0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

采用全差分flip-around結(jié)構(gòu)的高性能采樣保持電路

電子設(shè)計 ? 來源:網(wǎng)絡(luò)整理 ? 作者:佚名 ? 2019-12-18 07:54 ? 次閱讀

引言

采樣保持電路(S/H)是數(shù)據(jù)采集系統(tǒng)尤其是模數(shù)轉(zhuǎn)換器(A/D)的一個重要組成部分。近幾十年來無線通訊的迅速發(fā)展,使得數(shù)據(jù)的傳輸速率越來越快。復(fù)雜度不斷提高的調(diào)制系統(tǒng)和電路使得模數(shù)轉(zhuǎn)換器(ADC)的采樣頻率達到射頻的數(shù)量級,與此同時,模數(shù)轉(zhuǎn)換器的精度也超過12位以上。在這種高速度和高精度的要求下,采樣保持電路的作用就越發(fā)顯得重要,因為它可以消除模數(shù)轉(zhuǎn)換器前端采樣級的大部分動態(tài)錯誤。傳統(tǒng)的開環(huán)采樣保持電路只能達到8~10位的精度,主要由于開關(guān)的非理想特性,諸如電荷注入、時鐘饋通、開關(guān)的非線性電阻等。

另一方面,高精度的閉環(huán)采樣保持電路又受限于運算放大器的性能。無線通訊系統(tǒng)十分重視降低功耗,流水線A/D通常是無線通訊器件中的一部分,因此在設(shè)計的時候也將功耗作為一個重要的考慮因素。本文設(shè)計了一個用于14位20MHz流水線A/D的采樣保持電路,通過采用flip-around結(jié)構(gòu)來降低功耗。同時為了抑制傳統(tǒng)開關(guān)的一些非理想特性,采取自舉開關(guān)來降低信號失真,從而提高整個系統(tǒng)的信噪比。通過采用增益增強技術(shù),實現(xiàn)了高增益低功耗運算放大器。通過這些措施,在較低功耗的情況下仍然獲得了14位的精度。

本文主要分以下幾部分:介紹采樣保持電路的結(jié)構(gòu);詳細介紹運算放大器的設(shè)計;描述自舉開關(guān)的實現(xiàn);最后給出電路的仿真結(jié)果和結(jié)論。

采樣保持電路的結(jié)構(gòu)

采樣保持電路的要求主要是在較低功耗的情況下能采樣大帶寬、高頻率輸入信號,并且在驅(qū)動較大負載的情況下實現(xiàn)盡可能小的失真。閉環(huán)轉(zhuǎn)換電容采樣保持電路通常有兩種結(jié)構(gòu),如圖1和圖2所示。

采用全差分flip-around結(jié)構(gòu)的高性能采樣保持電路

圖1電荷傳輸結(jié)構(gòu)采樣保持電路

采用全差分flip-around結(jié)構(gòu)的高性能采樣保持電路

圖2Filp-around結(jié)構(gòu)采樣保持電路

圖1所示的結(jié)構(gòu)稱之為電荷傳輸采樣保持電路(charge-transferringS/H)。在采樣階段,將輸入信號存儲在采樣電容CS上,并且在保持階段,僅將差分電荷轉(zhuǎn)移到反饋電容Cf上。因為共模電荷存儲在采樣電容CS上,所以這種結(jié)構(gòu)的采樣保持電路可以處理共模范圍較大的輸入信號。

圖2所示的結(jié)構(gòu)稱之為翻轉(zhuǎn)(flip-around)采樣保持電路。在采樣階段,將輸入信號存儲在采樣電容C上,而在保持階段,將采樣電容C翻轉(zhuǎn)到輸出端。因此,理想的反饋因子β,第一種結(jié)構(gòu)為0.5,而后一種在忽略輸入管的寄生電容情況下為1,后者的反饋因子是前者的兩倍。因此在同樣的閉環(huán)帶寬要求下,后者的放大器單位增益帶寬(GBW)只需要前者的一半,這就大大地降低了放大器的功耗。而采樣保持電路的功耗主要來自于內(nèi)部運算放大器的功耗。

