0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
电子发烧友
开通电子发烧友VIP会员 尊享10大特权
海量资料免费下载
精品直播免费看
优质内容免费畅学
课程9折专享价
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

大型人臉偽造視頻數(shù)據(jù)集:用深度學(xué)習(xí)算法XceptionNet實(shí)現(xiàn)了“假臉”檢測(cè)

zhKF_jqr_AI ? 來源:未知 ? 作者:李倩 ? 2018-04-16 15:20 ? 次閱讀

幾個(gè)月前,深度學(xué)習(xí)算法deepfakes風(fēng)靡社交網(wǎng)絡(luò),引發(fā)無數(shù)網(wǎng)友將無辜女明星的臉用于合成AV。事件曝光后后,Reddit立即封禁了所有帖子,但它產(chǎn)生的惡劣影響卻令人擔(dān)憂——如今隨便一個(gè)普通人憑著一張GPU、一堆足夠多的訓(xùn)練數(shù)據(jù)就能實(shí)現(xiàn)人臉替換,而且它的效果好到能超出人眼識(shí)別的范圍,那么我們?cè)撊绾畏乐顾粸E用于損害他人名譽(yù)?又或者說,我們對(duì)以后在視頻中看到的內(nèi)容又該保有幾分信任?

為了解決這個(gè)問題,近日慕尼黑工業(yè)大學(xué)(TUM)等高校的研究人員制作了一個(gè)名為FaceForensics的大型人臉偽造視頻數(shù)據(jù)集,并成功用深度學(xué)習(xí)算法XceptionNet實(shí)現(xiàn)了“假臉”檢測(cè)。以下是對(duì)論文部分內(nèi)容的編譯:

哪張臉是真實(shí)的臉?

摘要

隨著計(jì)算機(jī)視覺和圖像處理技術(shù)取得最新進(jìn)展,現(xiàn)在我們已經(jīng)能做到在視頻中實(shí)時(shí)合成極其逼真的人臉。這項(xiàng)技術(shù)的背后是無限的應(yīng)用空間,但其中的某些濫用行為卻為我們拉響了安全警報(bào),因此開發(fā)一個(gè)可靠的虛假視頻檢測(cè)器迫在眉睫。

事實(shí)上,區(qū)分原始視頻和造假視頻對(duì)人和計(jì)算機(jī)來說都是一個(gè)挑戰(zhàn),特別是在視頻被壓縮或分辨率較低的情況下,而這種視頻一般多見于社交媒體網(wǎng)站。由于缺乏足夠大的數(shù)據(jù)集,以往對(duì)人臉偽造視頻檢測(cè)的研究一直因受阻而停滯不前。為此,我們引入了一個(gè)全新的人臉偽造數(shù)據(jù)集,它包含約50萬張人臉圖像(來自1004個(gè)視頻),圖像所涉及的作偽技術(shù)都是當(dāng)前最先進(jìn)的,且在質(zhì)量上超過現(xiàn)有同類視頻處理數(shù)據(jù)集至少一個(gè)數(shù)量級(jí)。

通過使用這個(gè)新數(shù)據(jù)集,我們提出了一種能在各種分類、剪輯、壓縮情況下對(duì)圖像進(jìn)行經(jīng)典圖像取證的基準(zhǔn),此外,我們還提引入了基準(zhǔn)評(píng)估,它能在現(xiàn)實(shí)基礎(chǔ)上創(chuàng)建已知的、難以區(qū)分的偽造模型,例如生成細(xì)化模型。

數(shù)據(jù)集FaceForensics

FaceForensics中包含的數(shù)據(jù)來自1004個(gè)視頻,它由兩個(gè)子集組成。其中第一個(gè)數(shù)據(jù)集(source-to-target)包含的是存在差異的源視頻和目標(biāo)視頻,而第二個(gè)數(shù)據(jù)集(self-reenactment)則是輸入視頻后由face2face還原的視頻,即源視頻與目標(biāo)視頻相同。這兩個(gè)數(shù)據(jù)集允許我們?cè)L問合成圖像和真實(shí)圖像的真值對(duì)(ground truth pairs)。

