0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

人工智能的基礎(chǔ)概念與常見誤解

人工智能和機(jī)器人研究院 ? 來源:未知 ? 作者:胡薇 ? 2018-07-05 09:34 ? 次閱讀

1. 什么是人工智能

是對(duì)讓計(jì)算機(jī)展現(xiàn)出智慧的方法的研究。計(jì)算機(jī)在獲得正確方向后可以高效工作,在這里,正確的方向意味著最有可能實(shí)現(xiàn)目標(biāo)的方向,用術(shù)語來說就是最大化效果預(yù)期。人工智能需要處理的任務(wù)包括學(xué)習(xí)、推理、規(guī)劃、感知、語言識(shí)別和機(jī)器人控制等。

常見誤解

「它是一個(gè)特定技術(shù)」。例如在二十世紀(jì)八十年代到九十年代,人們經(jīng)常會(huì)看到新聞報(bào)道中人工智能與基于規(guī)則的專家系統(tǒng)被混為一談?,F(xiàn)在,人工智能經(jīng)常會(huì)與多層卷積神經(jīng)網(wǎng)絡(luò)混淆。這有點(diǎn)像把物理和蒸汽機(jī)的概念搞混了。人工智能探究如何在機(jī)器中創(chuàng)造智能意識(shí),它不是在研究中產(chǎn)生的任何一個(gè)特定的技術(shù)。

「這是一個(gè)特定類別的技術(shù)方法」。例如,經(jīng)常有人用符號(hào)化或邏輯化的方法將人工智能與「其他方法」相互比較,如神經(jīng)網(wǎng)絡(luò)和遺傳編程。人工智能不是一種方法,它是一個(gè)課題。所有這些方法都是在對(duì)人工智能進(jìn)行研究的產(chǎn)物。

「這是一小群研究者的方向」。這個(gè)誤解與前幾個(gè)錯(cuò)誤有關(guān)。一些作者使用「計(jì)算智能」指代幾個(gè)特定的研究者群體,如研究神經(jīng)網(wǎng)絡(luò),模糊邏輯和遺傳算法的研究者。這是非常片面的,因?yàn)檫@種分類讓人工智能的研究陷入孤立的境地,讓研究成果不能得到廣泛的討論。

「人工智能只是算法」。嚴(yán)格說來不算是誤解,人工智能的確包含算法(也可粗略定義為程序),它也包含計(jì)算機(jī)中其他的應(yīng)用。當(dāng)然,人工智能系統(tǒng)需要處理的任務(wù)相比傳統(tǒng)算法任務(wù)(比如排序、算平方根)復(fù)雜得多。

2. 人工智能將如何造福人類?

文明的一切都是人類智慧的產(chǎn)物。在未來,人工智能會(huì)將會(huì)擴(kuò)展人類的智力,這就像起重機(jī)讓我們能夠舉起幾百噸的重物,飛機(jī)讓我們很快飛到地球的另一端,電話讓我們?cè)谌魏谓锹鋵?shí)時(shí)交流一樣。如果人工智能被適當(dāng)?shù)卦O(shè)計(jì),它可以創(chuàng)造更多價(jià)值。

常見誤解

「人工智能沒有人性」。在很多反烏托邦幻想中,人工智能會(huì)被用來控制大部分人類,無論是通過監(jiān)視,機(jī)器人執(zhí)法,法律判決甚至控制經(jīng)濟(jì)。這都是未來可能出現(xiàn)的情況,但首先它不會(huì)被大多數(shù)人接受。人們往往忽視人工智能可以讓人類接觸更多的知識(shí),消除人與人之間的語言隔閡,解決無意義和重復(fù)的繁重任務(wù)。

「人工智能將造成不平等」。毫無疑問,自動(dòng)化程度的提升將使財(cái)富集中到越來越少的人手里。但是現(xiàn)在,如何使用人工智能的選擇權(quán)在我們手里。例如,人工智能可以促進(jìn)協(xié)作,讓生產(chǎn)者與客戶有更多交流,它可以讓個(gè)人和小組織在全球化的經(jīng)濟(jì)環(huán)境下獨(dú)立運(yùn)作,擺脫對(duì)于特定大公司訂單的依賴。

3. 什么是機(jī)器學(xué)習(xí)?

它是人工智能的一個(gè)分支,探索如何讓計(jì)算機(jī)通過經(jīng)驗(yàn)學(xué)習(xí)提高性能。

常見誤解

「機(jī)器學(xué)習(xí)是一個(gè)新的領(lǐng)域,它已經(jīng)代替了人工智能的地位」。這種誤解是最近機(jī)器學(xué)習(xí)熱潮產(chǎn)生的副作用,大量學(xué)生在之前沒有接觸過人工智能的情況下學(xué)習(xí)了機(jī)器學(xué)習(xí)課程。機(jī)器學(xué)習(xí)一直是人工智能的核心話題:阿蘭·圖靈在二十世紀(jì)五十年代的論文中已經(jīng)認(rèn)為學(xué)習(xí)是通向人工智能最可行的途徑。這一觀點(diǎn)似乎是正確的,人工智能最突出的早期成果,Arthur Samuel 的跳棋程序就是使用機(jī)器學(xué)習(xí)構(gòu)建的。

「機(jī)器不能學(xué)習(xí),它們只能做程序員告訴它的事情」。這顯然是錯(cuò)的,程序員能夠告訴機(jī)器如何學(xué)習(xí)。Samuel 是一個(gè)優(yōu)秀的跳棋玩家,但他的程序很快就通過學(xué)習(xí)超過了他。近年來,機(jī)器學(xué)習(xí)的很多應(yīng)用都需要大量數(shù)據(jù)來進(jìn)行訓(xùn)練。

4. 什么是神經(jīng)網(wǎng)絡(luò)?