對于A/D而言,采樣保持電路的輸入噪聲直接影響到A/D的輸入?yún)⒖荚肼?。因此要盡量減小由采樣保持電路引入的噪聲。在采樣階段,忽略晶體管的寄生電容,則電荷傳輸采樣保持電路的輸入?yún)⒖荚肼暪β蕿閂2n=(2κT)/C。而翻轉(zhuǎn)采樣保持電路的輸入?yún)⒖荚肼暪β蕿閂2n=κT/C。后者的噪聲比前者降低了一半。在保持階段,假設(shè)放大器的噪聲主要由輸入晶體管的熱噪聲決定,則輸入?yún)⒖荚肼暪β士梢杂霉奖硎荆?/p>

V2n=(8πκT)P3βCL[1] (1)

(1)式表明翻轉(zhuǎn)采樣保持電路由于較高的反饋因子使得噪聲功率僅為電荷傳輸采樣保持電路的1/2。

由于在減小噪聲和降低功耗方面的優(yōu)勢,采用翻轉(zhuǎn)結(jié)構(gòu)作為采樣保持電路結(jié)構(gòu)。但需要指出的是,由于輸入晶體管寄生電容的影響,使得反饋因子小于理想值1,所以在噪聲和功率方面的改進可能會小于上面的理想值。另外,如果輸入信號的共模電壓V sig-cm不等于采樣保持電路中運算放大器的輸出共模電壓V out-cm,則在維持階段,由于運算放大器的共模反饋電路使得輸出的共模電壓穩(wěn)定在V out-cm,因此運算放大器的輸入共模電壓會有一個階躍變化ΔV in-cm=V out-cm-V sig-cm。因此為了滿足各種共模信號的要求,則該運算放大器要求較大的輸入共模范圍。

運算放大器的設(shè)計

由于噪聲和功率方面的優(yōu)勢,采用翻轉(zhuǎn)結(jié)構(gòu)作為采樣保持電路的結(jié)構(gòu),同時采用折疊式共源共柵放大器來實現(xiàn)大輸入共模范圍的要求。采用PMOS管作為輸入管,這樣就可以使第二個極點推到較高的位置。因為,第二個極點的位置為折疊點。而NMOS折疊管的寄生電容比PMOS折疊管的寄生電容小的多。除此之外,PMOS管還可以采用自襯底工藝,從而大大減小由于工藝產(chǎn)生的偏差。唯一的缺點是PMOS輸入管有較大的寄生電容,從而減小翻轉(zhuǎn)結(jié)構(gòu)在功率和噪聲方面的改進。

另外由于該采樣保持電路運用于14位20MHz流水線A/D,則要求該放大器的直流增益必須大于93dB,輸出在25ns的建立時間內(nèi)穩(wěn)定在最終值0.003%。對于單極點放大器,建立時間又可以轉(zhuǎn)化為對GBW的要求。因此為了實現(xiàn)近似單極點放大器,則要求放大器必須為一級結(jié)構(gòu)。而為了實現(xiàn)如此高的直流增益,則必須采用增益增強技術(shù),原理示意圖如圖3所示。圖中,由M1、M2和理想電流源構(gòu)成主運放,Aadd為用于增益增強的輔助放大器。采用該技術(shù)后,這個電路的直流增益為:

采用全差分flip-around結(jié)構(gòu)的高性能采樣保持電路

其中,ro1、ro2為M1、M2的輸出電阻,gM1、gM2為M1、M2的跨導(dǎo)。

采用全差分flip-around結(jié)構(gòu)的高性能采樣保持電路

圖3增益增強結(jié)構(gòu)的運算放大器

采用該技術(shù)之前,放大器的直流增益為:

采用全差分flip-around結(jié)構(gòu)的高性能采樣保持電路

(2)式和(3)式表明,增益增強技術(shù)可以使放大器的直流增益提高一個數(shù)量級。因此在該放大器的設(shè)計中,采用如圖4所示的帶有A1和A2兩個輔助放大器的增益增強折疊式共源共柵放大器,其中,A1和A2以外的部分為主放大器。為了簡化設(shè)計,輔助放大器也采用折疊式共源共柵結(jié)構(gòu)。因此,輔助方法器和主放大器的偏置電路可采用同一個偏置電路,大大簡化了設(shè)計。而輔助放大器的電流僅為主放大器電流的1/10,因此與套筒式共源共柵放大器相比,整體電路并不會額外增加電流。

采用全差分flip-around結(jié)構(gòu)的高性能采樣保持電路

圖4增益增強折疊式共源共柵運算放大器

需要提出的是,主放大器和輔助放大器采用了不同的共模反饋電路(CMFB)。對于主放大器而言,因為輸出電壓范圍2Vpp,因此在實現(xiàn)較大的輸出擺幅,又不額外增加功耗的要求下,采用開關(guān)電容共模反饋電路。如圖5所示,通過電容C1和C2間的電荷轉(zhuǎn)移調(diào)節(jié)電流源管的柵電壓來改變輸出電流,從而穩(wěn)定輸出共模電壓。對于輔助放大器而言,其輸出擺幅很小,輸出為共柵管的偏置電壓,采用一種簡單的連續(xù)時間共模反饋電路,如圖6所示,其原理是通過調(diào)節(jié)Mcmfb1和Mcmfb2管子的電流來穩(wěn)定輸出共模電壓。

采用全差分flip-around結(jié)構(gòu)的高性能采樣保持電路

圖5開關(guān)電容共模反饋電路

采用全差分flip-around結(jié)構(gòu)的高性能采樣保持電路

圖6輔助放大器及其共模反饋電路

自舉開關(guān)

開關(guān)是采樣保持電路的一個重要組成部分。它是信號失真,電荷注入和時鐘饋通效應(yīng)主要。后兩者可通過采用下極板采樣和全差分電路結(jié)構(gòu)來消除。A/D對信號失真要求很高,因為失真直接影響到A/D的精度。當(dāng)信號幅度較高時,采樣保持電路的精度和速度就直接受限于失真。而失真的主要原因是開關(guān)導(dǎo)通電阻的非線性。開關(guān)導(dǎo)通電阻不是一個固定值,而是輸入信號的函數(shù)。對于短溝器件的導(dǎo)通電阻為:

其中VG,VS,VD和VB分別為晶體管柵、源、漏和襯底電壓。一般,輸入信號電壓連接在源端。假設(shè),VS=VD=VB。通過PMOS管的自襯底技術(shù)使襯底和源短連接在一起,從而消除分母中后半部分平方根中的部分。則開關(guān)的導(dǎo)通電阻RON主要有VG-VS的差值決定,自舉開關(guān)就是通過固定這個差值來實現(xiàn)開關(guān)的線性導(dǎo)通電阻,從而消除信號失真。自舉開關(guān)電路如圖7所示,工作原理是:當(dāng)CLK為高的時候,自舉開關(guān)屬于關(guān)斷狀態(tài),此時開關(guān)MS的柵通過管子M1連接在VSS。而同時,電容C1兩端電壓差為VDD-VTH,其中VTH為NMOS管的閾值電壓。當(dāng)CLK為低的時候,自舉開關(guān)屬于導(dǎo)通狀態(tài),此時,M1管關(guān)閉,通過M2管使開關(guān)MS的柵電壓固定為Vin+(VDD-VTH)。其仿真結(jié)果如圖8所示。需要指出的是,圖2中4處有開關(guān),其中S1和S2采用自舉開關(guān),S3采用CMOS傳輸門,S4采用簡單NMOS傳輸門,這樣可以簡化電路并降低功耗。

采用全差分flip-around結(jié)構(gòu)的高性能采樣保持電路

圖7自舉開關(guān)

