業(yè)界媒體TechRadar發(fā)表文章,稱人工智能(AI)是目前科技界最熱門的流行語,經(jīng)過幾十年的研究和發(fā)展之后,科幻小說中的許多技術已經(jīng)在這幾年慢慢轉化為科學現(xiàn)實。這篇文章總結了AI領域的10大里程碑。以下為原文內容:
AI技術已經(jīng)成為我們生活中非常重要的一部分:AI決定了我們的搜索結果,將我們的聲音轉化為計算機指令,甚至可以幫助我們對黃瓜進行分類(這件事后文中會提到)。在接下來的幾年里,我們將用AI駕駛汽車,回應顧客的詢問,以及處理其他無數(shù)事情。
但是我們怎么走到這個階段的?這種強大的新技術是怎么來的?下面就來看看AI技術發(fā)展的十大里程碑。
笛卡爾的理念
人工智能的概念并不是突然出現(xiàn)的 ——直到今天,人工智能仍然是哲學辯論的一個主題:機器真的能像人類一樣思考嗎?機器能成為人類嗎?最早想到這個問題的人之一是1637年的笛卡兒。在一本名為《方法論》(Discourse on the Method)的書中,笛卡兒竟然總結出了如今的科技人員必須克服的關鍵問題和挑戰(zhàn):
“如果為了各種實用性的目的,機器在外形上向人類靠攏,并模仿人類的行為,那么我們仍然應該有兩種非常確定的方法來辨識出它們不是真人?!?/p>
笛卡爾表示,在他看來,機器永遠無法使用言語,或者“把標識放在一起”來“向別人表達想法”,即使我們能夠設想出這樣的機器,但是“讓一臺機器對文字進行組合,對別人的話做出有意義的,即便水平和最愚笨的人差不多的回答,那也是不可想象的?!?/p>
他還提到了我們現(xiàn)在面臨的一個挑戰(zhàn):創(chuàng)建一個廣義的AI,而不是狹義的AI——以及當前AI的局限性會如何暴露它并非人類:
“即使有些機器可以在有些事情上可以做得和我們一樣好,或者甚至更好,但是其他機器也不可避免地會失敗,這就表明它們的行為并非來自于對事物理解,只是一種簡單的回應。”
模仿游戲
AI的第二個主要的哲學基準來自計算機科學先驅圖靈(Alan Turing)。在1950年時,他提出了“圖靈測試”,他稱之為“模仿游戲”。這個測試衡量的是,我們什么時候可以宣布智能機器出現(xiàn)了。
這個測試很簡單:如果評判者不知道哪一方是人類,哪一方是機器(比如閱讀兩者之間的文本對話時),那么機器能否騙過評判者,讓他以為自己是人類?
有趣的是,圖靈對未來的計算做出了一個大膽的預測——他估計到20世紀末,機器就可以通過圖靈測試。他說:
“我相信,在大約50年的時間內,人們就有可能用上1GB的存儲容量的計算機,通過編程讓它們玩模仿游戲,玩得足夠逼真,以至于一般的評判者在經(jīng)過5分鐘的對話之后,做出正確的判定的可能性低于70%…… 我相信,到本世紀末,文字的使用和通識教育理念將會發(fā)生很大的變化,那時你談論機器思維,通常不會引發(fā)抵觸情緒?!?/p>
可惜的是,他的預測不太準確。我們現(xiàn)在確實開始看到一些真正讓人眼前一亮的AI系統(tǒng)出現(xiàn),但是在2000年代,AI技術還處在比較原始的階段。不過硬盤容量在世紀之交時平均為10GB左右,這倒是遠遠超過了圖靈的預測。
第一個神經(jīng)網(wǎng)絡的出現(xiàn)
神經(jīng)網(wǎng)絡其實是一種試錯法,它是現(xiàn)代AI的關鍵概念。從本質上講,當你訓練一個AI系統(tǒng)時,最好的辦法就是讓系統(tǒng)猜測,接收反饋,然后在繼續(xù)猜測——不斷調整概率,以便讓AI系統(tǒng)得出正確答案。
