0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

通過FPGA與并行處理技術(shù)實(shí)現(xiàn)DDS系統(tǒng)時(shí)鐘電路

電子設(shè)計(jì) ? 作者:電子設(shè)計(jì) ? 2018-10-07 11:14 ? 次閱讀

DDS同 DSP數(shù)字信號(hào)處理)一樣,是一項(xiàng)關(guān)鍵的數(shù)字化技術(shù)。DDS是直接數(shù)字式頻率合成器(Direct Digital Synthesizer)的英文縮寫。與傳統(tǒng)的頻率合成器相比,DDS具有低成本、低功耗、高分辨率和快速轉(zhuǎn)換時(shí)間等優(yōu)點(diǎn),廣泛使用在電信與電子儀器領(lǐng)域,是實(shí)現(xiàn)設(shè)備全數(shù)字化的一個(gè)關(guān)鍵技術(shù)。DDS在結(jié)構(gòu)上由三部分構(gòu)成:⑴ 累加器;⑵ 角度幅度轉(zhuǎn)換器,它將數(shù)字相位值轉(zhuǎn)換為數(shù)字幅度值;⑶ 數(shù)模轉(zhuǎn)換器ADI公司所有DDS的DAC都是電流輸出形式。DDS頻率規(guī)劃是指在應(yīng)用范圍內(nèi)提供最佳動(dòng)態(tài)性能的一種嘗試,對(duì)于許多應(yīng)用來(lái)說,這就意味著在感興趣的帶寬內(nèi)提供最大的無(wú)雜散動(dòng)態(tài)范圍,或者稱作SFDR.為了獲得最大的SFDR值,需要進(jìn)行一些DDS頻率規(guī)劃。一個(gè)好的頻率規(guī)劃首先是要根據(jù)應(yīng)用所給定的性能標(biāo)準(zhǔn)選擇合適的DDS器件,然后規(guī)劃并預(yù)算出DDS的主要雜散源

不同的應(yīng)用領(lǐng)域,對(duì)DDS的性能有不同的要求。當(dāng)把DDS用做雷達(dá)系統(tǒng)中的本振信號(hào)源時(shí),對(duì)寄生信號(hào)抑制的要求可能比較高,如要求在60dB或70dB以上。當(dāng)把DDS用于雷達(dá)干擾系統(tǒng)時(shí),除了對(duì)寄生信號(hào)抑制有一定的要求外,更重要的是其產(chǎn)生寬帶信號(hào)的能力。為了產(chǎn)生寬帶信號(hào),要求DDS的系統(tǒng)時(shí)鐘頻率要高。盡管目前FPGA的速度和規(guī)模都已經(jīng)達(dá)到了相當(dāng)高的水平,但與電子干擾系統(tǒng)對(duì)它的要求相比仍有差距。按照目前FPGA的技術(shù)水平及使用經(jīng)驗(yàn),系統(tǒng)時(shí)鐘選擇200MHz是一個(gè)比較合理的選擇。因此,為了滿足電子干擾系統(tǒng)更高(如400MHz系統(tǒng)時(shí)鐘)的要求,應(yīng)該采用并行處理技術(shù)。

1 并行DDS電路工作原理

并行處理(Parallel Processing)是計(jì)算機(jī)系統(tǒng)中能同時(shí)執(zhí)行兩個(gè)或更多個(gè)處理機(jī)的一種計(jì)算方法。處理機(jī)可同時(shí)工作于同一程序的不同方面。并行處理的主要目的是節(jié)省大型和復(fù)雜問題的解決時(shí)間。為使用并行處理,首先需要對(duì)程序進(jìn)行并行化處理,也就是說將工作各部分分配到不同處理機(jī)中。而主要問題是并行是一個(gè)相互依靠性問題,而不能自動(dòng)實(shí)現(xiàn)。此外,并行也不能保證加速。但是一個(gè)在 n 個(gè)處理機(jī)上執(zhí)行的程序速度可能會(huì)是在單一處理機(jī)上執(zhí)行的速度的 n 倍。