采用全差分flip-around結(jié)構(gòu)的高性能采樣保持電路

圖8自舉開關(guān)仿真結(jié)果

仿真結(jié)果和結(jié)論

圖4所示的運算放大器的Hspice的仿真結(jié)果為圖9,在電路負載為15p的情況下,直流增益為104.6dB,單位增益為166MHz,相位裕度為71度。完全滿足設(shè)計要求。圖10為該采樣保持電路的在輸入信號為5MHz,全差分信號幅度為2Vpp采樣頻率為20MHz情況下的輸出頻譜圖。仿真結(jié)果顯示,該電路的SFDR為92.4dB,SNDR為88.6dB,SNR為96.1dB。

本文描述了一個用于14位20MHz流水線A/D的采樣保持電路。該電路采用UMC logic 0.25μm2.5V工藝,通過采用增益增強放大器和自舉開關(guān),在輸入為±1V頻率為5MHz正弦波,采樣頻率為20MHz的情況下獲得了96.1dB的信噪比。

采用全差分flip-around結(jié)構(gòu)的高性能采樣保持電路

圖9運算放大器的頻率特性曲線

采用全差分flip-around結(jié)構(gòu)的高性能采樣保持電路

責(zé)任編輯:gt


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 數(shù)據(jù)采集
    +關(guān)注

    關(guān)注

    39

    文章

    6121

    瀏覽量

    113693
  • 仿真
    +關(guān)注

    關(guān)注

    50

    文章

    4087

    瀏覽量

    133651
  • 模數(shù)轉(zhuǎn)換器

    關(guān)注

    26

    文章

    3205

    瀏覽量

    126849
收藏 人收藏

    評論

    相關(guān)推薦

    請問ADS6422這個輸入的采樣保持電路中的Ron有什么用呢?

    請問ADS6422這個輸入的采樣保持電路中的Ron有什么用呢?采樣頻率對
    發(fā)表于 11-25 07:57

    一種用于高速ADC的采樣保持電源電路的設(shè)計

    穩(wěn)定時間短等優(yōu)點。適用于高速的流水線ADC.同時采用了下極板采樣技術(shù)和結(jié)構(gòu)。
    發(fā)表于 10-08 15:47

    ADC中不同電阻容對THD性能的影響

    本應(yīng)用筆記介紹了輸入端相同值電阻的不同容如何改變ADC的THD性能。電阻器的成本隨著容
    發(fā)表于 12-17 22:13

    DC1384A-A,演示電路采用帶有SPI接口的16位高性能模數(shù)轉(zhuǎn)換器LTC2452

    DC1384A-A,演示電路采用帶有SPI接口的16位高性能模數(shù)轉(zhuǎn)換器LTC2452。輸入是雙極性的,具有Ref-to Ref +范圍。
    發(fā)表于 05-05 14:02

    如何設(shè)計一個適用于12bit流水線ADC采樣保持電路

    的線性性能采用結(jié)構(gòu)、底極板采樣來消除電荷注入
    發(fā)表于 04-20 06:45

    適用于流水線ADC的高性能采樣保持電路

    介紹了一種利用雙采樣技術(shù)的高性能采樣/保持電路結(jié)構(gòu)電路
    發(fā)表于 12-26 16:39 ?28次下載

    一種新型高速采樣保持電路

    一種新型高速采樣保持電路摘要 : 本文提出了一種新型的基于運算放大器的開關(guān)電容采樣保持電路
    發(fā)表于 05-24 15:44 ?49次下載

    適用于12 bit流水線ADC采樣保持電路的設(shè)計

    本文采用一種電荷轉(zhuǎn)移型結(jié)構(gòu)采樣保持
    發(fā)表于 06-07 14:46 ?2815次閱讀
    適用于12 bit流水線ADC<b class='flag-5'>采樣</b><b class='flag-5'>保持</b><b class='flag-5'>電路</b>的設(shè)計

    基于二極管橋的兩級跟蹤保持電路的設(shè)計

    設(shè)計了一種基于二極管橋的兩級跟蹤保持電路, 兩級模塊由獨立的時鐘控制, 可以各自工作在跟蹤模式。芯片
    發(fā)表于 11-06 15:42 ?1次下載
    基于二極管橋的兩級<b class='flag-5'>全</b><b class='flag-5'>差</b><b class='flag-5'>分</b>跟蹤<b class='flag-5'>保持</b><b class='flag-5'>電路</b>的設(shè)計

