在筆記7中,和大家一起入門了 Tensorflow 的基本語法,并舉了一些實際的例子進行了說明,終于告別了使用 numpy 手動搭建的日子。所以我們將繼續(xù)往下走,看看如何利用 Tensorflow 搭建神經(jīng)網(wǎng)絡(luò)模型。
盡管對于初學(xué)者而言使用 Tensorflow 看起來并不那么習(xí)慣,需要各種步驟,但簡單來說,Tensorflow 搭建模型實際就是兩個過程:創(chuàng)建計算圖和執(zhí)行計算圖。在 deeplearningai 課程中,NG和他的課程組給我們提供了 Signs Dataset (手勢)數(shù)據(jù)集,其中訓(xùn)練集包括1080張64x64像素的手勢圖片,并給定了 6 種標(biāo)注,測試集包括120張64x64的手勢圖片,我們需要對訓(xùn)練集構(gòu)建神經(jīng)網(wǎng)絡(luò)模型然后對測試集給出預(yù)測。
先來簡單看一下數(shù)據(jù)集:
#LoadingthedatasetX_train_orig,Y_train_orig,X_test_orig,Y_test_orig,classes=load_dataset()#FlattenthetrainingandtestimagesX_train_flatten=X_train_orig.reshape(X_train_orig.shape[0],-1).T X_test_flatten=X_test_orig.reshape(X_test_orig.shape[0],-1).T#NormalizeimagevectorsX_train=X_train_flatten/255.X_test=X_test_flatten/255.#ConverttrainingandtestlabelstoonehotmatricesY_train=convert_to_one_hot(Y_train_orig,6) Y_test=convert_to_one_hot(Y_test_orig,6)print("numberoftrainingexamples="+str(X_train.shape[1]))print("numberoftestexamples="+str(X_test.shape[1]))print("X_trainshape:"+str(X_train.shape))print("Y_trainshape:"+str(Y_train.shape))print("X_testshape:"+str(X_test.shape))print("Y_testshape:"+str(Y_test.shape))
下面就根據(jù) NG 給定的找個數(shù)據(jù)集利用 Tensorflow 搭建神經(jīng)網(wǎng)絡(luò)模型。我們選擇構(gòu)建一個包含 2 個隱層的神經(jīng)網(wǎng)絡(luò),網(wǎng)絡(luò)結(jié)構(gòu)大致如下:
LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SOFTMAX
正如我們之前利用 numpy 手動搭建一樣,搭建一個神經(jīng)網(wǎng)絡(luò)的主要步驟如下:
-定義網(wǎng)絡(luò)結(jié)構(gòu)
-初始化模型參數(shù)
-執(zhí)行前向計算/計算當(dāng)前損失/執(zhí)行反向傳播/權(quán)值更新
創(chuàng)建 placeholder
根據(jù) Tensorflow 的語法,我們首先創(chuàng)建輸入X 和輸出 Y 的占位符變量,這里需要注意 shape 參數(shù)的設(shè)置。
def create_placeholders(n_x, n_y):
X = tf.placeholder(tf.float32, shape=(n_x, None), name='X')
Y = tf.placeholder(tf.float32, shape=(n_y, None), name='Y')
return X, Y
初始化模型參數(shù)
其次就是初始化神經(jīng)網(wǎng)絡(luò)的模型參數(shù),三層網(wǎng)絡(luò)包括六個參數(shù),這里我們采用Xavier初始化方法:
def initialize_parameters():
tf.set_random_seed(1)
W1 = tf.get_variable("W1", [25, 12288], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
b1 = tf.get_variable("b1", [25, 1], initializer = tf.zeros_initializer())
W2 = tf.get_variable("W2", [12, 25], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
b2 = tf.get_variable("b2", [12, 1], initializer = tf.zeros_initializer())
W3 = tf.get_variable("W3", [6, 12], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
b3 = tf.get_variable("b3", [6,1], initializer = tf.zeros_initializer())
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2,
"W3": W3,
"b3": b3}
return parameters
執(zhí)行前向傳播
defforward_propagation(X,parameters):""" Implementstheforwardpropagationforthemodel:LINEAR->RELU->LINEAR->RELU->LINEAR->SOFTMAX """ W1=parameters['W1'] b1=parameters['b1'] W2=parameters['W2'] b2=parameters['b2'] W3=parameters['W3'] b3=parameters['b3'] Z1=tf.add(tf.matmul(W1,X),b1) A1=tf.nn.relu(Z1) Z2=tf.add(tf.matmul(W2,A1),b2) A2=tf.nn.relu(Z2) Z3=tf.add(tf.matmul(W3,A2),b3) returnZ3
計算損失函數(shù)
在 Tensorflow 中損失函數(shù)的計算要比手動搭建時方便很多,一行代碼即可搞定:
def compute_cost(Z3, Y):
logits = tf.transpose(Z3)
labels = tf.transpose(Y)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = logits, labels = labels))
return cost
代碼整合:執(zhí)行反向傳播和權(quán)值更新
跟計算損失函數(shù)類似,Tensorflow 中執(zhí)行反向傳播的梯度優(yōu)化非常簡便,兩行代碼即可搞定,定義完整的神經(jīng)網(wǎng)絡(luò)模型如下:
def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.0001,
num_epochs = 1500, minibatch_size = 32, print_cost = True):
ops.reset_default_graph()
tf.set_random_seed(1)
seed = 3
(n_x, m) = X_train.shape
n_y = Y_train.shape[0]
costs = []
# Create Placeholders of shape (n_x, n_y)
X, Y = create_placeholders(n_x, n_y) # Initialize parameters
parameters = initialize_parameters() # Forward propagation: Build the forward propagation in the tensorflow graph
Z3 = forward_propagation(X, parameters) # Cost function: Add cost function to tensorflow graph
cost = compute_cost(Z3, Y) # Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer.