圖1所示為并行DDS電路工作原理框圖,主要包括:相位累加器、兩路相位/幅度變換電路、二選一選擇器、鎖存器、SINC函數(shù)補(bǔ)償濾波器、D/A變換器和中頻濾波器。相位累加器通過對(duì)輸入頻率碼的累加,產(chǎn)生A、B兩路相位累加輸出,其中A路信號(hào)在前,B路信號(hào)在后(兩路信號(hào)合成一路信號(hào)后)。兩路相位/幅度變換電路分別對(duì)兩路相位累加器輸出的相位進(jìn)行相位/幅度變換,獲得兩路幅度輸出。然后由二選一選擇器將兩路信號(hào)合并成一路信號(hào)(S=0時(shí)選A,S=1時(shí)選B)。相位累加器、相位/幅度變換電路的時(shí)鐘以及選擇器選擇端S的信號(hào)為fck1,它是由DDS電路系統(tǒng)時(shí)鐘fck分頻得到,即fck1=fck/2.而選擇器后面的鎖存器以及SINC函數(shù)補(bǔ)償濾波器、D/A變換器的時(shí)鐘為系統(tǒng)時(shí)鐘。為了簡(jiǎn)化電路實(shí)現(xiàn),采用直接中頻方法取出D/A變換器的中頻信號(hào)輸出,同時(shí),為了補(bǔ)償D/A變換輸出信號(hào)幅度隨頻率增加引起的衰減,圖1中增加了SINC函數(shù)補(bǔ)償濾波器。圖2給出了fck1、fck與數(shù)據(jù)之間時(shí)序關(guān)系的示意圖。

通過FPGA與并行處理技術(shù)實(shí)現(xiàn)DDS系統(tǒng)時(shí)鐘電路

通過FPGA與并行處理技術(shù)實(shí)現(xiàn)DDS系統(tǒng)時(shí)鐘電路

2 并行DDS電路實(shí)現(xiàn)

主要介紹相位累加器電路和相位/幅度變換器電路的實(shí)現(xiàn)。

2.1 相位累加器電路實(shí)現(xiàn)

實(shí)現(xiàn)并行相位累加器的直接方法是:由兩套結(jié)構(gòu)完全相同的相位累加器電路構(gòu)成,相位累加器的輸入(頻率碼)也相同,只是兩路輸出要有一個(gè)固定的初始相位偏差,其數(shù)值為相位累加器輸入(頻率碼)的1/2.

為了電路實(shí)現(xiàn)容易,需對(duì)上述方法進(jìn)行簡(jiǎn)化。這里提供一種較為簡(jiǎn)單的方法,即利用一個(gè)相位累加器產(chǎn)生第一路(A路)相位累加器輸出,而另一路相位累加器輸出通過將第一路輸出的相位與相位累加器輸入(頻率碼)的1/2相加得到,如圖3所示。在圖3中,假定系統(tǒng)時(shí)鐘為400MHz,假定輸入的頻率碼為26位,范圍為F[25:0],其中位25代表200MHz,位24代表100MHz,…,位0為最低有效位,也就是DDS的分辨率fck/226=5.96Hz.

通過FPGA與并行處理技術(shù)實(shí)現(xiàn)DDS系統(tǒng)時(shí)鐘電路


相位累加器電路中各器件的時(shí)鐘頻率為fck1=200MHz.相位累加器的輸入取26位頻率碼F[25:0]的低25位F[24:0],即得到A路相位累加器的輸出為A[24:0].F[25:0]的高25位F[25:1]經(jīng)右移一位(相當(dāng)于乘1/2)得到C[24:0]后與A路相位累加器的輸出A[24:0]相加得到B路相位累加器的輸出B[24:0].

最后,為了減小后面相位/幅度變換電路的硬件量,鎖存器只取出用于進(jìn)行相位/幅度變換所需位數(shù)的相位(相位截?cái)啵?,這里取相位截?cái)噍敵鰹?0位,A路為G[9:0],B路為H[9:0].

2.2 相位/幅度變換器電路實(shí)現(xiàn)

相位/幅度變換電路的功能是把由相位累加器輸出的相位信息轉(zhuǎn)換成幅度信息。相位/幅度變換電路通常采用ROM電路實(shí)現(xiàn),但也可采用數(shù)字邏輯電路實(shí)現(xiàn)。

并行相位/幅度變換器由兩套結(jié)構(gòu)完全相同的相位/幅度變換器構(gòu)成,因此,下面只介紹其中的一個(gè)。相位/幅度變換的原理可以很容易由ROM構(gòu)成的查找表(LUT)理解。相位/幅度變換的內(nèi)容存儲(chǔ)在ROM中,以相位值作為ROM的地址,ROM的輸出作為變換后的幅度。

與相位累加器不同,相位/幅度變換器的硬件量隨相位位數(shù)(ROM地址)的增加指數(shù)增加,而相位累加器硬件量隨累加器位數(shù)的增加線性增加。因此,當(dāng)相位位數(shù)(影響DDS的寄生信號(hào)性能)較大時(shí),所需硬件量將急劇增加。盡管前面已經(jīng)對(duì)相位進(jìn)行了截?cái)?,但為了保證所需的寄生信號(hào)性能,剩下的用于進(jìn)行相位/幅度變換的相位位數(shù)仍然較大,如果直接實(shí)現(xiàn)所需硬件量仍然較大。

