0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

使用TensorFlow框架演示了卷積神經(jīng)網(wǎng)絡(luò)在MNIST數(shù)據(jù)集上的應(yīng)用

zhKF_jqr_AI ? 來源:未知 ? 作者:李倩 ? 2018-08-27 09:34 ? 次閱讀

Google產(chǎn)品分析Zlatan Kremonic介紹了卷積神經(jīng)網(wǎng)絡(luò)的機(jī)制,并使用TensorFlow框架演示了卷積神經(jīng)網(wǎng)絡(luò)在MNIST數(shù)據(jù)集上的應(yīng)用。

卷積神經(jīng)網(wǎng)絡(luò)(CNN)是一種前饋人工神經(jīng)網(wǎng)絡(luò),其神經(jīng)元連接模擬了動物的視皮層。在圖像分類之類的計(jì)算機(jī)視覺任務(wù)中,CNN特別有用;不過,CNN也可以應(yīng)用于其他機(jī)器學(xué)習(xí)任務(wù),只要該任務(wù)中至少一維上的屬性的順序?qū)Ψ诸惗允潜夭豢缮俚?。例如,CNN也用于自然語言處理和音頻分析。

CNN的主要組成部分是卷積層(convolutional layer)、池化層(pooling layer)、ReLU層(ReLU layer)、全連接層(fully connected layer)。

圖片來源:learnopencv.com

卷積層

卷積層從原輸入的三維版本開始,一般是包括色彩、寬度、高度三維的圖像。接著,圖像被分解為過濾器(核)的子集,每個過濾器的感受野均小于圖像總體。這些過濾器接著沿著輸入量的寬高應(yīng)用卷積,計(jì)算過濾器項(xiàng)和輸入的點(diǎn)積,并生成過濾器的二維激活映射。這使得網(wǎng)絡(luò)學(xué)習(xí)因?yàn)閭蓽y到輸入的空間位置上特定種類的特征而激活的過濾器。過濾器沿著整個圖像進(jìn)行“掃描”,這讓CNN具有平移不變性,也就是說,CNN可以處理位于圖像不同部分的物體。

接著疊加激活函數(shù),這構(gòu)成卷積層輸出的深度。輸出量中的每一項(xiàng)因此可以視作查看輸入的一小部分的神經(jīng)元的輸出,同一激活映射中的神經(jīng)元共享參數(shù)

卷積層的一個關(guān)鍵概念是局部連通性,每個神經(jīng)元僅僅連接到輸入量中的一小部分。過濾器的尺寸,也稱為感受野,是決定連通程度的關(guān)鍵因素。

其他關(guān)鍵參數(shù)是深度、步長、補(bǔ)齊。深度表示創(chuàng)建的特征映射數(shù)目。步長控制每個卷積核在圖像上移動的步幅。一般將步長設(shè)為1,從而導(dǎo)向高度重疊的感受野和較大的輸出量。補(bǔ)齊讓我們可以控制輸出量的空間大小。如果我們用零補(bǔ)齊(zero-padding),它能提供和輸入量等高等寬的輸出。

圖片來源:gabormelli.com

池化層

池化是一種非線性下采樣的形式,讓我們可以在保留最重要的特征的同時削減卷積輸出。最常見的池化方法是最大池化,將輸入圖像(這里是卷積層的激活映射)分區(qū)(無重疊的矩形),然后每區(qū)取最大值。

池化的關(guān)鍵優(yōu)勢之一是降低參數(shù)數(shù)量和網(wǎng)絡(luò)的計(jì)算量,從而緩解過擬合。此外,由于池化去除了特定特征的精確位置的信息,但保留了該特征相對其他特征的位置信息,結(jié)果也提供了平移不變性。

最常見的池化大小是2 x 2(步長2),也就是從輸入映射中去除75%的激活。

圖片來源:Leonardo Araujo dos Santos

ReLU層

修正線性單元(Rectifier Linear Unit)層應(yīng)用如下激活函數(shù)

至池化層的輸出。它在不影響卷積層的感受野的前提下增加了整個網(wǎng)絡(luò)的非線性。當(dāng)然,我們也可以應(yīng)用其他標(biāo)準(zhǔn)的非線性激活函數(shù),例如tanh和sigmoid。