神經(jīng)網(wǎng)絡(luò)是受生物神經(jīng)元啟發(fā)構(gòu)建的計(jì)算系統(tǒng)。神經(jīng)網(wǎng)絡(luò)由許多獨(dú)立的單元組成,每個(gè)單元接收來自上一層單元的輸入,并將輸出發(fā)送到下個(gè)單元(「單元」不一定是單獨(dú)的物理存在;它們可以被認(rèn)為是計(jì)算機(jī)程序的不同組成部分)。單元的輸出通常通過取輸入的加權(quán)和并通過某種簡單的非線性轉(zhuǎn)型,神經(jīng)網(wǎng)絡(luò)的關(guān)鍵特性是基于經(jīng)驗(yàn)修改與單元之間的鏈接比較相關(guān)權(quán)重。

常見誤解

「神經(jīng)網(wǎng)絡(luò)是一種新型計(jì)算機(jī)」。在實(shí)踐中,幾乎所有的神經(jīng)網(wǎng)絡(luò)都運(yùn)行在普通的計(jì)算機(jī)架構(gòu)上。一些公司正在設(shè)計(jì)專用機(jī)器,它們有時(shí)會(huì)被稱作是「神經(jīng)計(jì)算機(jī)」,可以有效地運(yùn)行神經(jīng)網(wǎng)絡(luò),但目前為止,這類機(jī)器無法提供足夠的優(yōu)勢(shì),值得花費(fèi)大量時(shí)間去開發(fā)。

「神經(jīng)網(wǎng)絡(luò)像大腦一樣工作」。事實(shí)上,生物神經(jīng)元的工作方式比神經(jīng)網(wǎng)絡(luò)復(fù)雜得多,自然界存在很多種不同的神經(jīng)元,神經(jīng)元的連接可以隨時(shí)間進(jìn)行改變,大腦中也存在其他的機(jī)制,可以影響動(dòng)物的行為。

5. 什么是深度學(xué)習(xí)

深度學(xué)習(xí)是一種特定形式的機(jī)器學(xué)習(xí),訓(xùn)練多層神經(jīng)網(wǎng)絡(luò)。深度學(xué)習(xí)近年來非常流行,引領(lǐng)了圖像識(shí)別和語音識(shí)別等領(lǐng)域的突破性進(jìn)展。

常見誤解

「深度學(xué)習(xí)是一個(gè)新領(lǐng)域,已經(jīng)代替了機(jī)器學(xué)習(xí)的地位」。事實(shí)上,深度學(xué)習(xí)在神經(jīng)網(wǎng)絡(luò)研究者中間已經(jīng)被討論了超過二十年。最近深度學(xué)習(xí)的發(fā)展是由相對(duì)較小的算法改進(jìn)以及大數(shù)據(jù)集模型和計(jì)算機(jī)硬件發(fā)展驅(qū)動(dòng)的。

6. 什么是強(qiáng)人工智能和弱人工智能?

「強(qiáng)人工智能」和「弱人工智能」概念是由 John Searle 最先提出的,是他對(duì)人工智能研究方向的兩個(gè)假設(shè)。弱人工智能假設(shè)機(jī)器可以通過編程展現(xiàn)出人類智能的水平。強(qiáng)人工智能則假設(shè)機(jī)器出現(xiàn)意識(shí),或者說機(jī)器思考和認(rèn)知的方式可以用以前形容人類的方式來形容。

常見誤解

「強(qiáng)人工智能是人類智力級(jí)別通用人工智能研究的方向」。這個(gè)解釋具有代表性,但這不是強(qiáng)/弱人工智能概念被提出時(shí)的本來意義。同樣,「弱人工智能」被認(rèn)為是針對(duì)特定領(lǐng)域,執(zhí)行特定任務(wù)的人工智能研究,如語音識(shí)別和推薦系統(tǒng)(也稱工具 AI)。雖然沒有人具有最終解釋權(quán),但這種語義的轉(zhuǎn)換可能會(huì)造成不必要的混亂。

7. 什么是 AGI,ASI 和超級(jí)智能?

AGI 代表的是通用人工智能,這個(gè)術(shù)語意在強(qiáng)調(diào)建立通用目的智能系統(tǒng)的雄心目標(biāo),其應(yīng)用的寬度至少能覆蓋人類能解決任務(wù)。ASI 指的是人工超級(jí)智能:遠(yuǎn)遠(yuǎn)超越人類智能的人工智能。更具體地說,一個(gè)超級(jí)智能系統(tǒng)高質(zhì)量決策能力要比人類強(qiáng),它能考慮更多的信息和進(jìn)一步深入未來。

常見誤解

「主流的人工智能研究者并不關(guān)心通用人工智能?!瓜裾Z音識(shí)別這種細(xì)分領(lǐng)域的某些研究者主要關(guān)心的是其所在領(lǐng)域的具體目標(biāo),其他一些研究者比較關(guān)心找到現(xiàn)有技術(shù)的商業(yè)應(yīng)用。在我的影像里,如學(xué)習(xí)、推理、和計(jì)劃等細(xì)分領(lǐng)域的大多數(shù)人工智能研究者認(rèn)為他們目前的研究工作有助于解決通用人工智能的子問題。

「人類的智能是一種通用智能」。這種觀點(diǎn)常被認(rèn)為是顯而易見,不值得討論,但它卻幾乎回避了關(guān)于 AGI 的所有討論。持有這種觀點(diǎn)的人通常會(huì)認(rèn)為通用智能就是人類能做到所有任務(wù)的能力。然而當(dāng)然不存在人工不能做的人類工作,所以人類能做已經(jīng)存在的人類工作也沒什么好驚訝的。難的是怎么定義那種完全獨(dú)立于以人類為中心的價(jià)值觀和偏見的寬度。所以我們只能說人類智能是某種程度上的通用智能,人類能做人類能做的所有事情。另一種更有意義的說法是人類能做很多事情,但目前為止這個(gè)問題 還沒有確切的答案。

8. 什么是摩爾定律?

