0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

如何使用numpy搭建一個(gè)卷積神經(jīng)網(wǎng)絡(luò)詳細(xì)方法和程序概述

lviY_AI_shequ ? 來(lái)源:未知 ? 作者:易水寒 ? 2018-10-20 10:55 ? 次閱讀

前兩個(gè)筆記筆者集中探討了卷積神經(jīng)網(wǎng)絡(luò)中的卷積原理,對(duì)于二維卷積和三維卷積的原理進(jìn)行了深入的剖析,對(duì) CNN 的卷積、池化、全連接、濾波器、感受野等關(guān)鍵概念進(jìn)行了充分的理解。本節(jié)內(nèi)容將繼續(xù)秉承之前 DNN 的學(xué)習(xí)路線,在利用Tensorflow搭建神經(jīng)網(wǎng)絡(luò)之前,先嘗試?yán)胣umpy手動(dòng)搭建卷積神經(jīng)網(wǎng)絡(luò),以期對(duì)卷積神經(jīng)網(wǎng)絡(luò)的卷積機(jī)制、前向傳播和反向傳播的原理和過程有更深刻的理解。

單步卷積過程

在正式搭建 CNN 之前,我們先依據(jù)前面筆記提到的卷積機(jī)制的線性計(jì)算的理解,利用numpy定義一個(gè)單步卷積過程。代碼如下:

def conv_single_step(a_slice_prev, W, b): s = a_slice_prev * W # Sum over all entries of the volume s. Z = np.sum(s) # Add bias b to Z. Cast b to a float() so that Z results in a scalar value. Z = float(Z + b) return Z

在上述的單步卷積定義中,我們傳入了一個(gè)前一層輸入的要進(jìn)行卷積的區(qū)域,即感受野 a_slice_prev,濾波器W,即卷積層的權(quán)重參數(shù),偏差b,對(duì)其執(zhí)行Z=Wx+b的線性計(jì)算即可實(shí)現(xiàn)一個(gè)單步的卷積過程。

CNN前向傳播過程:卷積

正如 DNN 中一樣,CNN 即使多了卷積和池化過程,模型仍然是前向傳播和反向傳播的訓(xùn)練過程。CNN 的前向傳播包括卷積和池化兩個(gè)過程,我們先來(lái)看如何利用numpy基于上面定義的單步卷積實(shí)現(xiàn)完整的卷積過程。卷積計(jì)算并不難,我們?cè)趩尾骄矸e中就已經(jīng)實(shí)現(xiàn)了,難點(diǎn)在于如何實(shí)現(xiàn)濾波器在輸入圖像矩陣上的的掃描和移動(dòng)過程。

這其中我們需要搞清楚一些變量和參數(shù),以及每一個(gè)輸入輸出的shape,這對(duì)于我們執(zhí)行卷積和矩陣相乘至關(guān)重要。首先我們的輸入是原始圖像矩陣,也可以是前一層經(jīng)過激活后的圖像輸出矩陣,這里以前一層的激活輸出為準(zhǔn),輸入像素的shape我們必須明確,然后是濾波器矩陣和偏差,還需要考慮步幅和填充,在此基礎(chǔ)上我們基于濾波器移動(dòng)和單步卷積搭建定義如下前向卷積過程:

