0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

采用ADC083000/B3000ADC芯片對ADC系統(tǒng)進(jìn)行優(yōu)化

電子設(shè)計(jì) ? 來源:郭婷 ? 作者:電子設(shè)計(jì) ? 2019-05-30 08:18 ? 次閱讀

包含千兆采樣率ADC的系統(tǒng)設(shè)計(jì)會遇到許多復(fù)雜情況。面臨的主要挑戰(zhàn)包括時鐘驅(qū)動、模擬輸入級和高速數(shù)字接口。本文探討了如何才能克服這些挑戰(zhàn),并給出了在千兆赫茲的速度下進(jìn)行系統(tǒng)優(yōu)化的方法。在討論中,時鐘設(shè)計(jì)、差分輸入驅(qū)動器的設(shè)計(jì)、數(shù)字接口和布局考慮都是十分復(fù)雜的問題。本文中的參考設(shè)計(jì)將采用ADC083000/B3000。

時鐘源是高速數(shù)據(jù)轉(zhuǎn)換系統(tǒng)中最重要的子電路之一。這是因?yàn)闀r鐘信號的定時精度會直接影響ADC的動態(tài)性能。為了將這種影響最小化,ADC的時鐘源必須 具有很低的定時抖動或相位噪聲。如果在選擇時鐘電路時沒有考慮該因素,則系統(tǒng)的動態(tài)性能在很大程度上將不由前端模擬輸入或ADC的質(zhì)量決定。理想時鐘總能 在電平跳變之間保持精確的時間間隔。而實(shí)際中,時鐘邊沿之間的時間間隔是在不斷變化的。這一定時不確定性的結(jié)果,會使被采樣波形的信噪比在數(shù)據(jù)轉(zhuǎn)換過程中 降低。對于所有的抖動源,系統(tǒng)所能容忍的最大時鐘抖動[即由抖動所引起的噪聲不超過量化噪聲(1/2 LSB)]可由下式定義:

采用ADC083000/B3000ADC芯片對ADC系統(tǒng)進(jìn)行優(yōu)化

如果輸入電壓(VIN)經(jīng)過優(yōu)化等于ADC的滿量程(VINFSR),則對抖動的要求就只與ADC的分辨率(N位)和被采樣的輸入頻率(fin)相關(guān)。當(dāng)輸入頻率達(dá)到奈奎斯特速率(對于1.5GSps的轉(zhuǎn)換速率為750MHz)時,總的抖動要求為:

采用ADC083000/B3000ADC芯片對ADC系統(tǒng)進(jìn)行優(yōu)化

這個值是各種原因引起的抖動的總和。ADC器件內(nèi)部所引起的抖動被稱為孔徑抖動。以ADC083000為例,在數(shù)據(jù)表中給出的孔徑抖動為0.4ps, 該值將ADC時鐘的抖動規(guī)范限制在0.4ps。但是,當(dāng)被用于數(shù)據(jù)轉(zhuǎn)換系統(tǒng)時,簡單地將振蕩器的性能數(shù)據(jù)匹配到所需的規(guī)范,可能還不足以得到所期望的結(jié) 果。這是因?yàn)榛l附近存在的其它頻率成分也起著重要的作用。因此,有必要用頻譜分析儀來檢查時鐘信號,并確定與基頻相關(guān)的能量沒有分布到過寬的范圍內(nèi)。擴(kuò) 展到更高頻率上的尖峰是可見的,并且也會直接影響抖動性能。

圖1顯示了為ADC083000所推薦的時鐘電路。它由一個與Vari-L壓控振蕩器(VCO)相連的鎖相環(huán)(PLL)器件(LMX2312)組成。 此PLL和VCO在奈奎斯特輸入頻率下仍能使ADC083000產(chǎn)品維持所需的信噪比(44dB)。圖2中的FFT顯示了ADC08D1500在1.5 GSps的時鐘速率下,采用圖1中的電路采樣100MHz輸入頻率時的動態(tài)性能。

通常使用一個差分放大器作 為單位增益的單端到差分端的轉(zhuǎn)換器。為什么ADC需要差分輸入呢?因?yàn)椴罘中盘柌粌H有利于抑制共模噪聲,還能提高ADC的諧波性能。降低偶次諧波能帶來更 好的動態(tài)性能。使用運(yùn)放來替代變壓器進(jìn)行單端到差分端轉(zhuǎn)換的優(yōu)勢在于放大器能允許直流信號通過而變壓器卻不能。并且使用放大器比使用變壓器更容易對增益進(jìn)行控制。

當(dāng)設(shè)計(jì)結(jié)束后檢查放大器的失調(diào)電壓時,要移除運(yùn)放輸入端的激勵信號?,F(xiàn)在使用WaveVision的ADC評估軟件,進(jìn)行采樣并在時域中觀察這些樣 本。當(dāng)運(yùn)放的輸入電壓為零時,ADC的輸出應(yīng)該處于半量程,即128(8位轉(zhuǎn)換器)。放大器的任何輸出失調(diào)誤差都會引起輸出碼偏離半量程。這樣就能測量運(yùn) 放的輸出失調(diào)誤差。如果存在很大的失調(diào)電壓,則需要檢查運(yùn)放輸入端的阻抗匹配,因?yàn)檩斎攵说淖杩故鋾淖冚敵鍪д{(diào)電壓,由于輸出幅度受到限制,因此會減 小ADC的動態(tài)范圍。

