0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

Linear Resistance Meter,線性刻度歐姆表

454398 ? 2018-09-20 19:20 ? 次閱讀

Linear Resistance Meter,線性刻度歐姆表

關鍵字:Linear Resistance Meter

Most analogue multimeters are capable of measuring resistance over quite a wide range of values, but are rather inconvenient in use due to the reverse reading scale which is also non-linear. This can also give poor accuracy due to cramping of the scale that occurs at the high value end of each range. This resistance meter has 5 ranges and it has a forward reading linear scale on each range.The full-scale values of the 5 ranges are 1K, 10K, 100K, 1M &10M respectively and the unit is therefore capable of reasonably accurate measurements from a few tens of ohms to ten Megohms.
Circuit diagram

The Circuit
Most linear scale resistance meters including the present design, work on the principle that if a resistance is fed from a constant current source the voltage developed across that resistance is proportional to its value. For example, if a 1K resistor is fed from a 1 mA current source from Ohm’s Law it can be calculated that 1 volt will be developed across the resistor (1000 Ohms divided by 0.001 amps = 1 volt). Using the same current and resistance values of 100 ohms & 10K gives voltages of 0.1volts (100 ohms / 0.001amps = 0.1volts) & 10 volts (10000 ohms / 0.001amps = 10 volts).
Thus the voltage developed across the resistor is indeed proportional to its value, and a voltmeter used to measure this voltage can in fact be calibrated in resistance, and will have the desired forward reading linear scale. One slight complication is that the voltmeter must not take a significant current or this will alter the current fed to the test resistor and impair linearity. It is therefore necessary to use a high impedance voltmeter circuit.
The full circuit diagram of the Linear Resistance Meter is given in Figure 1. The constant current generator is based on IC1a and Q1. R1, D1 and D2 form a simple form a simple voltage regulator circuit, which feeds a potential of just over 1.2 volts to the non-inverting input of IC1a. There is 100% negative feedback from the emitter of Q1 to the inverting input of IC1a so that Q1’s emitter is stabilised at the same potential as IC1a’s non-inverting input. In other words it is stabilised a little over 1.2 volts below the positive supply rail potential. S3a gives 5 switched emitter resistances for Q1, and therefore 5 switched emitter currents. S3b provides 5 reference resistors across T1 & T2 via S2 to set full-scale deflection on each range using VR1.
As the emitter and collector currents of a high gain transistor such as a BC179 device used in the Q1 are virtually identical, this also gives 5 switched collector currents. By having 5 output currents, and the current reduced by a factor of 10 each time S3a is moved one step in a clockwise direction, the 5 required measuring ranges are obtained. R2 to R6 must be close tolerance types to ensure good accuracy on all ranges. The high impedance voltmeter section uses IC1b with 100% negative feedback from the output to the inverting input so that there is unity voltage gain from the non-inverting input to the output. The output of IC1b drives a simple voltmeter circuit using VR1 and M1, and the former is adjusted to give the correct full-scale resistance values.
The CA3240E device used for IC1 is a dual op-amp having a MOS input stage and a class A output stage. These enable the device to operate with the inputs and outputs right down to the negative supply rail voltage. This is a very helpful feature in many circuits, including the present one as it enables a single supply rail to be used where a dual balanced supply would otherwise be needed. In many applications the negative supply is needed simply in order to permit the output of the op-amp to reach the 0volt rail. In applications of this type the CA3240E device normally enables the negative supply to be dispensed with.
As the CA3240E has a MOS input stage for each section the input impedance is very high (about 1.5 million Megohms!) and obviously no significant input current flows into the device. This, together with the high quality of the constant current source, and the practically non-existent distortion through IC1b due to the high feedback level gives this circuit excellent linearity.
With no resistor connected across T1 & T2 M1 will be taken beyond full-scale deflection and overloaded by about 100 or 200%. This is unlikely to damage the meter, but to be on the safe side a push-to-test on/off switch (S1) is used. Thus the power is only applied to the circuit when a test resistor is connected to the unit, and prolonged meter overloads are thus avoided.
A small (PP3 size) 9 volt battery is a suitable power source for this project which has a current consumption of around 5mA and does not require a stabilised supply.
Photos showing inside and outside of the completed Linear Resistance Meter.
Author: Dave Elliott
Email: portagepal@tiscali.co.uk
聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏

    評論

    相關推薦

    萬用測電阻黑表筆接哪個極

    萬用測電阻時,黑表筆接的極性與萬用的類型(指針式或數(shù)字式)有關。 指針式萬用 對于指針式萬用,在測量電阻時,黑表筆連接的是歐姆表內部
    的頭像 發(fā)表于 08-20 10:27 ?6769次閱讀