令人驚奇的是,第一個神經(jīng)網(wǎng)絡實際上是在1951年由馬爾文·明斯基(Marvin Minsky)和迪恩·艾德蒙茲(Dean Edmonds)創(chuàng)建的,稱為“SNARC” ,意思是隨機神經(jīng)模擬增強計算機。它不是由微芯片和晶體管,而是由真空管、電機和離合器制成的。
這臺機器可以幫助一只虛擬老鼠解決迷宮難題。系統(tǒng)發(fā)送指令,讓虛擬老鼠在迷宮里游走,每一次都將其行為的效果反饋到系統(tǒng)里——用真空管來存儲結果。這意味著機器能夠學習并調整概率,提高虛擬老鼠通過迷宮的機會。
本質上,谷歌當前用于識別照片中的對象的相同過程的非常非常簡單的版本。
谷歌目前用來識別照片中的對象也使用了同樣的過程,只不過遠比它復雜。
第一輛自動駕駛汽車的出現(xiàn)
現(xiàn)在我們提到自動駕駛汽車的時候,可能會想到谷歌Waymo等等,但是令人吃驚的是,在1995年,梅賽德斯-奔馳就改裝了一輛汽車,從慕尼黑開到哥本哈根,路上大部分時候都是自動駕駛的。
這段路程共1043英里,改裝車上搭載了60個晶體電腦芯片,那是當時并行計算領域最先進的技術,讓它可以快速處理大量駕駛數(shù)據(jù),為自動駕駛汽車的響應度提供保證。
這輛車的時速達到了115英里,與當今的自動駕駛汽車相差無幾,因為它可以超車并讀取路標。
轉向“基于統(tǒng)計”的方法
雖然神經(jīng)網(wǎng)絡作為一個概念出現(xiàn)已經(jīng)有一段時間了,但是直到20世紀80年代后期,AI研究人員開始從“基于規(guī)則”的方法轉向“基于統(tǒng)計”的方法 ,也就是機器學習。這意味著不要試圖去根據(jù)人類行為的規(guī)則來讓系統(tǒng)進行模仿,而是采取試錯法,根據(jù)反饋來調整概率,這是教會機器思考的好方法。這一點非常重要,因為正是這個概念讓如今的AI辦到了一些令人驚訝的事情。
《福布斯》的吉爾·普利斯(Gil Press)認為,這一轉變是從1988年開始的,當時IBM的TJ Watson研究中心發(fā)表了一篇名為《語言翻譯的統(tǒng)計學方法》的論文,特別提到了如何使用機器學習來做語言翻譯。
IBM用220萬對法文和英文句子來訓練這個系統(tǒng) ——這些句子全部來自加拿大議會的雙語記錄。220萬這個數(shù)字聽起來很多,但是谷歌有整個互聯(lián)網(wǎng)上可以利用——所以現(xiàn)在谷歌翻譯的效果可以說相當不錯了。
“深藍”擊敗國際象棋冠軍
盡管AI的側重點已經(jīng)轉移到統(tǒng)計模型上,但基于規(guī)則的模型也仍然在使用—— 在1997年舉辦了一場國際象棋比賽中,IBM的計算機深藍戰(zhàn)勝了世界國際象棋冠軍加里·卡斯帕羅夫,向人們展示了機器可以有多么強大。
這不是雙方的第一場比賽,在1996年,卡斯帕羅夫曾以4-2擊敗深藍。而到了1997年,機器就占了上風。
從一定程度上說,深藍的智能有點虛假——IBM本身認為深藍沒有使用人工智能,因為它使用的是蠻力之法,每秒處理數(shù)千種走棋的可能性。 IBM為這個系統(tǒng)注入了數(shù)以千計之前比賽的數(shù)據(jù),每次對手走棋之后,深藍就會照搬以前象棋大師們在相同情況下的反應。正如IBM所說,深藍只是在扮演之前象棋大師們的幽靈。