下面兩種方法對(duì)減小硬件量比較有效。一是根據(jù)SIN函數(shù)的對(duì)稱性,只需要對(duì)一個(gè)象限進(jìn)行相位/幅度變換,另外三個(gè)象限可以經(jīng)變換獲得,這樣可節(jié)省近3/4的硬件量[3];第二種是采用分段線性化的方法,也可有效降低ROM地址的位數(shù)[4].

以一個(gè)10位相位/8位幅度的相位/幅度變換電路為例,介紹相位/幅度變換電路的具體實(shí)現(xiàn)方法并分析硬件量節(jié)省的情況。圖4是分段線性化相位/幅度變換方法示意圖。曲線1是用于進(jìn)行相位/幅度變換的原始正弦信號(hào)前1/4周期(第一象限)的曲線,將它分解成下面的3條曲線(曲線2、3、4)。曲線2是粗相位/幅度變換對(duì)應(yīng)的曲線。曲線3和4分別對(duì)應(yīng)的是線性變化部分(只有0、1、2三個(gè)值,即2位)和校正部分(只有0、1兩個(gè)值,即1位)。注意,為了清楚,曲線3和4的幅度都放大了5倍,并分別下移10和20.


根據(jù)圖4的方法,圖5給出了相位/幅度變換電路原理框圖。相位輸入10位,幅度輸出8位,分析中假定忽略掉兩組異或門和一個(gè)加法器所占用的硬件資源。在不采用任何措施以節(jié)省硬件資源的情況下,地址為10位,輸出幅度為7位(幅度的最高有效位不需要ROM資源),所需硬件量(ROM容量)為:210×7=7168.當(dāng)利用SIN函數(shù)的對(duì)稱性只對(duì)第1象限進(jìn)行相位/幅度變換時(shí),地址由10位變成了8位,所需硬件量變?yōu)椋?8×7=1792,減小了75%.在第1象限的相位/幅度變換中進(jìn)一步采用分段線性化的方法,將一個(gè)較大的ROM(地址8位,字長(zhǎng)7位)分解成三個(gè)較小的ROM:一個(gè)粗相位/幅度變換(地址6位,字長(zhǎng)7位),一個(gè)分段線性變化部分(它只與最高兩位和最低兩位地址有關(guān),地址4位,字長(zhǎng)2位),還有一個(gè)校正部分(地址8位,字長(zhǎng)1位)。因此,所需硬件總?cè)萘孔優(yōu)椋?6×7+24×2+28×1=736,又減小了近59%.可見,綜合采用上述兩種方法,可以使相位/幅度變換所需的硬件量大幅度減小。


根據(jù)具體情況和具體要求的不同,分解方法并不局限于上面介紹的方法。以圖5為例,由于線性變化部分和校正部分都較小,因此也可以將二者合并成一個(gè)地址8位、字長(zhǎng)2位的校正部分,這時(shí),所需硬件總?cè)萘繛椋?6×7+28×2=960,減小的硬件量為46%。

3 實(shí)驗(yàn)測(cè)試結(jié)果

為了滿足電子干擾系統(tǒng)對(duì)寬帶信號(hào)產(chǎn)生的需要,按照上述方法設(shè)計(jì)并實(shí)現(xiàn)了一個(gè)基于FPGA的并行DDS樣機(jī),系統(tǒng)時(shí)鐘400MHz(兩路200 MHz構(gòu)成),輸出頻率范圍250MHz~350MHz,頻率分辨率6Hz,相位截?cái)?0位,D/A變換器幅度分辨率8位。

為了簡(jiǎn)化外部電路,采用了直接中頻輸出的方法,即直接取出頻率范圍250MHz~350MHz的信號(hào)。由圖6可以看出,由于D/A變換器輸出信號(hào)幅度隨頻率按SINC函數(shù)衰減,在輸出信號(hào)250MHz~350MHz頻率范圍內(nèi),幅度變化范圍較大,約為(-6.5)~(-17.1)=10.6dB.因此,電路中還包含了SINC函數(shù)補(bǔ)償濾波器。