    高性能低功耗的采樣保持電路的設(shè)計與實現(xiàn)

    的模塊,采樣保持電路性能直接決定了整個ADC的性能,在以上系統(tǒng)中對功耗的要求十嚴(yán)格。本設(shè)計在
    的頭像 發(fā)表于 06-13 08:19 ?5840次閱讀
    <b class='flag-5'>高性能</b>低功耗的<b class='flag-5'>采樣</b><b class='flag-5'>保持</b><b class='flag-5'>電路</b>的設(shè)計與實現(xiàn)

    采用結(jié)構(gòu)高性能采樣保持電路的設(shè)計

    采樣保持電路是模數(shù)轉(zhuǎn)換器的重要組成部分,它的性能決定著整個A/D轉(zhuǎn)換器的性能。隨著科學(xué)技術(shù)的發(fā)展,系統(tǒng)對A/D轉(zhuǎn)換器的速度和精度要求越來越
    發(fā)表于 07-26 11:03 ?4460次閱讀
    <b class='flag-5'>采用</b><b class='flag-5'>全</b><b class='flag-5'>差</b><b class='flag-5'>分</b><b class='flag-5'>結(jié)構(gòu)</b>的<b class='flag-5'>高性能</b><b class='flag-5'>采樣</b>/<b class='flag-5'>保持</b><b class='flag-5'>電路</b>的設(shè)計

    采用結(jié)構(gòu)和增益自舉運算放大器實現(xiàn)采樣保持電路的設(shè)計

    采樣保持電路是模數(shù)轉(zhuǎn)換器的重要組成部分,它的性能決定著整個A/D轉(zhuǎn)換器的性能。隨著科學(xué)技術(shù)的發(fā)展,系統(tǒng)對A/D轉(zhuǎn)換器的速度和精度要求越來越
    的頭像 發(fā)表于 03-23 10:34 ?6576次閱讀
    <b class='flag-5'>采用</b><b class='flag-5'>全</b><b class='flag-5'>差</b><b class='flag-5'>分</b><b class='flag-5'>結(jié)構(gòu)</b>和增益自舉運算放大器實現(xiàn)<b class='flag-5'>采樣</b>/<b class='flag-5'>保持</b><b class='flag-5'>電路</b>的設(shè)計

    應(yīng)用于電機驅(qū)動的隔離運放單端和輸出對采樣性能的影響

    本文介紹在應(yīng)用電機驅(qū)動器中,采用隔離運放的系統(tǒng)架構(gòu)和TI明星產(chǎn)品。涉及了相關(guān)電路設(shè)計和外部信號調(diào)理與MCU的配合。結(jié)合后級ADC,深入討論了隔離運放單端結(jié)構(gòu)輸出和
    的頭像 發(fā)表于 03-23 09:24 ?4124次閱讀
    應(yīng)用于電機驅(qū)動的隔離運放單端和<b class='flag-5'>差</b><b class='flag-5'>分</b>輸出對<b class='flag-5'>采樣</b><b class='flag-5'>性能</b>的影響

    OPA1632高性能、音頻運算放大器數(shù)據(jù)表

    電子發(fā)燒友網(wǎng)站提供《OPA1632高性能、音頻運算放大器數(shù)據(jù)表.pdf》資料免費下載
    發(fā)表于 06-05 13:00 ?0次下載
    OPA1632<b class='flag-5'>高性能</b>、<b class='flag-5'>全</b><b class='flag-5'>差</b><b class='flag-5'>分</b>音頻運算放大器數(shù)據(jù)表

    OPA1633高性能、音頻運算放大器數(shù)據(jù)表

    電子發(fā)燒友網(wǎng)站提供《OPA1633高性能、音頻運算放大器數(shù)據(jù)表.pdf》資料免費下載
    發(fā)表于 06-05 09:40 ?0次下載
    OPA1633<b class='flag-5'>高性能</b>、<b class='flag-5'>全</b><b class='flag-5'>差</b><b class='flag-5'>分</b>音頻運算放大器數(shù)據(jù)表