!?/p>

此外,英特爾已經(jīng)開發(fā)出可擴(kuò)展的卷積神經(jīng)網(wǎng)絡(luò)參考設(shè)計(jì),并用于使用OpenCL編程的深度學(xué)習(xí)系統(tǒng)。(使用OpenCL SDK構(gòu)建的語言)這個(gè)設(shè)計(jì)首先是在Stratix?V器件系列上實(shí)現(xiàn),現(xiàn)在適用于Arria?10器件。設(shè)計(jì)表現(xiàn)是使用兩個(gè)流行的CNN基準(zhǔn)進(jìn)行基準(zhǔn)測試:CIFAR-10和ImageNet。(典型的GPU實(shí)現(xiàn)批處理圖像需要大量的外部存儲器帶寬。相比之下,F(xiàn)PGA可以一次性處理圖像,芯片上的數(shù)據(jù)重用率更高,外部使用更少內(nèi)存帶寬。)

圖2:神經(jīng)網(wǎng)絡(luò)數(shù)據(jù)通道

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴

原文標(biāo)題:從“腦認(rèn)知科學(xué)”看神經(jīng)元之旅,你對深度神經(jīng)網(wǎng)絡(luò)該有這樣的認(rèn)知

文章出處:【微信號:FPGAer_Club,微信公眾號:FPGAer俱樂部】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常
    的頭像 發(fā)表于 11-15 14:53 ?648次閱讀

    FPGA深度神經(jīng)網(wǎng)絡(luò)中的應(yīng)用

    、低功耗等特點(diǎn),逐漸成為深度神經(jīng)網(wǎng)絡(luò)在邊緣計(jì)算和設(shè)備端推理的重要硬件平臺。本文將詳細(xì)探討FPGA深度神經(jīng)網(wǎng)絡(luò)中的應(yīng)用,包括其優(yōu)勢、設(shè)計(jì)流程
    的頭像 發(fā)表于 07-24 10:42 ?758次閱讀

    BP神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是兩種在人工智能和機(jī)器學(xué)習(xí)領(lǐng)域
    的頭像 發(fā)表于 07-10 15:24 ?1680次閱讀

    rnn是遞歸神經(jīng)網(wǎng)絡(luò)還是循環(huán)神經(jīng)網(wǎng)絡(luò)

    RNN(Recurrent Neural Network)是循環(huán)神經(jīng)網(wǎng)絡(luò),而非遞歸神經(jīng)網(wǎng)絡(luò)。循環(huán)神經(jīng)網(wǎng)絡(luò)是一種具有時(shí)間序列特性的神經(jīng)網(wǎng)絡(luò),能夠處理序列數(shù)據(jù),具有記憶功能。以下是關(guān)于循環(huán)
    的頭像 發(fā)表于 07-05 09:52 ?616次閱讀

    遞歸神經(jīng)網(wǎng)絡(luò)是循環(huán)神經(jīng)網(wǎng)絡(luò)

    遞歸神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,簡稱RNN)和循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,簡稱RNN)實(shí)際上是同一個(gè)概念,只是不同的翻譯方式
    的頭像 發(fā)表于 07-04 14:54 ?841次閱讀

    循環(huán)神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別

    循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,RNN)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是深度學(xué)習(xí)領(lǐng)域中兩種非常重要的
    的頭像 發(fā)表于 07-04 14:24 ?1424次閱讀

    深度神經(jīng)網(wǎng)絡(luò)與基本神經(jīng)網(wǎng)絡(luò)的區(qū)別

    在探討深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks, DNNs)與基本神經(jīng)網(wǎng)絡(luò)(通常指傳統(tǒng)神經(jīng)網(wǎng)絡(luò)或前向神經(jīng)網(wǎng)絡(luò))的區(qū)別時(shí),我們需
    的頭像 發(fā)表于 07-04 13:20 ?1006次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與循環(huán)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    深度學(xué)習(xí)領(lǐng)域,卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNN)和循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Networks, RNN)是兩種
    的頭像 發(fā)表于 07-03 16:12 ?3586次閱讀

    反向傳播神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)在許多領(lǐng)域都有廣泛的應(yīng)用,如語音識別、圖像識別、自然語言處理等。然而,BP神經(jīng)網(wǎng)絡(luò)也存在一些問題,如容易陷入局部最優(yōu)解、訓(xùn)練時(shí)間長、對初始權(quán)重敏感等。為了解決這些問題,研究者們提出了一些改進(jìn)的BP
    的頭像 發(fā)表于 07-03 11:00 ?849次閱讀

    bp神經(jīng)網(wǎng)絡(luò)深度神經(jīng)網(wǎng)絡(luò)

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)是一種常見的前饋神經(jīng)網(wǎng)絡(luò),它使用反向傳播算法來訓(xùn)練網(wǎng)絡(luò)。雖然BP神經(jīng)網(wǎng)絡(luò)在某些方面與
    的頭像 發(fā)表于 07-03 10:14 ?908次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)訓(xùn)練的是什么

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、自然語言處理等領(lǐng)域。本文將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-03 09:15 ?473次閱讀

    深度學(xué)習(xí)與卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)作為其中的重要分支,已經(jīng)在多個(gè)領(lǐng)域取得了顯著的應(yīng)用成果。從圖像識別、語音識別
    的頭像 發(fā)表于 07-02 18:19 ?979次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    化能力。隨著深度學(xué)習(xí)技術(shù)的不斷發(fā)展,神經(jīng)網(wǎng)絡(luò)已經(jīng)成為人工智能領(lǐng)域的重要技術(shù)之一。卷積神經(jīng)網(wǎng)絡(luò)和BP神經(jīng)
    的頭像 發(fā)表于 07-02 14:24 ?4560次閱讀

    深度神經(jīng)網(wǎng)絡(luò)模型有哪些

    、Sigmoid或Tanh。 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN): 卷積神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)中最重
    的頭像 發(fā)表于 07-02 10:00 ?1579次閱讀

    神經(jīng)網(wǎng)絡(luò)架構(gòu)有哪些

    神經(jīng)網(wǎng)絡(luò)架構(gòu)是機(jī)器學(xué)習(xí)領(lǐng)域中的核心組成部分,它們模仿了生物神經(jīng)網(wǎng)絡(luò)的運(yùn)作方式,通過復(fù)雜的網(wǎng)絡(luò)結(jié)構(gòu)實(shí)現(xiàn)信息的處理、存儲和傳遞。隨著深度
    的頭像 發(fā)表于 07-01 14:16 ?815次閱讀