「摩爾定律」指的是多個(gè)相關(guān)的觀察和預(yù)測(cè)能影響電路性能和密度?,F(xiàn)代理解的「摩爾定律」是每一秒的操作次數(shù)以及每一美元所能買到的電腦性能,將每隔 N 個(gè)月翻一倍以上,N 大約是 18,這一表述有些背離「摩爾定律」最初的定義。

常見誤解

「摩爾定律是物理定律」。事實(shí)上,摩爾定律只是一種關(guān)于技術(shù)進(jìn)步的經(jīng)驗(yàn)觀察。沒有什么規(guī)定摩爾定律會(huì)持續(xù)下去,當(dāng)然它也不可能無限持續(xù)下去。時(shí)鐘速度的增加已經(jīng)達(dá)到了頂峰,目前價(jià)格/性能上的提升也來自于單個(gè)芯片上內(nèi)核(處理單元)數(shù)量的上升。

9. 摩爾定律能讓我們預(yù)測(cè)出超級(jí)人工智能的到來嗎?

不能。人工智能系統(tǒng)不能做的事情很多,比如理解復(fù)雜的自然語言文本;加速意味著在很多情況下得到的錯(cuò)誤答案的速度也越快。超級(jí)智能需要在主要的概念突破。這些很難預(yù)測(cè),即便我們有了速度更快的機(jī)器也沒啥用。

常見誤解

「讓機(jī)器更強(qiáng)大的意思是提升它們的智能」。這是人工智能的未來的討論中的一個(gè)常見主題,這個(gè)主題似乎建立在一個(gè)混亂的概念上,我們使用「強(qiáng)大」來描述人類智力,但是在描述計(jì)算機(jī)時(shí)用的「強(qiáng)大」的含義更加簡單,就是每秒操作的次數(shù)。

10. 什么是機(jī)器 IQ?

沒有機(jī)器 IQ 這種說法。某種程度上一個(gè)人在多個(gè)任務(wù)上的多種智慧能力是高度相關(guān)的,人類可以說有 IQ,但是研究者們對(duì)任意單一維度上的 IQ 定義有爭議。另一方面,任意給定的機(jī)器的各種能力之間都是不相關(guān)的:一臺(tái)機(jī)器能打敗世界象棋冠軍,并不意味著它能玩的好別的棋類游戲。能贏得猜謎比賽的機(jī)器也無法回答「你叫什么名字?」這樣簡單的問題。

常見誤解

「根據(jù)摩爾定律,機(jī)器 IQ 會(huì)不斷上升」。既然根本不存在什么機(jī)器 IQ,它也就不可能增長;摩爾定律描述的僅僅是原始的計(jì)算吞吐量,與是有存在執(zhí)行任意特定任務(wù)的算法沒有關(guān)系。

11. 什么是智能爆炸?

「智能爆炸」這個(gè)術(shù)語是 I.J.Good 于 1965 年在其文章「Speculations Concerning the First Ultraintelligent Machine」中創(chuàng)造的。它指的是足夠智能的機(jī)器能重復(fù)設(shè)計(jì)它自己的硬件和軟件來創(chuàng)造出一個(gè)更加智能的機(jī)器的可能性,這個(gè)過程會(huì)一直重復(fù)下去,直到「人的智能被遠(yuǎn)遠(yuǎn)的甩在后面」。

常見誤解

「一旦機(jī)器達(dá)到人類水平的智能,智能爆炸就在所難免」。反過來:雖然邏輯上是可行的,但是讓 N 代的機(jī)器設(shè)計(jì)出 N+1 代的機(jī)器太難了。同樣的道理,我們?cè)斓臋C(jī)器可能在一些重要的方面成為超過人類,但是在其他方面可能會(huì)落后于人類。在解決貧困、治療癌癥等重要問題上,機(jī)器的能力肯定會(huì)比人類強(qiáng),而且不需要在人工智能研究上有大突破就能實(shí)現(xiàn)。

12. 人工智能系統(tǒng)何時(shí)才能超過人類智力?

這是一個(gè)難以回答的問題。因?yàn)槭紫人俣ㄟ@件事必然發(fā)生,事實(shí)上它具有選擇性:假如人類選擇不去發(fā)展這樣的人工智能,這件事就不太可能發(fā)生。第二,「超過」假定智力是線性的,而這不是真實(shí)情況,機(jī)器在某些任務(wù)的處理上比人類更快,而在更多放面則很糟糕。第三,如果我們認(rèn)為「通用的」智能是有用的,我們就可以開發(fā)這樣的機(jī)器,但目前我們不知道它是不是有用的。寬泛地說,實(shí)現(xiàn)這樣的人工智能還需要很多技術(shù)突破,而這些都是難以預(yù)測(cè)的,大多數(shù)科學(xué)家認(rèn)為這件事會(huì)在本世紀(jì)內(nèi)發(fā)生。

常見誤解

「它永遠(yuǎn)不會(huì)發(fā)生」。對(duì)技術(shù)突破進(jìn)行預(yù)測(cè)是很難的。1933 年 9 月 11 日,Rutherford,也許是那個(gè)時(shí)代最著名的核物理學(xué)家,在英國科學(xué)促進(jìn)年會(huì)上向人們宣布:「任何想從原子變形過程中獲取能源的努力都是徒勞的?!梗ㄋ诟鞣N場合發(fā)表過許多類似言論,大意都是表達(dá)使用原子能是不可能的)結(jié)果第二天早上,Leo Szilard 發(fā)現(xiàn)了中子誘導(dǎo)鏈?zhǔn)椒磻?yīng),并很快對(duì)核反應(yīng)堆申請(qǐng)了專利。

13. 人工智能系統(tǒng)現(xiàn)在能做什么?