源-目標(biāo)數(shù)據(jù)集:源演員的原始輸入圖像—目標(biāo)演員的原始輸入圖像—重演結(jié)果—合成期間使用的3D模型

數(shù)據(jù)搜集:所有數(shù)據(jù)都來自YouTube。我們選擇的是分辨率大于480p的視頻,它們?cè)赮ouTube8m上已用“face”“newscaster”或“newsprogram”進(jìn)行了標(biāo)記。通過使用Viola-Jones人臉檢測(cè)器,我們從圖片中提取了包含超過300個(gè)連續(xù)幀的人臉視頻序列,之后再剪輯成果并手動(dòng)放映,從中篩選出優(yōu)質(zhì)的、無遮擋的視頻。

數(shù)據(jù)處理:為了處理視頻,我們使用的方法是最先進(jìn)的face2face,它能完全自動(dòng)重演操作,并能在不同表情條件下重新渲染視頻中的人臉。在預(yù)處理階段,我們用第一幀獲取人臉的3D模型,并在剩下的幀中跟蹤表情。為了改善個(gè)體擬合和靜態(tài)紋理估計(jì),面部左右角度的檢測(cè)框是自動(dòng)選擇的,而這在face2face里原本是手動(dòng)完成的。簡而言之,通過追蹤表情,我們能實(shí)現(xiàn)個(gè)體擬合和靜態(tài)紋理估計(jì);而通過個(gè)體重建,我們就能追蹤整個(gè)視頻來計(jì)算每一幀的表達(dá)式、rigid pose和照明參數(shù)。

這兩個(gè)數(shù)據(jù)集的目標(biāo)主要有以下兩點(diǎn):

驗(yàn)證用當(dāng)前最先進(jìn)技術(shù)生成的偽造視頻在分類和分割時(shí)會(huì)有什么樣的表現(xiàn)。

能否使用生成網(wǎng)絡(luò)提高偽造質(zhì)量。

偽造分類任務(wù)

偽造分類任務(wù)的目的是識(shí)別偽造圖像,它可以被看作是一個(gè)二元分類問題,逐幀處理視頻。在數(shù)據(jù)集的支持下,我們理想中的檢測(cè)算法不僅能分類高清視頻,它應(yīng)該也能分類視頻被壓縮或分辨率較低的視頻。為了測(cè)試算法的性能,我們用H.264壓縮算法設(shè)置了3個(gè)視頻壓縮基線:無壓縮視頻、參數(shù)為23的低壓縮視頻和參數(shù)為40的高壓縮視頻。

各基線的清晰度對(duì)比

我們?cè)跀?shù)據(jù)集上測(cè)試了一系列CNN模型,其中包括一個(gè)基于XceptionNet CNN架構(gòu)的遷移模型。首先,我們?cè)贗mageNet上事先把XceptionNet CNN訓(xùn)練好,并對(duì)數(shù)據(jù)集進(jìn)行微調(diào)。在微調(diào)期間,我們固定與整個(gè)神經(jīng)網(wǎng)絡(luò)前4個(gè)模塊相對(duì)應(yīng)的36個(gè)卷積層,然后把最后一層替換成兩個(gè)帶輸出的全連接層,隨機(jī)初始化后進(jìn)行10個(gè)epoch的訓(xùn)練。

當(dāng)網(wǎng)絡(luò)連續(xù)5個(gè)epoch基本保持不變后,為了優(yōu)化輸出,我們又引入了一些超參數(shù)來進(jìn)行評(píng)估:Adam、學(xué)習(xí)率=0.001、β1=0.9、β2=0.999、batch-size=64。下表是我們得出的各模型分類準(zhǔn)確率:

分類準(zhǔn)確率:無壓縮 (no-c);低壓縮 (easy-c);高壓縮(hard-c)