圖片來源:hashrocket.com

全連接層

獲取ReLU層的輸出,將其扁平化為單一向量,以便調(diào)節(jié)權(quán)重。

圖片來源:machinethink.net

使用TensorFlow在MNIST數(shù)據(jù)集上訓(xùn)練CNN

下面我們將展示如何在MNIST數(shù)據(jù)集上使用TensorFlow訓(xùn)練CNN,并達(dá)到接近99%的精確度。

首先導(dǎo)入需要的庫:

import numpy as np

import tensorflow as tf

import matplotlib.pyplot as plt

import pandas as pd

import os

from datetime import datetime

from sklearn.utils import shuffle

編寫提供錯誤率和預(yù)測響應(yīng)矩陣的基本輔助函數(shù):

def y2indicator(y):

N = len(y)

y = y.astype(np.int32)

ind = np.zeros((N, 10))

for i in range(N):

ind[i, y[i]] = 1

return ind

def error_rate(p, t):

return np.mean(p != t)

接下來,我們加載數(shù)據(jù),歸一化并重整數(shù)據(jù),并生成訓(xùn)練集和測試集。

data = pd.read_csv(os.path.join('Data', 'train.csv'))

def get_normalized_data(data):

data = data.as_matrix().astype(np.float32)

np.random.shuffle(data)

X = data[:, 1:]

mu = X.mean(axis=0)

std = X.std(axis=0)

np.place(std, std == 0, 1)

X = (X - mu) / std

Y = data[:, 0]

return X, Y

X, Y = get_normalized_data(data)

X = X.reshape(len(X), 28, 28, 1)

X = X.astype(np.float32)

Xtrain = X[:-1000,]

Ytrain = Y[:-1000]

Xtest = X[-1000:,]

Ytest = Y[-1000:]

Ytrain_ind = y2indicator(Ytrain)

Ytest_ind = y2indicator(Ytest)

在我們的卷積函數(shù)中,我們?nèi)〔介L為一,并通過設(shè)定padding為SAME確保卷積輸出的維度和輸入的維度相等。下采樣系數(shù)為二,在輸出上應(yīng)用ReLU激活函數(shù):

def convpool(X, W, b):

conv_out = tf.nn.conv2d(X, W, strides=[1, 1, 1, 1], padding='SAME')

conv_out = tf.nn.bias_add(conv_out, b)

pool_out = tf.nn.max_pool(conv_out, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

return tf.nn.relu(pool_out)

初始化權(quán)重的方式是隨機(jī)正態(tài)分布取樣/sqrt(扇入+扇出)。這里的關(guān)鍵是隨機(jī)權(quán)重的方差受限于數(shù)據(jù)集大小。

def init_filter(shape, poolsz):

w = np.random.randn(*shape) / np.sqrt(np.prod(shape[:-1]) + shape[-1]*np.prod(shape[:-2] / np.prod(poolsz)))

return w.astype(np.float32)

我們定義梯度下降參數(shù),包括迭代數(shù),batch尺寸,隱藏層數(shù)量,分類數(shù)量,池尺寸。

max_iter = 6

print_period = 10

N = Xtrain.shape[0]

batch_sz = 500

n_batches = N / batch_sz

M = 500

K = 10

poolsz = (2, 2)

初始化過濾器,注意TensorFlow的維度順序。

W1_shape = (5, 5, 1, 20) # (filter_width, filter_height, num_color_channels, num_feature_maps)

W1_init = init_filter(W1_shape, poolsz)

b1_init = np.zeros(W1_shape[-1], dtype=np.float32) # one bias per output feature map

W2_shape = (5, 5, 20, 50) # (filter_width, filter_height, old_num_feature_maps, num_feature_maps)

W2_init = init_filter(W2_shape, poolsz)

b2_init = np.zeros(W2_shape[-1], dtype=np.float32)

W3_init = np.random.randn(W2_shape[-1]*7*7, M) / np.sqrt(W2_shape[-1]*7*7 + M)

b3_init = np.zeros(M, dtype=np.float32)

W4_init = np.random.randn(M, K) / np.sqrt(M + K)

b4_init = np.zeros(K, dtype=np.float32)