def conv_forward(A_prev, W, b, hparameters): """ Arguments: A_prev -- output activations of the previous layer, numpy array of shape (m, n_H_prev, n_W_prev, n_C_prev) W -- Weights, numpy array of shape (f, f, n_C_prev, n_C) b -- Biases, numpy array of shape (1, 1, 1, n_C) hparameters -- python dictionary containing "stride" and "pad" Returns: Z -- conv output, numpy array of shape (m, n_H, n_W, n_C) cache -- cache of values needed for the conv_backward() function """ # 前一層輸入的shape (m, n_H_prev, n_W_prev, n_C_prev) = A_prev.shape # 濾波器權(quán)重的shape (f, f, n_C_prev, n_C) = W.shape # 步幅參數(shù) stride = hparameters['stride'] # 填充參數(shù) pad = hparameters['pad'] # 計(jì)算輸出圖像的高寬 n_H = int((n_H_prev + 2 * pad - f) / stride + 1) n_W = int((n_W_prev + 2 * pad - f) / stride + 1) # 初始化輸出 Z = np.zeros((m, n_H, n_W, n_C)) # 對(duì)輸入執(zhí)行邊緣填充 A_prev_pad = zero_pad(A_prev, pad) for i in range(m): a_prev_pad = A_prev_pad[i, :, :, :] for h in range(n_H): for w in range(n_W): for c in range(n_C): # 濾波器在輸入圖像上掃描 vert_start = h * stride vert_end = vert_start + f horiz_start = w * stride horiz_end = horiz_start + f # 定義感受野 a_slice_prev = a_prev_pad[vert_start : vert_end, horiz_start : horiz_end, :] # 對(duì)感受野執(zhí)行單步卷積 Z[i, h, w, c] = conv_single_step(a_slice_prev, W[:,:,:,c], b[:,:,:,c]) assert(Z.shape == (m, n_H, n_W, n_C)) cache = (A_prev, W, b, hparameters) return Z, cache

這樣,卷積神經(jīng)網(wǎng)絡(luò)前向傳播中一個(gè)完整的卷積計(jì)算過程就被我們定義好了。通常而言,我們也會(huì)對(duì)卷積后輸出加一個(gè)relu激活操作,正如前面的圖2所示,這里我們就省略不加了。

CNN前向傳播過程:池化

池化簡(jiǎn)單而言就是取局部區(qū)域最大值,池化的前向傳播跟卷積過程類似,但相對(duì)簡(jiǎn)單一點(diǎn),無(wú)需執(zhí)行單步卷積那樣的乘積運(yùn)算。同樣需要注意的是各參數(shù)和輸入輸出的shape,因此我們定義如下前向傳播池化過程:

def pool_forward(A_prev, hparameters, mode = "max"): """ Arguments: A_prev -- Input data, numpy array of shape (m, n_H_prev, n_W_prev, n_C_prev) hparameters -- python dictionary containing "f" and "stride" mode -- the pooling mode you would like to use, defined as a string ("max" or "average") Returns: A -- output of the pool layer, a numpy array of shape (m, n_H, n_W, n_C) cache -- cache used in the backward pass of the pooling layer, contains the input and hparameters """ # 前一層輸入的shape (m, n_H_prev, n_W_prev, n_C_prev) = A_prev.shape # 步幅和權(quán)重參數(shù) f = hparameters["f"] stride = hparameters["stride"] # 計(jì)算輸出圖像的高寬 n_H = int(1 + (n_H_prev - f) / stride) n_W = int(1 + (n_W_prev - f) / stride) n_C = n_C_prev # 初始化輸出 A = np.zeros((m, n_H, n_W, n_C)) for i in range(m): for h in range(n_H): for w in range(n_W): for c in range (n_C): # 樹池在輸入圖像上掃描 vert_start = h * stride vert_end = vert_start + f horiz_start = w * stride horiz_end = horiz_start + f # 定義池化區(qū)域 a_prev_slice = A_prev[i, vert_start:vert_end, horiz_start:horiz_end, c] # 選擇池化類型 if mode == "max": A[i, h, w, c] = np.max(a_prev_slice) elif mode == "average": A[i, h, w, c] = np.mean(a_prev_slice) cache = (A_prev, hparameters) assert(A.shape == (m, n_H, n_W, n_C)) return A, cache

由上述代碼結(jié)構(gòu)可以看出,前向傳播的池化過程的代碼結(jié)構(gòu)和卷積過程非常類似。

CNN反向傳播過程:卷積

定義好前向傳播之后,難點(diǎn)和關(guān)鍵點(diǎn)就在于如何給卷積和池化過程定義反向傳播過程。卷積層的反向傳播向來(lái)是個(gè)復(fù)雜的過程,Tensorflow中我們只要定義好前向傳播過程,反向傳播會(huì)自動(dòng)進(jìn)行計(jì)算。但利用numpy搭建 CNN 反向傳播就還得我們自己定義了。其關(guān)鍵還是在于準(zhǔn)確的定義損失函數(shù)對(duì)于各個(gè)變量的梯度:

由上述梯度計(jì)算公式和卷積的前向傳播過程,我們定義如下卷積的反向傳播函數(shù):

def conv_backward(dZ, cache): """ Arguments: dZ -- gradient of the cost with respect to the output of the conv layer (Z), numpy array of shape (m, n_H, n_W, n_C) cache -- cache of values needed for the conv_backward(), output of conv_forward() Returns: dA_prev -- gradient of the cost with respect to the input of the conv layer (A_prev), numpy array of shape (m, n_H_prev, n_W_prev, n_C_prev) dW -- gradient of the cost with respect to the weights of the conv layer (W) numpy array of shape (f, f, n_C_prev, n_C) db -- gradient of the cost with respect to the biases of the conv layer (b) numpy array of shape (1, 1, 1, n_C) """ # 獲取前向傳播中存儲(chǔ)的cache (A_prev, W, b, hparameters) = cache # 前一層輸入的shape (m, n_H_prev, n_W_prev, n_C_prev) = A_prev.shape # 濾波器的 shape (f, f, n_C_prev, n_C) = W.shape # 步幅和權(quán)重參數(shù) stride = hparameters['stride'] pad = hparameters['pad'] # dZ 的shape (m, n_H, n_W, n_C) = dZ.shape # 初始化 dA_prev, dW, db dA_prev = np.zeros((m, n_H_prev, n_W_prev, n_C_prev)) dW = np.zeros((f, f, n_C_prev, n_C)) db = np.zeros((1, 1, 1, n_C)) # 對(duì)A_prev 和 dA_prev 執(zhí)行零填充 A_prev_pad = zero_pad(A_prev, pad) dA_prev_pad = zero_pad(dA_prev, pad) for i in range(m): # select ith training example from A_prev_pad and dA_prev_pad a_prev_pad = A_prev_pad[i,:,:,:] da_prev_pad = dA_prev_pad[i,:,:,:] for h in range(n_H): for w in range(n_W): for c in range(n_C): # 獲取當(dāng)前感受野 vert_start = h * stride vert_end = vert_start + f horiz_start = w * stride horiz_end = horiz_start + f # 獲取當(dāng)前濾波器矩陣 a_slice = a_prev_pad[vert_start:vert_end, horiz_start:horiz_end, :] # 梯度更新 da_prev_pad[vert_start:vert_end, horiz_start:horiz_end, :] += W[:,:,:,c] * dZ[i, h, w, c] dW[:,:,:,c] += a_slice * dZ[i, h, w, c] db[:,:,:,c] += dZ[i, h, w, c] dA_prev[i, :, :, :] = da_prev_pad[pad:-pad, pad:-pad, :] assert(dA_prev.shape == (m, n_H_prev, n_W_prev, n_C_prev)) return dA_prev, dW, db

CNN反向傳播過程:池化

反向傳播中的池化操作跟卷積也是類似的。再此之前,我們需要根據(jù)濾波器為最大池化和平均池化分別創(chuàng)建一個(gè)mask和一個(gè)distribute_value:

def create_mask_from_window(x): """ Creates a mask from an input matrix x, to identify the max entry of x. Arguments: x -- Array of shape (f, f) Returns: mask -- Array of the same shape as window, contains a True at the position corresponding to the max entry of x. """ mask = (x == np.max(x)) return mask

def distribute_value(dz, shape): """ Distributes the input value in the matrix of dimension shape Arguments: dz -- input scalar shape -- the shape (n_H, n_W) of the output matrix for which we want to distribute the value of dz Returns: a -- Array of size (n_H, n_W) for which we distributed the value of dz """ (n_H, n_W) = shape # Compute the value to distribute on the matrix average = dz / (n_H * n_W) # Create a matrix where every entry is the "average" value a = np.full(shape, average) return a