捕獲數(shù)字輸出數(shù)據(jù)

以很高的頻率(1GSps甚至更高)對信號進(jìn)行采樣意味著由轉(zhuǎn)換器產(chǎn)生的數(shù)字輸出數(shù)據(jù)必須快速地被存儲或至少被快速地轉(zhuǎn)移。ADC為它的兩個通道提供 了復(fù)用數(shù)據(jù)輸出。這一方法將數(shù)據(jù)率降低了一半,但增加了所需的位數(shù)。對于1GSps的采樣率,ADC的轉(zhuǎn)換數(shù)據(jù)輸出速率為500MHz。即使以這一被降低 的速度輸出,大多數(shù)分立或內(nèi)部FPGA存儲器還是難以可靠地捕捉數(shù)據(jù)。因此最好使用雙數(shù)據(jù)率(DDR)的方法,在時鐘的上升沿和下降沿均傳輸數(shù)據(jù)。這樣對 于DDR信號,數(shù)據(jù)率不變,但時鐘頻率再次被減小一半,變成易處理的250MHz。這一頻率處于目前CMOS存儲電路可實(shí)現(xiàn)的范圍之內(nèi)。在將數(shù)據(jù)存入存儲 器之前,在FPGA器件的輸入端需要一對中間數(shù)據(jù)鎖存器。第一個鎖存器由一個同相數(shù)據(jù)時鐘控制,而第二個鎖存器則由一個相差為180°的異相或反相數(shù)據(jù)時 鐘控制。

采用ADC083000/B3000ADC芯片對ADC系統(tǒng)進(jìn)行優(yōu)化


為了簡化這一計(jì)時要求,F(xiàn)PGA通常具有PLL(鎖相環(huán))或DLL(延遲鎖相環(huán))形式的數(shù)字時鐘管理器。這些器件允許在內(nèi)部產(chǎn)生相位鎖定到一個輸入時 鐘的時鐘信號,并提供0°、90°、180°和270°的相位延遲。這一時鐘管理特性通過提供一個精確的相移180°的時鐘,使DDR的時序能有效地工 作。它還能確保到來的數(shù)據(jù)與下降沿同步,因此能可靠地被數(shù)據(jù)鎖存器捕獲。

被鎖存后,到來的數(shù)據(jù)可以被轉(zhuǎn)移到FIFO存儲器或Block RAM中。這樣系統(tǒng)微控制器就能以較慢的速度容易地從中找回這些數(shù)據(jù),進(jìn)行捕獲后的處理。

電路板布局

由于數(shù)字開關(guān)的瞬時變化主要由高頻成分構(gòu)成,趨膚效應(yīng)告訴我們邏輯變化產(chǎn)生的噪聲幾乎與地平面銅皮的總質(zhì)量無關(guān)??偙砻娣e比地平面的總體積更為重要。 典型的充滿噪聲的數(shù)字電路與敏感的模擬電路之間的耦合會導(dǎo)致很差的性能,并且似乎無法隔離和補(bǔ)救。解決這一問題的方法就是要很好地將模擬電路與數(shù)字電路分 開。由于所引起的公共回流路徑會在ADC的模擬輸入“地”中引起漲落,從而在轉(zhuǎn)換結(jié)果中引入額外的噪聲,因此不應(yīng)將高功率的數(shù)字元件放置在任何線性元件或 模擬與混合信號元件的電源線和電源平面之上或其附近。

采用ADC083000/B3000ADC芯片對ADC系統(tǒng)進(jìn)行優(yōu)化


通常,我們假定模擬和數(shù)字引線應(yīng)成90°交叉,以避免數(shù)字噪聲進(jìn)入模擬路徑。但是,在高頻系統(tǒng)中應(yīng)完全避免模擬和數(shù)字引線的交叉。輸入的時鐘線應(yīng)與所 有其它引線(包括模擬和數(shù)字)隔離。應(yīng)該避免通??杀唤邮艿?0°交叉,因?yàn)樵诟哳l下即使少許耦合也會引起問題。在高頻下,筆直的信號路徑具有最好的性 能。模擬輸入應(yīng)與充滿噪聲的信號引線隔離,以避免將寄生信號耦合到輸入中去。由于ADC083000要求低電平驅(qū)動,因此這一點(diǎn)尤其重要。任何連接在轉(zhuǎn)換 器輸入端和地面之間的外部元件(例如濾波電容),都應(yīng)被連接到模擬地平面中一個非常干凈的點(diǎn)上。所有模擬電路(輸入放大器、濾波器等)都應(yīng)與任何數(shù)字元件分開放置。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • FPGA
    +關(guān)注

    關(guān)注

    1630

    文章

    21777

    瀏覽量

    604724
  • 存儲器
    +關(guān)注

    關(guān)注

    38

    文章

    7521

    瀏覽量

    164092
  • adc
    adc
    +關(guān)注

    關(guān)注

    98

    文章

    6525

    瀏覽量

    545230
收藏 人收藏

    評論

    相關(guān)推薦

    ADC083000芯片無法正常工作的原因?

