D/A 轉(zhuǎn)換器作為連接數(shù)字系統(tǒng)與模擬系統(tǒng)的橋梁,不僅要求快速、靈敏,而且線性誤差、信噪比和增益誤差等也要滿足系統(tǒng)的要求[1]。因此,研究DAC 芯片的測試方法,對高速、高分辨率DAC 芯片的研發(fā)具有十分重要的意義。
目前,波形測量和分析協(xié)會已提出了DAC 測試的技術(shù)標(biāo)準(zhǔn)IEEE Std.1057,里面的術(shù)語和測試方法為DAC 測試提供了更多的參考。傳統(tǒng)的標(biāo)準(zhǔn)測試只適于信號發(fā)生器、示波器等測試儀器,但是測試精度不高;大規(guī)模芯片測試時(shí)則使用自動測試設(shè)備(ATE),但是成本很高;最近提出的DAC 的測試方法,比如結(jié)合V777 數(shù)字測試系統(tǒng)可以進(jìn)行DAC 測試,應(yīng)用模擬濾波器進(jìn)行音頻DAC 測試,利用數(shù)?;旌闲盘枩y試系統(tǒng)Quartet 對高速DAC 進(jìn)行測試,等等[5],這些方法在通用性、精確度和成本方面無法同時(shí)滿足。為了達(dá)到上述要求,提出了基于FPGA 的高性能DAC 芯片回路測試法。
1 DAC 主要技術(shù)參數(shù)
DAC 的主要技術(shù)參數(shù)基本上可以分為靜態(tài)特性參數(shù)和動態(tài)特性參數(shù)。DAC 的靜態(tài)特性參數(shù)用來確定其轉(zhuǎn)換的精確度,主要包括失調(diào)誤差(Offset Error)、增益誤差(Gain Error)、積分非線性誤差(INL)以及微分非線性誤差(DNL)等。DAC動態(tài)特性參數(shù)用來確定其交流條件下的性能,主要包括信噪比(SNR)、信號噪聲和失真比(SINAD)、有效位數(shù)(ENOB)、總諧波失真(THD),以及無雜散動態(tài)范圍(SFDR)等。
2 測試方案
2.1 設(shè)計(jì)原理
DAC芯片參數(shù)回路測試法,就是將待測信號形成一個(gè)完整的信號回路。首先,使用FPGA 產(chǎn)生待測信號,經(jīng)過DAC芯片后轉(zhuǎn)換成模擬信號,再經(jīng)過濾波、放大電路和ADC 芯片轉(zhuǎn)換成數(shù)字信號,存儲在FPGA 的RAM 里,然后使用QuartusII 軟件Signal tap II 工具取出數(shù)據(jù),導(dǎo)入Matlab 軟件后,就可以對數(shù)字信號進(jìn)行分析和計(jì)算,從而得到DAC 的技術(shù)參數(shù)[6]。在ADC 采樣之前使用模擬信號接收器,如示波器、頻譜儀等,可與后端測試結(jié)果比較分析。設(shè)計(jì)原理如圖1 所示。
由于FPGA 使用非常靈活,通過配置不同的編程數(shù)據(jù)可以產(chǎn)生不同的電路功能,對于不同分辨率和采樣速度的DAC芯片都可以進(jìn)行參數(shù)測試;濾波和運(yùn)算放大電路盡可能地降低信號在轉(zhuǎn)換和傳遞過程中的噪聲;數(shù)字信號在分析和計(jì)算方面比模擬信號更加準(zhǔn)確,保證了測試系統(tǒng)的精確度;相對于其他DAC 測試系統(tǒng)來說,本測試方案使用的元器件比較少,成本比較低。
圖1 設(shè)計(jì)原理
2.2 硬件實(shí)現(xiàn)
DAC 使用12 位分辨率、250 Ms/s 采樣速度的DAC 芯片,芯片采用LVDS 差分電路、PTAT 基準(zhǔn)源以及4+4+4 電流源陣列等關(guān)鍵技術(shù)設(shè)計(jì),可以滿足高速高分辨率轉(zhuǎn)換電路處理的要求。FPGA 是Altera 公司Cyclone III 系列EP3C25Q240C8 芯片,功耗小,系統(tǒng)綜合能力強(qiáng),價(jià)格較低,包含了24*個(gè)邏輯單元、594 Kbit 內(nèi)存空間和4 個(gè)鎖相環(huán),硬件資源完全可以滿足測試的要求[8] 。ADC 是LINEAR 公司的LTC2242-12 芯片,交流特性非常好,降低了測試系統(tǒng)帶來的誤差。運(yùn)算放大器是ADI 公司的AD8008 芯片,非常好的驅(qū)動特性保證了DAC 芯片輸出信號的質(zhì)量,提高了DAC 的驅(qū)動能力。