接著,我們定義輸入變量和目標(biāo)變量,以及將在訓(xùn)練過程中更新的變量:

X = tf.placeholder(tf.float32, shape=(batch_sz, 28, 28, 1), name='X')

T = tf.placeholder(tf.float32, shape=(batch_sz, K), name='T')

W1 = tf.Variable(W1_init.astype(np.float32))

b1 = tf.Variable(b1_init.astype(np.float32))

W2 = tf.Variable(W2_init.astype(np.float32))

b2 = tf.Variable(b2_init.astype(np.float32))

W3 = tf.Variable(W3_init.astype(np.float32))

b3 = tf.Variable(b3_init.astype(np.float32))

W4 = tf.Variable(W4_init.astype(np.float32))

b4 = tf.Variable(b4_init.astype(np.float32))

定義前向傳播過程,然后使用RMSProp加速梯度下降過程。

Z1 = convpool(X, W1, b1)

Z2 = convpool(Z1, W2, b2)

Z2_shape = Z2.get_shape().as_list()

Z2r = tf.reshape(Z2, [Z2_shape[0], np.prod(Z2_shape[1:])])

Z3 = tf.nn.relu( tf.matmul(Z2r, W3) + b3 )

Yish = tf.matmul(Z3, W4) + b4

cost = tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(logits = Yish, labels = T))

train_op = tf.train.RMSPropOptimizer(0.0001, decay=0.99, momentum=0.9).minimize(cost)

# 用于計(jì)算錯誤率

predict_op = tf.argmax(Yish, 1)

我們使用標(biāo)準(zhǔn)的訓(xùn)練過程,不過,當(dāng)在測試集上做出預(yù)測時,由于RAM限制我們需要固定輸入尺寸;因此,我們加入的計(jì)算總代價和預(yù)測的函數(shù)稍微有點(diǎn)復(fù)雜。

t0 = datetime.now()

LL = []

init = tf.initialize_all_variables()

with tf.Session() as session:

session.run(init)

for i in range(int(max_iter)):

for j in range(int(n_batches)):

Xbatch = Xtrain[j*batch_sz:(j*batch_sz + batch_sz),]

Ybatch = Ytrain_ind[j*batch_sz:(j*batch_sz + batch_sz),]

if len(Xbatch) == batch_sz:

session.run(train_op, feed_dict={X: Xbatch, T: Ybatch})

if j % print_period == 0:

test_cost = 0

prediction = np.zeros(len(Xtest))

for k in range(int(len(Xtest) / batch_sz)):

Xtestbatch = Xtest[k*batch_sz:(k*batch_sz + batch_sz),]

Ytestbatch = Ytest_ind[k*batch_sz:(k*batch_sz + batch_sz),]

test_cost += session.run(cost, feed_dict={X: Xtestbatch, T: Ytestbatch})

prediction[k*batch_sz:(k*batch_sz + batch_sz)] = session.run(

predict_op, feed_dict={X: Xtestbatch})

err = error_rate(prediction, Ytest)

if j == 0:

print("Cost / err at iteration i=%d, j=%d: %.3f / %.3f" % (i, j, test_cost, err))

LL.append(test_cost)

print("Elapsed time:", (datetime.now() - t0))

plt.plot(LL)

plt.show()

輸出:

Cost / err at iteration i=0, j=0: 2243.417 / 0.805

Cost / err at iteration i=1, j=0: 116.821 / 0.035

Cost / err at iteration i=2, j=0: 78.144 / 0.029

Cost / err at iteration i=3, j=0: 57.462 / 0.018

Cost / err at iteration i=4, j=0: 52.477 / 0.015

Cost / err at iteration i=5, j=0: 48.527 / 0.018

Elapsed time: 0:09:16.157494

結(jié)語

如我們所見,模型在測試集上的表現(xiàn)在98%到99%之間。在這個練習(xí)中,我們沒有進(jìn)行任何超參數(shù)調(diào)整,但這是很自然的下一步。我們也可以增加正則化、動量、dropout。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴

原文標(biāo)題:卷積神經(jīng)網(wǎng)絡(luò)簡明教程

文章出處:【微信號:jqr_AI,微信公眾號:論智】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    卷積神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)工具與框架