    當(dāng)前使用FPGA芯片控制ADC083000工作,F(xiàn)PGA輸出的時鐘是600Mhz,使用DDR模式接收ADC輸出的數(shù)據(jù)。 當(dāng)前使用的是交流耦合模式。然后通過外部擴(kuò)展模式(SPI接口)配置
    發(fā)表于 11-15 07:14

    ADC采樣保持過程的具體時間要如何確定?

    我用過的ADC芯片ADC10D1500和ADC083000,主要是用來處理一些脈沖信號。 在datasheet里面經(jīng)??吹秸f“該ADC
    發(fā)表于 12-24 06:09

    ADC的本質(zhì)與特性 - 1

    adc
    皮特派
    發(fā)布于 :2022年12月07日 11:30:38

    ADC的本質(zhì)與特性 - 2

    adc
    皮特派
    發(fā)布于 :2022年12月07日 11:32:56

    ADC高精度采集

    ADC
    橙群微電子
    發(fā)布于 :2023年02月24日 09:37:18

    模數(shù)轉(zhuǎn)換ADC

    ADC
    jf_06209345
    發(fā)布于 :2023年03月17日 20:17:58

    國產(chǎn)示波器ADC芯片和國產(chǎn)信號源DAC芯片!

    的3MXT2001直接替代ADC08D1000(1G)分辨率雙8bit的4MXT2004直接替代ADC08D1520(1.5G)分辨率雙8bit的5MXT2003直接替代ADC083000(3G)分辨率單通8bit
    發(fā)表于 10-20 09:45

    采用ADC083000/B3000的3GSps超高速ADC系統(tǒng)設(shè)計(jì)

    設(shè)計(jì)、差分輸入驅(qū)動器的設(shè)計(jì)、數(shù)字接口和布局考慮都是十分復(fù)雜的問題。本文中的參考設(shè)計(jì)將采用ADC083000/B3000。時鐘源是高速數(shù)據(jù)轉(zhuǎn)換系統(tǒng)中最重要的子電路之一。這是因?yàn)闀r鐘信號的
    發(fā)表于 05-30 05:00

    ADC08B3000,pdf datasheet (8-Bi

    The ADC08B3000 is a single, low power, high performanceCMOS analog-to-digital converter
    發(fā)表于 10-10 09:11 ?12次下載

    ADC083000,pdf datasheet (8-Bit

    The ADC083000 is a single, low power, high performanceCMOS analog-to-digital converter
    發(fā)表于 10-10 09:17 ?23次下載

    NB3000_ADC084S021

    NB3000 ADC084S021,好東西,喜歡的朋友可以下載來學(xué)習(xí)。
    發(fā)表于 02-18 16:44 ?0次下載

    ADC芯片需求驅(qū)動

    ADC芯片需求驅(qū)動(電源技術(shù)研討會)-ADI常用芯片adc驅(qū)動程序,C語言,可以借鑒使用。
    發(fā)表于 09-15 13:21 ?19次下載
    <b class='flag-5'>ADC</b><b class='flag-5'>芯片</b>需求驅(qū)動

    基于ADC0809芯片的簡單采集系統(tǒng)設(shè)計(jì)

    基于ADC0809芯片的簡單采集系統(tǒng)設(shè)計(jì)(開關(guān)電源技術(shù)論文)-文檔為基于ADC0809芯片的簡單采集系統(tǒng)
    發(fā)表于 09-17 14:16 ?91次下載
    基于<b class='flag-5'>ADC</b>0809<b class='flag-5'>芯片</b>的簡單采集<b class='flag-5'>系統(tǒng)</b>設(shè)計(jì)

    國產(chǎn)ADC芯片——adc芯片的多種結(jié)構(gòu)

    、精密ADC和集成ADC等,主要應(yīng)用于醫(yī)療儀器、測試儀器、音頻處理和工業(yè)系統(tǒng)等領(lǐng)域,具有高穩(wěn)定性、高精度和低噪聲等特點(diǎn)。 ADC芯片具有多種
    的頭像 發(fā)表于 10-09 16:01 ?2574次閱讀

    ADC083000單通道、低功耗、高性能CMOS模數(shù)轉(zhuǎn)換器數(shù)據(jù)表

    電子發(fā)燒友網(wǎng)站提供《ADC083000單通道、低功耗、高性能CMOS模數(shù)轉(zhuǎn)換器數(shù)據(jù)表.pdf》資料免費(fèi)下載
    發(fā)表于 07-17 10:39 ?0次下載
    <b class='flag-5'>ADC083000</b>單通道、低功耗、高性能CMOS模數(shù)轉(zhuǎn)換器數(shù)據(jù)表