根據(jù)文獻(xiàn)[5],10位相位/8位幅度DDS的最高寄生信號(hào)抑制為-60.2dB.不過,這只是在特定條件下的理想結(jié)果,實(shí)際的DDS寄生信號(hào)性能還受到采樣信號(hào)頻譜折疊、D/A變換器采樣脈沖不理想(不是理想的沖擊脈沖)等因素的影響。特別是當(dāng)輸出信號(hào)頻率較高時(shí),D/A變換器非線性的影響更不能忽視。因此,實(shí)際測(cè)量結(jié)果與理論分析會(huì)有所不同。圖7給出的是基于FPGA的并行DDS樣機(jī)的輸出信號(hào)頻譜分布測(cè)量結(jié)果,輸出信號(hào)約為300MHz,測(cè)量范圍是在信號(hào)附近(span=1MHz),此時(shí)的最大寄生信號(hào)抑制優(yōu)于50dB。

本文介紹了一種通過采用并行處理技術(shù)提高DDS系統(tǒng)時(shí)鐘的方法,給出了一個(gè)基于FPGA的400MHz系統(tǒng)時(shí)鐘DDS電路的實(shí)現(xiàn)方法和測(cè)試結(jié)果,輸出信號(hào)頻率范圍250MHz~350MHz,頻率分辨率6Hz,寄生信號(hào)抑制優(yōu)于50dB,為實(shí)現(xiàn)雷達(dá)和電子戰(zhàn)等領(lǐng)域中的寬帶信號(hào)產(chǎn)生提供了一種可供選擇的方案,具有實(shí)用性。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 轉(zhuǎn)換器
    +關(guān)注

    關(guān)注

    27

    文章

    8714

    瀏覽量

    147314
  • 頻率合成器
    +關(guān)注

    關(guān)注

    5

    文章

    220

    瀏覽量

    32364
  • 雷達(dá)
    +關(guān)注

    關(guān)注

    50

    文章

    2940

    瀏覽量

    117608
  • DDS
    DDS
    +關(guān)注

    關(guān)注

    21

    文章

    634

    瀏覽量

    152705
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    FPGA實(shí)現(xiàn)直接數(shù)字頻率合成(DDS)的原理、電路結(jié)構(gòu)和優(yōu)化...

    FPGA實(shí)現(xiàn)直接數(shù)字頻率合成(DDS)的原理、電路結(jié)構(gòu)和優(yōu)化方法介紹了利用現(xiàn)場(chǎng)可編程邏輯門陣列FPGA實(shí)
    發(fā)表于 08-11 18:10

    FPGA實(shí)現(xiàn)高速FFT處理器的設(shè)計(jì)

    流水方式對(duì)復(fù)數(shù)數(shù)據(jù)實(shí)現(xiàn)了加窗、FFT、求模平方三種運(yùn)算。整個(gè)設(shè)計(jì)采用流水與并行方式盡量避免瓶頸的出現(xiàn),提高系統(tǒng)時(shí)鐘頻率,達(dá)到高速處理。實(shí)驗(yàn)表
    發(fā)表于 08-12 11:49

    基于FPGA控制的多DSP并行處理系統(tǒng)

    后給并行DSP輸出中斷。當(dāng)并行DSP采樣到中斷后,從數(shù)據(jù)緩存區(qū)讀取數(shù)據(jù),完成處理后,將數(shù)據(jù)傳輸?shù)骄彺?區(qū),FPGA通過相同的
    發(fā)表于 05-21 05:00

    基于DDS原理和FPGA技術(shù)的基本信號(hào)發(fā)生器設(shè)計(jì)

    信息顯示在LCD液晶顯示屏上。各硬件模塊之間的協(xié)調(diào)工作通過嵌入式軟核處理器NiosⅡ用編程實(shí)現(xiàn)控制。本設(shè)計(jì)所搭建的LCD12864控制器是通過編程實(shí)
    發(fā)表于 06-21 07:10

    如何利用FPGADDS技術(shù)實(shí)現(xiàn)正弦信號(hào)發(fā)生器的設(shè)計(jì)

    DDS電路的工作原理是什么如何利用FPGADDS技術(shù)實(shí)現(xiàn)正弦信號(hào)發(fā)生器的設(shè)計(jì)
    發(fā)表于 04-28 06:35

    如何利用現(xiàn)場(chǎng)可編程邏輯門陣列FPGA實(shí)現(xiàn)實(shí)現(xiàn)DDS技術(shù)?

    介紹了利用現(xiàn)場(chǎng)可編程邏輯門陣列FPGA實(shí)現(xiàn)直接數(shù)字頻率合成(DDS)的原理、電路結(jié)構(gòu)和優(yōu)化方法。重點(diǎn)介紹了DDS
    發(fā)表于 04-30 06:29

    如何利用FPGA設(shè)計(jì)DDS電路?