    卷積神經(jīng)網(wǎng)絡(luò)因其圖像和視頻處理任務(wù)中的卓越性能而廣受歡迎。隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展,多種實(shí)現(xiàn)工具和框架應(yīng)運(yùn)而生,為研究人員和開發(fā)者提供
    的頭像 發(fā)表于 11-15 15:20 ?294次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常
    的頭像 發(fā)表于 11-15 14:53 ?604次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本原理與算法

    ),是深度學(xué)習(xí)的代表算法之一。 一、基本原理 卷積運(yùn)算 卷積運(yùn)算是卷積神經(jīng)網(wǎng)絡(luò)的核心,用于提取圖像中的局部特征。 定義卷積核:
    的頭像 發(fā)表于 11-15 14:47 ?867次閱讀

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    隨著人工智能(AI)技術(shù)的快速發(fā)展,AI可以越來越多地支持以前無法實(shí)現(xiàn)或者難以實(shí)現(xiàn)的應(yīng)用。本文基于此解釋 卷積神經(jīng)網(wǎng)絡(luò) (CNN)及其對人工智能和機(jī)器學(xué)習(xí)的意義。CNN是一種能夠從復(fù)雜數(shù)據(jù)
    發(fā)表于 10-24 13:56

    卷積神經(jīng)網(wǎng)絡(luò)通常用來處理什么

    感知、權(quán)重共享(或特征共享)以及空間或時間的下采樣(池化),來有效地從原始像素數(shù)據(jù)中自動提取高層次的特征表示。 具體來說,卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-11 14:51 ?856次閱讀

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是兩種人工智能和機(jī)器
    的頭像 發(fā)表于 07-10 15:24 ?1654次閱讀

    循環(huán)神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別

    結(jié)構(gòu)。它們處理不同類型的數(shù)據(jù)和解決不同問題時具有各自的優(yōu)勢和特點(diǎn)。本文將從多個方面比較循環(huán)神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別。 基本概念 循環(huán)
    的頭像 發(fā)表于 07-04 14:24 ?1395次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)原理

    、訓(xùn)練過程以及應(yīng)用場景。 卷積神經(jīng)網(wǎng)絡(luò)的基本原理 1.1 卷積操作 卷積神經(jīng)網(wǎng)絡(luò)的核心是卷積操作
    的頭像 發(fā)表于 07-03 10:49 ?589次閱讀

    bp神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)區(qū)別是什么

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是兩種不同類型的人工神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-03 10:12 ?1282次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)分類方法有哪些

    ,包括基本原理、常見架構(gòu)、優(yōu)化策略、應(yīng)用場景等。 1. 卷積神經(jīng)網(wǎng)絡(luò)的基本原理 卷積神經(jīng)網(wǎng)絡(luò)是一種前饋神經(jīng)網(wǎng)絡(luò),其核心思想是通過
    的頭像 發(fā)表于 07-03 09:40 ?505次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)訓(xùn)練的是什么

    、訓(xùn)練過程以及應(yīng)用場景。 1. 卷積神經(jīng)網(wǎng)絡(luò)的基本概念 1.1 卷積神經(jīng)網(wǎng)絡(luò)的定義 卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-03 09:15 ?457次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的原理與實(shí)現(xiàn)

    核心思想是通過卷積操作提取輸入數(shù)據(jù)的特征。與傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)不同,卷積神經(jīng)網(wǎng)絡(luò)具有參數(shù)共享和局部連接的特點(diǎn),這使得其
    的頭像 發(fā)表于 07-02 16:47 ?648次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu)及其功能

    。 引言 深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一個分支,它通過模擬人腦神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)和功能,實(shí)現(xiàn)對數(shù)據(jù)的自動學(xué)習(xí)和特征提取。卷積神經(jīng)網(wǎng)絡(luò)是深度學(xué)習(xí)中的一種重要模型,它通過
    的頭像 發(fā)表于 07-02 14:45 ?2444次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的原理是什么

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、語音識別、自然語言處理等領(lǐng)域。本文將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)的原
    的頭像 發(fā)表于 07-02 14:44 ?715次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)和BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Networks,簡稱BPNN)是兩種
    的頭像 發(fā)表于 07-02 14:24 ?4484次閱讀