人工智能的應(yīng)用范圍已經(jīng)比幾年前大很多了。從圍棋、紙牌、簡單的問答、從新聞中抓取信息、組合復(fù)雜的對(duì)象、翻譯文字、識(shí)別語音、識(shí)別圖像中的概念、到在「普通」交通條件下駕駛汽車,不一而足。在很多情況下,人工智能在你不知道的情況下發(fā)揮著作用,如檢測(cè)信用卡欺詐,評(píng)估信用,甚至在復(fù)雜的電子商務(wù)拍賣中投標(biāo)。搜索引擎中的部分功能也是人工智能的簡單形式。

常見誤解

「像『下棋』這樣的任務(wù)對(duì)機(jī)器來說和對(duì)人類來說是一樣的」。這是一個(gè)錯(cuò)誤的假設(shè):機(jī)器「掌握」一項(xiàng)技能的程度超過了人類。人類通過閱讀和理解學(xué)會(huì)游戲規(guī)則,通過觀看棋局和下棋來提高水平。但典型的下棋程序沒有這樣的能力——將下棋規(guī)則編程,讓機(jī)器算法直接給出所有可能的下一步。機(jī)器無法「知道」人類所謂的規(guī)則(目前新興的強(qiáng)化學(xué)習(xí)方式改變了這一點(diǎn))。DeepMind 的人工智能系統(tǒng)可以學(xué)會(huì)很多種游戲,它不知道自己在學(xué)習(xí)什么,看起來也不太可能學(xué)會(huì)這些游戲的規(guī)則。

「機(jī)器執(zhí)行任務(wù)的方式和人類一樣」。我們不知道人類思考問題的機(jī)制,但這種機(jī)制與人工智能系統(tǒng)處理任務(wù)的方式看起來大不相同。例如,下棋程序通過考慮當(dāng)前棋局狀態(tài)和下一步可能的序列比較結(jié)果考慮下一步,而人類經(jīng)常是先發(fā)現(xiàn)可能獲得的優(yōu)勢(shì),然后繼續(xù)考慮如何找到一系列方式來實(shí)現(xiàn)它。

「如果機(jī)器可以做到任務(wù) X,那么它就可以做類似的所有任務(wù)了」。參見有關(guān)機(jī)器 IQ 的問題,機(jī)器目前還不能形成通用化的智能,它們的功能通常局限于某一領(lǐng)域。

14. 人工智能會(huì)對(duì)社會(huì)造成什么樣的影響?

在可預(yù)見的未來中,人工智能的各種應(yīng)用將會(huì)改變社會(huì)形式。自動(dòng)駕駛汽車現(xiàn)在已經(jīng)在路上進(jìn)行測(cè)試,至少有一家公司承諾將在 2016 年內(nèi)交貨(考慮到目前遇到的困難,其他公司的態(tài)度則更為謹(jǐn)慎)隨著計(jì)算機(jī)視覺機(jī)械腿設(shè)計(jì)的進(jìn)化,機(jī)器人非結(jié)構(gòu)化環(huán)境正在變得更為實(shí)用——可能的應(yīng)用范圍包括農(nóng)業(yè)和服務(wù)領(lǐng)域(特別是對(duì)于老人和殘疾人而言)。

最后,隨著機(jī)器能夠理解人類語言,搜索引擎和手機(jī)上的「個(gè)人助理」將會(huì)改變現(xiàn)有的人機(jī)交互方式,它們可以回答問題,整合信息,提供建議,并促進(jìn)交流。人工智能還可能會(huì)對(duì)科學(xué)領(lǐng)域(如系統(tǒng)生物學(xué))產(chǎn)生重大影響,這些學(xué)科中信息的復(fù)雜性和數(shù)量一直令人望而卻步。

常見誤解

「機(jī)器人正在接管一切」。參見《人工智能的智力何時(shí)才能超過人類》,人工智能中的絕大多數(shù)進(jìn)步是基于任務(wù)處理的改進(jìn)。當(dāng)然,從長遠(yuǎn)來看,維持人類的控制很重要。

15. 人工智能與機(jī)器人的發(fā)展會(huì)取代大量人類的工作嗎?

一些研究(比如 Frey 和 Osborne 在 2013 年的調(diào)查)表明在未來美國將近一半的工作在自動(dòng)化面前會(huì)變得很脆弱。其他作者,比如 Bryjolfsson 和麥肯錫在 2011 年的工作表明這一變化已經(jīng)開始了:2008 年經(jīng)濟(jì)蕭條之后就業(yè)率的緩慢恢復(fù),生產(chǎn)率與停滯不前的工資之間的差異化增加了自動(dòng)化的進(jìn)程。隨著人工智能與機(jī)器人的持續(xù)發(fā)展,更多的工作將受到影響看起來不可避免。大量的失業(yè)并不是必然的,但這可能會(huì)造成經(jīng)濟(jì)結(jié)構(gòu)的巨大轉(zhuǎn)變,需要想出組織工作與酬勞的新思路。

常見誤解

「機(jī)器人的工作越多意味著人類工作越少」。工作不是零和(zero-sum)的:由一對(duì)機(jī)器人協(xié)助的工人可能更具工作效率,也因此需要更多這樣的工人。沒有機(jī)器人的幫助,一些領(lǐng)域的工作由人類完成可能不具備經(jīng)濟(jì)效益,或者一些工作單獨(dú)的人或機(jī)器無法完成。同樣,就像涂刷匠的刷子與滾筒:如果使用針尖大小的刷子一點(diǎn)一點(diǎn)的涂刷,我們就雇不起涂刷匠來涂刷一整間屋子了。

16. 什么是無人機(jī),自動(dòng)武器,殺人機(jī)器人?