    歐姆表倍率與內阻的關系

    歐姆表是一種用于測量電阻的便攜式電子儀器,廣泛應用于電子、電氣和通信領域。它的原理基于歐姆定律,即電壓與電流成正比,而電阻則是電壓與電流的比值。在實際應用中,歐姆表的倍率是一個關鍵參數(shù),它直接影響
    的頭像 發(fā)表于 07-26 11:30 ?3123次閱讀

    什么定律體現(xiàn)了線性電路元件上電壓 歐姆定律在實際電路中的應用

    線性電路元件上的電壓與電流之間的關系遵循歐姆定律。 1. 歐姆定律的基本概念 歐姆定律是描述電阻、電壓和電流之間關系的定律。在最簡單的形式中,歐姆
    的頭像 發(fā)表于 07-17 11:22 ?748次閱讀

    線性電路歐姆定律適用嗎

    線性電路是指電路元件的電壓與電流之間的關系不是線性的,即不滿足歐姆定律的電路。歐姆定律是描述線性電路中電壓、電流和電阻之間關系的定律,其表
    的頭像 發(fā)表于 07-09 11:12 ?702次閱讀

    的定義、原理和應用領域

    在電子測量與測試領域,源(Source Measure Unit,簡稱SMU)是一種重要的測試工具,它集合了電壓源、電流源、電壓、電流、歐姆表及電子負載的功能于一身,為工程師們提
    的頭像 發(fā)表于 05-15 16:09 ?1524次閱讀

    毫歐的使用方法和注意事項

    毫歐,也稱為微歐姆表或低電阻測試儀,是一種用于測量非常低電阻值的電子測試設備。
    的頭像 發(fā)表于 05-14 18:26 ?3769次閱讀

    歐姆表的使用步驟和注意事項

    歐姆表是一種用于測量電阻的電子測試儀器,廣泛應用于電氣和電子領域的電阻測量。正確使用歐姆表對于獲得準確的測量結果至關重要。
    的頭像 發(fā)表于 05-13 17:38 ?5788次閱讀

    歐姆表機械調零和歐姆調零是什么意思

    歐姆表是一種用于測量電阻的電子測試儀器,其測量原理基于歐姆定律。在使用歐姆表測量電阻之前,通常需要進行兩種調零操作:機械調零和歐姆調零。這
    的頭像 發(fā)表于 05-13 17:34 ?8829次閱讀

    歐姆表是怎么調零的?歐姆表調零步驟?

    歐姆表是一種用于測量電阻的電子儀器,它基于歐姆定律工作。在使用歐姆表測量電阻之前,必須進行調零操作以確保測量的準確性。
    的頭像 發(fā)表于 05-13 17:28 ?6904次閱讀

    指針式萬用的使用方法

    在使用指針式萬用之前,需要觀察萬用的指針是否與零刻度線對齊和重合。如果不重合,就需要進行調零操作,否則會影響讀數(shù),使測量結果不準確。調零操作包括機械調零和歐姆調零。機械調零是通過調
    的頭像 發(fā)表于 05-09 18:23 ?1879次閱讀

    歐姆定律公式的適用范圍

    ,其中V表示電壓,I表示電流,R表示電阻。這個簡單的方程提供了電子學和電路分析的基本框架。然而,歐姆定律并不是應用于所有電路和組件的法則,它有其適用范圍和限制。 首先,歐姆定律適用于線性電阻。
    的頭像 發(fā)表于 01-16 15:50 ?4031次閱讀

    線性元件滿足歐姆定律嗎

    線性元件不滿足歐姆定律。 歐姆定律是指在恒溫條件下,電阻的電流與電壓成正比,即V=IR。這意味著電阻的電阻值是固定的,無論電壓大小如何變化,電流始終保持一定比例關系。 然而,非線性
    的頭像 發(fā)表于 01-10 14:00 ?3101次閱讀

    歐姆定律的適用條件是什么

    = I × R,其中V為電壓、I為電流、R為電阻。 然而,歐姆定律并不是適用于所有電路和電器的。在某些情況下,歐姆定律可能并不適用或只能作為近似使用。以下是歐姆定律的適用條件的詳細說明:
    的頭像 發(fā)表于 01-10 13:57 ?8342次閱讀

    歐姆定律為什么只適用于純電阻電路

    歐姆定律是描述電流通過電阻的關系定律,一般用于純電阻電路。這是因為歐姆定律是基于電阻與電流、電壓之間的線性關系推導出來的,而純電阻電路滿足線性關系。在純電阻電路中,電流與電壓成正比,而
    的頭像 發(fā)表于 01-10 13:55 ?5384次閱讀

    歐姆定律適用于非線性電路嗎

    歐姆定律(Ohm's law)是描述電流、電壓和電阻之間關系的基本電學定律。它是針對線性電路的一項基本規(guī)律,但在非線性電路中,歐姆定律的適用性存在一定的限制。 在
    的頭像 發(fā)表于 01-10 13:42 ?4287次閱讀