2.3 軟件設(shè)計(jì)
軟件代碼采用硬件描述語言Verilog實(shí)現(xiàn)。FPGA產(chǎn)生待測信號包括Test(全零、全一等)、Ladder(階梯波)和Sin(正弦波)。其中Test信號用于測試DAC芯片的靜態(tài)特性參數(shù)失調(diào)誤差和增益誤差,Ladder信號用于測試DNL和INL,Sin信號用于測試動態(tài)特性參數(shù)SNR、SINAD、ENOB、THD和SFDR。
數(shù)據(jù)分析和計(jì)算過程主要通過Matlab 軟件實(shí)現(xiàn)。DAC 芯片輸入全零和全一信號,可計(jì)算出失調(diào)誤差和增益誤差;使用階梯波信號測試INL 和DNL 時(shí),為了測試精確度,將12位輸入數(shù)據(jù)分成高中低各四個(gè)位進(jìn)行測試。DAC 的動態(tài)特性參數(shù)測試采用快速傅里葉變換的方法,將Signal tap II 工具取出數(shù)據(jù)經(jīng)過FFT 和其他運(yùn)算,得到SNR、SINAD、ENOB、THD 和SFDR 等動態(tài)特性參數(shù),它們可以全面地反映DAC 的動態(tài)特性,這里精確到14 階諧波。
3 測試結(jié)果
Test 信號測試:DAC輸入全一狀態(tài)的輸出電壓為760 mV,輸入全零狀態(tài)的輸出電壓為276 uV,經(jīng)過Matlab 計(jì)算,失調(diào)誤差是0.036%,增益誤差是3.63%。
Ladder 信號測試:在計(jì)算INL 和DNL 時(shí),DAC 輸入高中低各四個(gè)位的測試原理相同,以中四位為例來介紹。n=12,i 從24~28 位變化,用1LSB 來表示,測定輸出的15 次(Step)階梯波,轉(zhuǎn)換成電壓值,部分?jǐn)?shù)據(jù)如表1 所示,每列數(shù)據(jù)分別表示階數(shù)、測試最小值、測試最大值、測試平均值、理想數(shù)值以及考慮小電流影響后最終電壓值。使用Matlab 軟件分析數(shù)據(jù)后得到INL 和DNL 曲線如圖2 和圖3 所示。
表1 15 次階梯波電壓值
圖2 INL 分析曲線
圖3 DNL 分析曲線
Sin 信號測試:輸入正弦波頻率25 kHz,AD 采樣率為100 MHz/s,輸出數(shù)字信號經(jīng)過Matlab 分析計(jì)算后,測得SNR是58 dB,SINAD 是57.75 dB,SFDR 是62.84 dB,THD 是58.62 dB,ENOB 是9.3 位。時(shí)域波形和FFT 變換后14 階諧波的頻譜如圖4 和圖5 所示。
圖4 sin 信號輸出時(shí)域波形
圖5 sin 信號輸出頻域波形
4 結(jié)語
以12 位、250 Ms/s DAC 芯片為例,在FPGA 的基礎(chǔ)上使用回路測試法,測試了其靜態(tài)特性參數(shù)和動態(tài)特性參數(shù)。實(shí)驗(yàn)結(jié)果表明,可以有效地測試DAC 芯片的靜態(tài)特性參數(shù)和動態(tài)特性參數(shù)。同時(shí)可以測試不同分辨率和采樣速度的DAC 芯片,測試結(jié)果比普通模擬測試儀器的精度高,測試系統(tǒng)比專用DAC 自動測試設(shè)備成本低。
-
FPGA
+關(guān)注
關(guān)注
1630文章
21768瀏覽量
604627 -
芯片
+關(guān)注
關(guān)注
456文章
51017瀏覽量
425328 -
dac
+關(guān)注
關(guān)注
43文章
2303瀏覽量
191271
發(fā)布評論請先 登錄
相關(guān)推薦
評論