無人機(jī)是由人遠(yuǎn)程控制的飛行器;有些無人機(jī)可以攜帶武器(通常是導(dǎo)彈),這些武器的釋放也是由人遠(yuǎn)程控制的。自動(dòng)武器是可以自主選擇和吸引攻擊對(duì)象的裝置。目前這類裝置包括韓國非軍事化區(qū)里的自動(dòng)瞄準(zhǔn)機(jī)槍和一些不同類型的船載反導(dǎo)彈系統(tǒng)。目前在技術(shù)上可以實(shí)現(xiàn)將無人飛機(jī)的控制員替換成完全自動(dòng)的計(jì)算機(jī)系統(tǒng),以達(dá)到致命自主武器系統(tǒng)的要求。致命自主武器系統(tǒng)是日內(nèi)瓦會(huì)議裁減軍備議題的討論主題。殺人機(jī)器人是對(duì)具有輪動(dòng)能力和行走能力的武器的統(tǒng)稱,包括:船,飛行器以及人工智能的昆蟲飛行器。

常見誤解

「完全自主武器的出現(xiàn)還需要 20-30 年的研發(fā)」。得出這個(gè)預(yù)估時(shí)間的依據(jù)無從知曉,但是 20-30 年的時(shí)間跨度有點(diǎn)夸大所需的研發(fā)時(shí)間長度。目前自主武器的研發(fā)已經(jīng)在全世界內(nèi)大范圍的開展,英國國防部已經(jīng)宣稱,對(duì)于一些簡單對(duì)抗如海上戰(zhàn)役,完全自動(dòng)武器現(xiàn)在已經(jīng)可以實(shí)施。

17. 我們需要擔(dān)心殺人機(jī)器人胡作非為或接管世界嗎?

如果部署了自動(dòng)化武器,它們也會(huì)有士兵那樣的難題:有時(shí)難以分別朋友與敵人、平民與敵軍。而且可能會(huì)有軍事事故造成平民傷亡,或者機(jī)器人受到干擾與網(wǎng)絡(luò)攻擊。也因?yàn)楹笳?,一些軍事專家預(yù)測(cè)自動(dòng)化武器可能需要封閉操作系統(tǒng),沒有電子通訊。如果系統(tǒng)行為不準(zhǔn)確的話,這樣做能防止有人凌駕于自動(dòng)化控制器之上。但在可預(yù)見的未來,自動(dòng)化武器可能會(huì)變得很常見,在有限的任務(wù)中被使用。但在全局規(guī)模上,它們很難自己編程出計(jì)劃。

常見誤解

我們可以按下「關(guān)閉」按鈕。「關(guān)閉」按鈕會(huì)使得自動(dòng)化武器在網(wǎng)絡(luò)攻擊面前變得很脆弱。這樣的通信頻道在戰(zhàn)爭中也是如此。此外,通用智能系統(tǒng)會(huì)被賦予一項(xiàng)任務(wù),防止自己的「關(guān)閉」按鈕被按下。

18. 人工智能的「存在風(fēng)險(xiǎn)」是什么?它是真的嗎?

關(guān)于人工智能風(fēng)險(xiǎn)的早期警告曾是非常模糊的。I.J.Good 對(duì)于人工智能的可行性提出了自己的觀點(diǎn):「只要機(jī)器能夠聰明到告訴我們?nèi)绾伪3謱?duì)它的控制?!谷藗兤毡橐庾R(shí)到,在我們的星球上如果存在一個(gè)超級(jí)智能實(shí)體,可能會(huì)出現(xiàn)恐慌;但另一方面,我們也都清楚更加聰明的機(jī)器會(huì)更加有用,而且更加聰明不一定意味著邪惡。事實(shí)上,論據(jù)很簡單。

假設(shè)超智能系統(tǒng)被設(shè)計(jì)成實(shí)現(xiàn)由人類設(shè)計(jì)者指定的某一目標(biāo),并假設(shè)這一目標(biāo)不完全符合人類的價(jià)值觀,人工智能形成的價(jià)值觀(如果有)是非常難以確定的。

任何充分有能力的智能系統(tǒng)將傾向于確保其自身的持續(xù)存在并且獲取物理和計(jì)算資源——不是為了他們自己的目的,而是為了更好地執(zhí)行人類為它設(shè)定的任務(wù)。

現(xiàn)在我們問題的本質(zhì)是你所要求的不是你所得到的。Norbert Wiener 是自動(dòng)化和控制理論的先驅(qū)者,他在 1960 年寫道:「如果我們使用——為達(dá)到某些目的——一些機(jī)器來代替我們做某些工作,我們最好能夠清楚它們的確在按我們的想法工作?!筂arvin Minsky 舉了讓機(jī)器計(jì)算 pi 這個(gè)例子,Nick Bostrom 則舉了回形針的例子。對(duì)于人類而言,這些目標(biāo)是根據(jù)人類視角提出的,這意味著計(jì)算機(jī)服務(wù)器或回形針覆蓋整個(gè)銀河系不是好的解決方案。一個(gè)具有能力的決策者——特別是能夠通過互聯(lián)網(wǎng)連接全球每塊屏幕的智能——可能會(huì)對(duì)人類產(chǎn)生不可逆轉(zhuǎn)的影響。幸運(yùn)的是,這個(gè)問題相對(duì)比較明確,所以現(xiàn)在就可以開始解決。