然后整合封裝最大池化的反向傳播過程:

def pool_backward(dA, cache, mode = "max"): """ Arguments: dA -- gradient of cost with respect to the output of the pooling layer, same shape as A cache -- cache output from the forward pass of the pooling layer, contains the layer's input and hparameters mode -- the pooling mode you would like to use, defined as a string ("max" or "average") Returns: dA_prev -- gradient of cost with respect to the input of the pooling layer, same shape as A_prev """ # Retrieve information from cache (A_prev, hparameters) = cache # Retrieve hyperparameters from "hparameters" stride = hparameters['stride'] f = hparameters['f'] # Retrieve dimensions from A_prev's shape and dA's shape m, n_H_prev, n_W_prev, n_C_prev = A_prev.shape m, n_H, n_W, n_C = dA.shape # Initialize dA_prev with zeros dA_prev = np.zeros((m, n_H_prev, n_W_prev, n_C_prev)) for i in range(m): # select training example from A_prev a_prev = A_prev[i,:,:,:] for h in range(n_H): for w in range(n_W): for c in range(n_C): # Find the corners of the current "slice" vert_start = h * stride vert_end = vert_start + f horiz_start = w * stride horiz_end = horiz_start + f # Compute the backward propagation in both modes. if mode == "max": a_prev_slice = a_prev[vert_start:vert_end, horiz_start:horiz_end, c] mask = create_mask_from_window(a_prev_slice) dA_prev[i, vert_start: vert_end, horiz_start: horiz_end, c] += np.multiply(mask, dA[i,h,w,c]) elif mode == "average": # Get the value a from dA da = dA[i,h,w,c] # Define the shape of the filter as fxf shape = (f,f) # Distribute it to get the correct slice of dA_prev. i.e. Add the distributed value of da. dA_prev[i, vert_start: vert_end, horiz_start: horiz_end, c] += distribute_value(da, shape) # Making sure your output shape is correct assert(dA_prev.shape == A_prev.shape) return dA_prev

這樣卷積神經(jīng)網(wǎng)絡(luò)的整個(gè)前向傳播和反向傳播過程我們就搭建好了??梢哉f是非常費(fèi)力的操作了,但我相信,經(jīng)過這樣一步步的根據(jù)原理的手寫,你一定會(huì)對(duì)卷積神經(jīng)網(wǎng)絡(luò)的原理理解更加深刻了。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 濾波器
    +關(guān)注

    關(guān)注

    162

    文章

    8060

    瀏覽量

    180906
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4806

    瀏覽量

    102696
  • cnn
    cnn
    +關(guān)注

    關(guān)注

    3

    文章

    354

    瀏覽量

    22623

原文標(biāo)題:深度學(xué)習(xí)筆記11:利用numpy搭建一個(gè)卷積神經(jīng)網(wǎng)絡(luò)

文章出處:【微信號(hào):AI_shequ,微信公眾號(hào):人工智能愛好者社區(qū)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 0人收藏

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    卷積神經(jīng)網(wǎng)絡(luò)如何使用

    卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)在工程上經(jīng)歷了曲折的歷史,您為什么還會(huì)在意它呢? 對(duì)于這些非常中肯的問題,我們似乎可以給出相對(duì)簡(jiǎn)明的答案。
    發(fā)表于 07-17 07:21

    什么是圖卷積神經(jīng)網(wǎng)絡(luò)?

    卷積神經(jīng)網(wǎng)絡(luò)
    發(fā)表于 08-20 12:05

    卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)點(diǎn)是什么

    卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)點(diǎn)
    發(fā)表于 05-05 18:12

    卷積神經(jīng)網(wǎng)絡(luò)卷積的處理過程

    。本文就以卷積神經(jīng)網(wǎng)絡(luò)為例談?wù)勗趺磥?lái)進(jìn)步優(yōu)化卷積神經(jīng)網(wǎng)絡(luò)使用的memory。文章(
    發(fā)表于 12-23 06:16

    卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用

    卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用轉(zhuǎn)載****地址:http://fcst.ceaj.org/CN/abstract/abstract2521.shtml深度學(xué)習(xí)是機(jī)器學(xué)習(xí)和人工智能研究的最新趨勢(shì),作為
    發(fā)表于 08-02 10:39

    卷積神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介:什么是機(jī)器學(xué)習(xí)?