optimizer = tf.train.GradientDescentOptimizer(learning_rate = learning_rate).minimize(cost) # Initialize all the variables
init = tf.global_variables_initializer() # Start the session to compute the tensorflow graph
with tf.Session() as sess: # Run the initialization
sess.run(init) # Do the training loop
for epoch in range(num_epochs):
epoch_cost = 0.
num_minibatches = int(m / minibatch_size)
seed = seed + 1
minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed)
for minibatch in minibatches: # Select a minibatch
(minibatch_X, minibatch_Y) = minibatch
_ , minibatch_cost = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y})
epoch_cost += minibatch_cost / num_minibatches # Print the cost every epoch
if print_cost == True and epoch % 100 == 0:
print ("Cost after epoch %i: %f" % (epoch, epoch_cost))
if print_cost == True and epoch % 5 == 0:
costs.append(epoch_cost) # plot the cost
plt.plot(np.squeeze(costs))
plt.ylabel('cost')
plt.xlabel('iterations (per tens)')
plt.title("Learning rate =" + str(learning_rate))
plt.show() # lets save the parameters in a variable
parameters = sess.run(parameters)
print ("Parameters have been trained!") # Calculate the correct predictions
correct_prediction = tf.equal(tf.argmax(Z3), tf.argmax(Y)) # Calculate accuracy on the test set
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print ("Train Accuracy:", accuracy.eval({X: X_train, Y: Y_train}))
print ("Test Accuracy:", accuracy.eval({X: X_test, Y: Y_test}))
return parameters
執(zhí)行模型:
parameters=model(X_train,Y_train,X_test,Y_test)
根據(jù)模型的訓(xùn)練誤差和測試誤差可以看到:模型整體效果雖然沒有達(dá)到最佳,但基本也能達(dá)到預(yù)測效果。
總結(jié)
Tensorflow 語法中兩個基本的對象類是 Tensor 和 Operator.
Tensorflow 執(zhí)行計算的基本步驟為
創(chuàng)建計算圖(張量、變量和占位符變量等)
創(chuàng)建會話
初始化會話
在計算圖中執(zhí)行會話
可以看到的是,在 Tensorflow 中編寫神經(jīng)網(wǎng)絡(luò)要比我們手動搭建要方便的多,這也正是深度學(xué)習(xí)框架存在的意義之一。功能強大的深度學(xué)習(xí)框架能夠幫助我們快速的搭建起復(fù)雜的神經(jīng)網(wǎng)絡(luò)模型,在經(jīng)歷了手動搭建神經(jīng)網(wǎng)絡(luò)的思維訓(xùn)練過程之后,這對于我們來說就不再困難了。
本文由《自興動腦人工智能》項目部 凱文 投稿。
-
神經(jīng)網(wǎng)絡(luò)
+關(guān)注
關(guān)注
42文章
4772瀏覽量
100809 -
人工智能
+關(guān)注
關(guān)注
1791文章
47314瀏覽量
238653 -
機器學(xué)習(xí)
+關(guān)注
關(guān)注
66文章
8420瀏覽量
132687 -
深度學(xué)習(xí)
+關(guān)注
關(guān)注
73文章
5503瀏覽量
121207
發(fā)布評論請先 登錄
相關(guān)推薦
評論