常見誤解

超智能機(jī)器將變得自發(fā)地產(chǎn)生意識(shí)、本能地變得邪惡或傷害人類??苹眯≌f作者通常假定上面這些一個(gè)或多個(gè)問題來設(shè)定機(jī)器與人類的對(duì)立面,這樣的假設(shè)完全是不必要的。

我們?nèi)祟惏l(fā)展人工智能系統(tǒng),那么為什么我們要制造出來毀滅自己呢?有一些人類工智能「捍衛(wèi)者」常常爭辯道因?yàn)槿祟惤⒘巳斯ぶ悄芟到y(tǒng),那么完全沒有理由來支持這樣的假設(shè),即我們是在制造一個(gè)旨在毀滅人類的機(jī)器。這個(gè)沒有抓住辯論要點(diǎn),即哪個(gè)是邪惡意圖,在設(shè)計(jì)者這一邊還是代中間者這一邊,這是存在存亡威脅的先決條件,這個(gè)問題也就是錯(cuò)誤設(shè)定了對(duì)象。這將永遠(yuǎn)不會(huì)發(fā)生。

19. 為什么人們會(huì)突然對(duì)人工智能如此擔(dān)心?

從 2014 年開始,媒體就定期地報(bào)道如 Stephen Hawking、 Elon Musk、 Steve Wozniak and Bill Gates 那樣名人的對(duì)人工智能的擔(dān)憂。這些報(bào)道通常引用那些最絕望話語并省略實(shí)質(zhì)擔(dān)心的深層原因,通常就像「什么是人工智能現(xiàn)存風(fēng)險(xiǎn)」那樣的問題。在許多情況下,擔(dān)憂就是在閱讀 Nick Bostrom 的書籍超智能(*Superintelligence*)之后產(chǎn)生的。另外一些當(dāng)下關(guān)心這個(gè)問題的潮流也是因?yàn)槿斯ぶ悄艿陌l(fā)展正在加速。這種加速可能是很多因素的集合,包括逐步完善的理論基礎(chǔ),它連接了很多的人工智能領(lǐng)域成為一個(gè)統(tǒng)一的整體。還有學(xué)術(shù)實(shí)驗(yàn)室能產(chǎn)出達(dá)到能夠應(yīng)用并解決現(xiàn)實(shí)世界的實(shí)際問題在人工智能方向商業(yè)投資的急劇增加也作為。

常見誤解

如果人們是擔(dān)心超人工智能就在某個(gè)角落,那么基本上人工智能研究者很少認(rèn)為超智能機(jī)器就在我們周圍某個(gè)角落。這并不暗示著我們應(yīng)該等著,直到這個(gè)問題變得很嚴(yán)重!如果我們發(fā)現(xiàn)直徑 10 英里的小行星將于 50 年后撞向地球,我們難道能夠不消滅它并聲稱「我們會(huì)在五年的時(shí)候去關(guān)注它」?

20. 人工智能在接下來的幾十年里會(huì)取得怎樣的進(jìn)步?

這個(gè)領(lǐng)域好像并不要求人類級(jí)的通用人工智能能夠達(dá)到成熟,而制造一些可信賴的高質(zhì)量的產(chǎn)品也許在下個(gè)十年內(nèi)有能實(shí)現(xiàn)。這就包括了語音識(shí)別、從簡單的實(shí)際材料中提煉信息、對(duì)物體和行為的視覺識(shí)別、日常事物的機(jī)器人操作和自動(dòng)駕駛。努力提升質(zhì)量和擴(kuò)展文本與視頻的理解系統(tǒng)能制造更強(qiáng)勁的家用機(jī)器人,產(chǎn)生更為廣泛有用的機(jī)器人,它能展示常識(shí)知識(shí)系統(tǒng),一起學(xué)習(xí)并在遍歷所有形式后表現(xiàn)得更好。還存在獲取和組織科學(xué)知識(shí)的專業(yè)系統(tǒng),它能管理復(fù)雜假說并可能對(duì)分子生物學(xué)、系統(tǒng)生物學(xué)和制藥方面產(chǎn)生重大的影響。我們也許也會(huì)看到它在社會(huì)科學(xué)和政策制定有相同的影響,特別是在給它關(guān)于人類活動(dòng)巨量的機(jī)器可讀性數(shù)據(jù)之后,并如果機(jī)器是很可靠有用的,那么人們同樣也需要機(jī)器去理解人類價(jià)值。公共和私人知識(shí)源,也就是知道和推理真實(shí)世界的系統(tǒng),它不僅僅是數(shù)據(jù)的倉庫,它會(huì)成為社會(huì)的組成部分。

21. 什么是「價(jià)值定位(value alignment)」?它有什么要緊的?

價(jià)值定位(Value alignment)就是校準(zhǔn)人機(jī)關(guān)系具體目標(biāo)價(jià)值的任務(wù),所以機(jī)器最優(yōu)選擇大概來說就是無論做什么都是最大化人類的幸福感。如果沒有價(jià)值定位,那么超脫人類掌控的超智能機(jī)器的出現(xiàn)就是不可忽視的風(fēng)險(xiǎn)。

常見誤解

「我們所有需要的就是阿西莫夫定律(Asimov's laws)」。阿西莫夫定律本質(zhì)上就是一些條款:它們給人類創(chuàng)造出各種故事情節(jié)提供靈感,但是基本對(duì)約束機(jī)器人沒有什么有用的信息,因?yàn)樗鼪]有更多具體的細(xì)節(jié)。它們的基本結(jié)構(gòu)為一組規(guī)則而不是效用函數(shù),這是很有問題的:它們的詞典式結(jié)構(gòu)(例如任何對(duì)人類的傷害是比所有機(jī)器人的損害還要嚴(yán)格重要地多)意味著沒有給不確定性或權(quán)衡留下空間。也許機(jī)器人只為了拍死一只在以后可能叮咬人類的蚊子會(huì)跳出懸崖毀滅了自己。另外,它也許會(huì)鎖上人類汽車的門,因?yàn)樽嚂?huì)提高人類受傷的可能性。最后,基于最大化人類效用的方法,對(duì)于第三條法則是沒有必要的(機(jī)器人自我保護(hù)),因?yàn)闄C(jī)器人不保證自身的存在是不能為人類效用做出貢獻(xiàn)的,還會(huì)令其擁有者十分失望。

22. 對(duì)于存在主義風(fēng)險(xiǎn)(existential risk),人工智能社區(qū)做了什么?