    列文章將只關(guān)注卷積神經(jīng)網(wǎng)絡(luò) (CNN)。CNN的主要應(yīng)用領(lǐng)域是輸入數(shù)據(jù)中包含的對(duì)象的模式識(shí)別和分類。CNN是種用于深度學(xué)習(xí)的人工神經(jīng)網(wǎng)絡(luò)。此類網(wǎng)絡(luò)
    發(fā)表于 02-23 20:11

    卷積神經(jīng)網(wǎng)絡(luò)概述 卷積神經(jīng)網(wǎng)絡(luò)的特點(diǎn) cnn卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)點(diǎn)

    卷積神經(jīng)網(wǎng)絡(luò)概述 卷積神經(jīng)網(wǎng)絡(luò)的特點(diǎn) cnn卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 08-21 16:41 ?3599次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)模型原理 卷積神經(jīng)網(wǎng)絡(luò)模型結(jié)構(gòu)

    卷積神經(jīng)網(wǎng)絡(luò)模型原理 卷積神經(jīng)網(wǎng)絡(luò)模型結(jié)構(gòu)? 卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 08-21 16:41 ?1265次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的工作原理 卷積神經(jīng)網(wǎng)絡(luò)通俗解釋

    。CNN可以幫助人們實(shí)現(xiàn)許多有趣的任務(wù),如圖像分類、物體檢測(cè)、語(yǔ)音識(shí)別、自然語(yǔ)言處理和視頻分析等。本文將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)的工作原理并用通俗易懂的語(yǔ)言解釋。 1.概述
    的頭像 發(fā)表于 08-21 16:49 ?4359次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)層級(jí)結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)卷積層講解

    像分類、目標(biāo)檢測(cè)、人臉識(shí)別等。卷積神經(jīng)網(wǎng)絡(luò)的核心是卷積層和池化層,它們構(gòu)成了網(wǎng)絡(luò)的主干,實(shí)現(xiàn)了對(duì)圖像特征的提取和抽象。 、
    的頭像 發(fā)表于 08-21 16:49 ?9620次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的介紹 什么是卷積神經(jīng)網(wǎng)絡(luò)算法

    卷積神經(jīng)網(wǎng)絡(luò)的介紹 什么是卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)涉及的關(guān)鍵技術(shù)
    的頭像 發(fā)表于 08-21 16:49 ?2229次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)算法代碼matlab

    的工作原理和實(shí)現(xiàn)方法。 、卷積神經(jīng)網(wǎng)絡(luò)的工作原理 卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 08-21 16:50 ?1440次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)模型搭建

    卷積神經(jīng)網(wǎng)絡(luò)模型搭建 卷積神經(jīng)網(wǎng)絡(luò)模型是種深度學(xué)習(xí)算法。它已經(jīng)成為了計(jì)算機(jī)視覺和自然語(yǔ)言處理等
    的頭像 發(fā)表于 08-21 17:11 ?1195次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)分類方法有哪些

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像分類、目標(biāo)檢測(cè)、語(yǔ)義分割等計(jì)算機(jī)視覺任務(wù)。本文將詳細(xì)介紹
    的頭像 發(fā)表于 07-03 09:40 ?841次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的壓縮方法

    ,CNN模型的參數(shù)量和計(jì)算量也隨之劇增,這對(duì)硬件資源提出了嚴(yán)峻挑戰(zhàn)。因此,卷積神經(jīng)網(wǎng)絡(luò)的壓縮方法成為了研究熱點(diǎn)。本文將從多個(gè)角度詳細(xì)介紹卷積
    的頭像 發(fā)表于 07-11 11:46 ?658次閱讀

    電子發(fā)燒友

    中國(guó)電子工程師最喜歡的網(wǎng)站

    • 2931785位工程師會(huì)員交流學(xué)習(xí)
    • 獲取您個(gè)性化的科技前沿技術(shù)信息
    • 參加活動(dòng)獲取豐厚的禮品