不管這算不算真正的AI,它都是一個重要的里程碑,讓人們不僅開始關心計算機的計算能力,也對整個AI領域產(chǎn)生了興趣。自從與卡斯帕羅夫對決以來,在游戲中打敗人類玩家已經(jīng)成為機器智能基準測試的主要方式 —— 2011年時,我們再次看到,IBM的“沃森”系統(tǒng)輕松地擊敗了兩個人類對手,成為美國智力競賽節(jié)目《危險邊緣》的優(yōu)勝者。
Siri 和自然語言處理
自然語言處理是AI領域的一大課題,要想像《星際迷航》(Star Trek)那樣通過語音對設備發(fā)布命令,就需要有很強的自然語言處理能力。
所以,用統(tǒng)計方法創(chuàng)建的Siri令人眼前一亮。它由SRI International研發(fā),甚至曾經(jīng)在iOS應用程序商店中作為獨立的app推出,很快,這家公司就被蘋果公司收購,并深度整合在了iOS中?,F(xiàn)在它和谷歌助手、微軟小娜,以及亞馬遜Alexa這些軟件已經(jīng)成為機器學習最引人矚目的成果之一,改變了我們與設備互動的方式。
當然,我們如今似乎認為這種互動方式是理所當然的,但是任何曾經(jīng)在2010年之前嘗試過使用語音命令的人都知道,這個進步有多大。
圖像識別
就像在語音識別上一樣,AI也可以在圖像識別領域大有作為。在2015年,研究人員首次得出結論:在1000多個類別中,谷歌和微軟研發(fā)的兩個深度學習系統(tǒng)識別圖像的效果比人類更好。
圖像識別可以應用在數(shù)不清的方面,谷歌在推廣其TensorFlow機器學習平臺時舉一個有趣的例子,就是對黃瓜進行分類:通過使用計算機視覺,農(nóng)民不需要雇用人員來決定黃瓜是否合適采摘了,而是讓機器來自動做出決定,只要這些機器接受過早期數(shù)據(jù)的培訓即可。
GPU讓AI變得更便宜
AI現(xiàn)在如此引人矚目,一個重要原因就是在過去的幾年里,處理大量數(shù)據(jù)的成本已經(jīng)變得沒有那么高昂了。
據(jù)《財富》報道,研究人員直到21世紀末才意識到,為3D圖形和游戲而開發(fā)的圖形處理單元(GPU)在深度學習計算方面比傳統(tǒng)的CPU強20到50倍。在那之后,人們可以利用的計算能力就大大增加了,如今的AI云平臺可以為無數(shù)AI應用提供動力。
所以,要感激玩家。你的父母和配偶可能不會喜歡你花這么多時間來玩游戲 —— 但人工智能研究人員確實很感激你。
AlphaGo和AlphaGoZero征服世人
2016年3月,人工智能又達到了一座里程碑——谷歌的AlphaGo擊敗了圍棋九段李世石。
從數(shù)學上說,圍棋比國際象棋更加復雜,但這次勝利的重要之處在于,AlphaGo是用人類和AI對手組合進行訓練的。據(jù)報道,谷歌使用了1920個CPU和280個GPU,在和李世石的五局比賽中贏得了四局。
而更新之后的版本AlphaGo Zero更加厲害,它不像AlphaGo和深藍那樣使用任何以前的數(shù)據(jù)來學習下棋,而是直接打了數(shù)以千場的比賽,經(jīng)過三天這樣的訓練,它就能擊敗AlphaGo了。也就是說,這臺機器擁有自學能力。
-
AI
+關注
關注
87文章
31364瀏覽量
269772 -
人工智能
+關注
關注
1793文章
47567瀏覽量
239445
原文標題:盤點 | 人工智能領域最重要的10大里程碑
文章出處:【微信號:melux_net,微信公眾號:人工智能大趨勢】歡迎添加關注!文章轉載請注明出處。
發(fā)布評論請先 登錄
相關推薦
評論