許多關(guān)于人工智能的存在主義風(fēng)險(xiǎn)的討論都是處于人工智能社區(qū)主流之外的,它們是從人工智能研究最初到最主要的反動(dòng)力。在 2008 年的時(shí)候,AAAI(美國人工智能學(xué)會(huì))就舉行了個(gè)座談會(huì)來討論這個(gè)問題。座談會(huì)中期報(bào)告就指出了存在的一些長期問題,并降低了一些人工智能對(duì)人類社會(huì)風(fēng)險(xiǎn)的想法。最近,在 2015 年 1 月 Puerto Rico 由 Future of Life Institute 主辦的會(huì)議上,參會(huì)者和隨后參加者共六千多人共同簽署了一份公開信,強(qiáng)烈呼吁應(yīng)該有關(guān)注這些風(fēng)險(xiǎn)問題的研究和提出一個(gè)更加詳細(xì)的研究議程。隨后,Elon Musk 為支持這方面的研究而拿出了 1000 萬美元。另外,Eric Horvitz 已經(jīng)建立個(gè)期望追蹤風(fēng)險(xiǎn)問題并在需要時(shí)給出政策建議的長期研究。最后還有 AAAI 也已經(jīng)建立了一個(gè)關(guān)注人工智能影響和倫理問題(Impact of AI and Ethical Issues)的常務(wù)委員會(huì)。

常見誤解

「規(guī)約或控制研究是不可能的」。有些人辯稱沒辦法避免消極后果,因?yàn)檠芯窟M(jìn)展是無法停止和規(guī)約的。實(shí)際上這種聲稱本身就是錯(cuò)誤的:在 1975 年關(guān)于基因重組的阿西洛馬會(huì)議(Asilomar Conference)就成功地發(fā)起自愿活動(dòng)中止了設(shè)計(jì)制造人類遺傳性基因修飾,并一直持續(xù)成為了國際準(zhǔn)則。另外,如果實(shí)現(xiàn)人類級(jí)的人工智能研究未加抑制(這個(gè)是很可能出現(xiàn)的),那么在方法上開始謹(jǐn)慎地研究確保人工智能系統(tǒng)在我們掌控下是十分重要的。

23. 我能做點(diǎn)什么?

如果你是一個(gè)人工智能研究者(或?qū)@方面感興趣的經(jīng)濟(jì)學(xué)家、倫理學(xué)家、政治學(xué)者、未來主義者和律師),從 2015 年波多黎各會(huì)議(Puerto Rico conference)在研究議程中就已經(jīng)興起了一個(gè)主題,即在主要的人工智能會(huì)議上會(huì)舉行相應(yīng)的研討會(huì),比如說 AAAI Fall 和 Spring Symposium series 等等。FHI、CSER、 FLI 和 MIRI 網(wǎng)站都有更多的信息。

常見誤解

「完成這些是沒什么困難的」。我們不管做什么都無法改變未來,這些事都終將發(fā)生。也沒有什么能離真相更近一點(diǎn)的,我們不能預(yù)測(cè)未來,因?yàn)槲覀冋趧?chuàng)造未來,這是我們集體的選擇。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

原文標(biāo)題:伯克利教授:Stuart Russell——人工智能基礎(chǔ)概念與34個(gè)誤區(qū)

文章出處:【微信號(hào):gh_ecbcc3b6eabf,微信公眾號(hào):人工智能和機(jī)器人研究院】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    【大家】醍醐灌頂?。?b class='flag-5'>人工智能九問九答

    大家:醍醐灌頂??!人工智能九問九答中國自動(dòng)化學(xué)會(huì)副理亊長兼秘書長王飛躍對(duì)《三聯(lián)生活周刊》關(guān)于人工智能九個(gè)問題的回答。特別對(duì)圖靈測(cè)試、奇點(diǎn)理論,公眾對(duì)人工智能概念及技術(shù)的一些
    發(fā)表于 03-21 15:04

    人工智能是什么?

    機(jī)器人就是工廠中常見的類似機(jī)械臂,能夠代替工人更高效的完成簡單且重復(fù)率高的流水線上的工作。 說到第二類服務(wù)機(jī)器人時(shí),先給大家科普一下,當(dāng)前人工智能大致分為三個(gè)階段:弱人工智能階段、強(qiáng)人工智能
    發(fā)表于 09-16 15:40

    人工智能的前世今生 引爆人工智能大時(shí)代

    迅速拜訪了應(yīng)用數(shù)學(xué)家、物理學(xué)家約翰·馮·諾依曼,后者在現(xiàn)代計(jì)算機(jī)基本設(shè)計(jì)的定義中起到了關(guān)鍵作用。當(dāng)時(shí),“人工智能”的概念已經(jīng)在約翰·麥卡錫的頭腦中發(fā)酵,只不過那時(shí)的他還沒有找到合適的詞來形容這一概念
    發(fā)表于 03-03 11:05

    百度人工智能大神離職,人工智能的出路在哪?