    ACEX 1K具有什么特點(diǎn)DDS電路工作原理是什么如何利用FPGA設(shè)計(jì)DDS電路
    發(fā)表于 04-30 06:49

    基于FPGA和高速DAC的DDS設(shè)計(jì)與頻率調(diào)制

    FPGA數(shù)字信號(hào)處理——基于FPGA和高速DAC的DDS設(shè)計(jì)與頻率調(diào)制(一)——X現(xiàn)如今,隨著高速模數(shù)-數(shù)模轉(zhuǎn)換技術(shù)
    發(fā)表于 07-23 08:06

    基于FPGADDS調(diào)頻信號(hào)的研究與實(shí)現(xiàn)

    本文從DDS 基本原理出發(fā),利用FPGA 來(lái)實(shí)現(xiàn)DDS 調(diào)頻信號(hào)的產(chǎn)生,重點(diǎn)介紹了其原理和電路設(shè)計(jì),并給出了
    發(fā)表于 06-26 17:29 ?72次下載

    基于FPGADDS信號(hào)源設(shè)計(jì)與實(shí)現(xiàn)

    基于FPGADDS信號(hào)源設(shè)計(jì)與實(shí)現(xiàn) 利用DDSFPGA 技術(shù)設(shè)計(jì)一種信號(hào)發(fā)生器.介紹了該
    發(fā)表于 02-11 08:48 ?225次下載

    基于DSP Builder的DDS設(shè)計(jì)及其FPGA實(shí)現(xiàn)

    基于DSP Builder的DDS設(shè)計(jì)及其FPGA實(shí)現(xiàn)  直接數(shù)字合成器,是采用數(shù)字技術(shù)的一種新型頻率合成技術(shù),他
    發(fā)表于 01-14 09:43 ?1440次閱讀
    基于DSP Builder的<b class='flag-5'>DDS</b>設(shè)計(jì)及其<b class='flag-5'>FPGA</b><b class='flag-5'>實(shí)現(xiàn)</b>

    低成本的采用FPGA實(shí)現(xiàn)SDH設(shè)備時(shí)鐘芯片技術(shù)

    介紹一種采用FPGA(現(xiàn)場(chǎng)可編程門陣列電路實(shí)現(xiàn)SDH(同步數(shù)字體系)設(shè)備時(shí)鐘芯片設(shè)計(jì)技術(shù),硬件主要由1 個(gè)
    發(fā)表于 11-21 09:59 ?2214次閱讀
    低成本的采用<b class='flag-5'>FPGA</b><b class='flag-5'>實(shí)現(xiàn)</b>SDH設(shè)備<b class='flag-5'>時(shí)鐘</b>芯片<b class='flag-5'>技術(shù)</b>

    基于FPGA的振動(dòng)信號(hào)采集處理系統(tǒng)設(shè)計(jì)并實(shí)際驗(yàn)證

    在振動(dòng)信號(hào)采集和處理系統(tǒng)設(shè)計(jì)中,信號(hào)的處理時(shí)間與可靠性決定著系統(tǒng)應(yīng)用的可行性。本文設(shè)計(jì)了一種基于FPGA的振動(dòng)信號(hào)采集處理系統(tǒng),該
    發(fā)表于 11-18 05:26 ?4069次閱讀
    基于<b class='flag-5'>FPGA</b>的振動(dòng)信號(hào)采集<b class='flag-5'>處理系統(tǒng)</b>設(shè)計(jì)并實(shí)際驗(yàn)證

    DDSFPGA實(shí)現(xiàn)電路原理圖免費(fèi)下載

    本文檔的主要內(nèi)容詳細(xì)介紹的是DDSFPGA實(shí)現(xiàn)電路原理圖免費(fèi)下載。
    發(fā)表于 10-22 12:07 ?28次下載
    <b class='flag-5'>DDS</b>的<b class='flag-5'>FPGA</b><b class='flag-5'>實(shí)現(xiàn)</b><b class='flag-5'>電路</b>原理圖免費(fèi)下載

    基于STM32+FPGADDS實(shí)現(xiàn)

    DDS基于FPGA的DDSSPI系統(tǒng)結(jié)構(gòu)功能實(shí)現(xiàn):在SPI接口下掛接上DDS模塊,通過單片機(jī)向
    發(fā)表于 12-01 17:36 ?9次下載
    基于STM32+<b class='flag-5'>FPGA</b>的<b class='flag-5'>DDS</b><b class='flag-5'>實(shí)現(xiàn)</b>