    `今天,吳恩達(dá)確認(rèn)離職百度的消息迅速在業(yè)界刷屏。吳恩達(dá)曾不止一次感慨,現(xiàn)在人工智能最大的問題就是“機(jī)會(huì)太多,但人才太少”。AI,人工智能,該領(lǐng)域的研究包括機(jī)器人、語言識(shí)別、圖像識(shí)別、自然語言處理
    發(fā)表于 03-23 17:00

    人工智能就業(yè)前景

    據(jù)相關(guān)招聘機(jī)構(gòu)數(shù)據(jù)顯示,2018年AI領(lǐng)域仍然是大部分資深技術(shù)人才轉(zhuǎn)崗的首選目標(biāo),在人才最緊缺的前十大職位中,時(shí)下最火的大數(shù)據(jù)、人工智能、算法類崗位占據(jù)半壁江山。據(jù)調(diào)查指出,2017年技術(shù)研發(fā)類崗位
    發(fā)表于 03-29 15:46

    解讀人工智能的未來

    `已歷經(jīng)60多年的人工智能在物聯(lián)網(wǎng)以及大數(shù)據(jù)的推動(dòng)下,實(shí)現(xiàn)飛躍式的發(fā)展,并且迎來了第三個(gè)黃金周期。必優(yōu)傳感今天和大家解讀一下關(guān)于人工智能的未來。自從有了人工智能,引發(fā)了人類的各種“未來論”。有人說
    發(fā)表于 11-14 10:43

    人工智能醫(yī)生未來或上線,人工智能醫(yī)療市場規(guī)模持續(xù)增長

      導(dǎo)讀:機(jī)構(gòu)預(yù)測(cè),中國醫(yī)療人工智能的市場需求已達(dá)數(shù)百億元。專家認(rèn)為,“人工智能醫(yī)生”的應(yīng)用,有利于緩解社會(huì)老齡化帶來的醫(yī)療資源供需失衡以及地域分配不均等問題。那么,“人工智能醫(yī)生”何時(shí)能真正
    發(fā)表于 02-24 09:29

    人工智能:超越炒作

    如果有一個(gè)真正的指標(biāo)可以衡量新技術(shù)的破壞性,那肯定是公眾對(duì)恐懼和懷疑的滔滔不絕。如果我們以社會(huì)焦慮作為衡量標(biāo)準(zhǔn),那么目前人工智能(AI)的復(fù)興是開創(chuàng)性技術(shù)破壞的良好候選者。人工智能將改變我們所知
    發(fā)表于 05-29 10:46

    人工智能后續(xù)以什么形式發(fā)展?

    從2014年開始,人工智能逐漸成為科技領(lǐng)域最熱門的概念,被科技界,企業(yè)界和媒體廣泛關(guān)注。作為一個(gè)學(xué)術(shù)領(lǐng)域,人工智能是在1956年夏季,以麥卡賽、明斯基、羅切斯特和申農(nóng)等為首的一批有遠(yuǎn)見卓識(shí)的年輕科學(xué)家在一起聚會(huì),共同研究和探討用
    發(fā)表于 08-12 07:53

    人工智能芯片是人工智能發(fā)展的

    人工智能芯片是人工智能發(fā)展的 | 特倫斯謝諾夫斯基責(zé)編 | 屠敏本文內(nèi)容經(jīng)授權(quán)摘自《深度學(xué)習(xí) 智能時(shí)代的核心驅(qū)動(dòng)力量》從AlphaGo的人機(jī)對(duì)戰(zhàn),到無人駕駛汽車的上路,再到AI合成主播上崗
    發(fā)表于 07-27 07:02

    人工智能基本概念機(jī)器學(xué)習(xí)算法

    目錄人工智能基本概念機(jī)器學(xué)習(xí)算法1. 決策樹2. KNN3. KMEANS4. SVM5. 線性回歸深度學(xué)習(xí)算法1. BP2. GANs3. CNN4. LSTM應(yīng)用人工智能基本概念數(shù)
    發(fā)表于 09-06 08:21

    物聯(lián)網(wǎng)人工智能是什么?

    2.概率推理3.機(jī)器人技術(shù)4.計(jì)算機(jī)視覺5.自然語言處理等常見人工智能產(chǎn)品:語音識(shí)別,指紋識(shí)別,人臉識(shí)別,視網(wǎng)膜識(shí)別,智能搜索,無人駕駛,機(jī)器翻譯,智能控制,專家答疑系統(tǒng)等。如何學(xué)習(xí)好人工智能
    發(fā)表于 09-09 14:12

    有關(guān)人工智能的幾大誤解

    關(guān)于人工智能的四大誤解
    的頭像 發(fā)表于 08-19 15:25 ?2985次閱讀

    對(duì)人工智能誤解

    可以說,關(guān)于人工智能最普遍和潛在危險(xiǎn)的誤解是,它將奪走人類的工作崗位。是的,自動(dòng)化正導(dǎo)致一些低技能工作的冗余增加,但這一趨勢(shì)近年來被嚴(yán)重夸大了。此外,大多數(shù)科學(xué)估計(jì)表明,人工智能驅(qū)動(dòng)的自動(dòng)化可能會(huì)
    發(fā)表于 07-10 19:20 ?754次閱讀

    關(guān)于對(duì)人工智能常見四大誤解

    曲解或誤解人工智能的本質(zhì),這只會(huì)削弱人工智能作為一種解放性技術(shù)的潛力。讓我們澄清最常見人工智能誤解,以便對(duì)這一新興技術(shù)及其潛在的使用案例有
    的頭像 發(fā)表于 10-11 10:26 ?6936次閱讀