可以發(fā)現(xiàn),在無壓縮情況下,所有模型都表現(xiàn)良好,而隨著視頻清晰度的下降,它們的準(zhǔn)確率也都出現(xiàn)了不同程度的下降,其中較淺的CNN表現(xiàn)尤為明顯,而XceptionNet CNN總體表現(xiàn)優(yōu)秀。事實(shí)上,這種下降是可以接受的,因?yàn)橐坏┮曨l變得很模糊,人眼也無法作出準(zhǔn)確的區(qū)分。

偽造分割任務(wù)

處理圖像的像素級(jí)分割是一項(xiàng)非常具有挑戰(zhàn)性的任務(wù),而對(duì)于圖像取證,最有效的一種方法是根據(jù)基于相機(jī)的偽像(如傳感器噪聲,去馬賽克)。但這種方法在我們的數(shù)據(jù)集上并沒有很好的表現(xiàn),即便是未壓縮的視頻,它的表現(xiàn)也很一般。所以我們還是得用深度學(xué)習(xí)方法,用數(shù)據(jù)集進(jìn)行充分訓(xùn)練。

因?yàn)閄ceptionNet之前在分類任務(wù)中表現(xiàn)良好,所以這里我們還是把它作為對(duì)比模型之一。在測(cè)試時(shí),神經(jīng)網(wǎng)絡(luò)的滑動(dòng)窗口以128×128像素大小移動(dòng),步長16。每個(gè)圖像塊Wi計(jì)算出操作概率的估計(jì)值p?i= CNN(Wi),然后把它分配給中央的16×16區(qū)域。(詳細(xì)過程略)

同樣的,當(dāng)網(wǎng)絡(luò)連續(xù)5個(gè)epoch基本保持不變后,我們?cè)俅我雽W(xué)習(xí)率=0.001、β1=0.9、β2=0.999進(jìn)行優(yōu)化。因?yàn)橐獙⒑?6個(gè)原圖像、偽造圖像相關(guān)的3個(gè)原圖像塊、偽圖像塊組合訓(xùn)練,這次的batch-size=96。

精度和召回率

偽造人臉分割結(jié)果

如上圖所示,這次我們沿用了之前的定量評(píng)估,發(fā)現(xiàn)隨著壓縮率的上升,各模型分割性能都出現(xiàn)了明顯下降。最終,在高壓縮視頻中,只有基于XceptionNet的模型給出了較好的輸出。

反向用于生成偽像

在我們的“偽造分類任務(wù)”中,實(shí)驗(yàn)證明Face2Face可以從未壓縮的視頻中檢測(cè)到相當(dāng)多的數(shù)據(jù)信息,這就產(chǎn)生了一個(gè)問題,即這個(gè)數(shù)據(jù)集是否也能用于相反的目標(biāo)——進(jìn)一步提升合成人訓(xùn)練的逼真程度。為了證實(shí)這一點(diǎn),我們用包含521,406個(gè)目標(biāo)真值的第二個(gè)數(shù)據(jù)集做了一次監(jiān)督學(xué)習(xí)。

帶有skip connection的自動(dòng)編碼器(AE)

作為基準(zhǔn),我們?cè)O(shè)計(jì)了一個(gè)帶有skip connection的自動(dòng)編碼器CNN架構(gòu),它將128×128像素的圖像作為輸入,并預(yù)測(cè)具有相同分辨率的圖像(見上圖)。為了從人臉圖像中獲得有意義的特征,我們先使用VGGFace2數(shù)據(jù)集以無監(jiān)督學(xué)習(xí)的方式對(duì)自動(dòng)編碼器網(wǎng)絡(luò)進(jìn)行預(yù)訓(xùn)練。該數(shù)據(jù)集包含9131個(gè)類別的313萬幅圖像,比我們的數(shù)據(jù)集多,但沒有經(jīng)過標(biāo)記。我們禁用了skip connection,強(qiáng)迫神經(jīng)網(wǎng)絡(luò)完全依靠瓶頸層進(jìn)行訓(xùn)練。

之后,我們又對(duì)FaceForensics中的368,135個(gè)訓(xùn)練圖像進(jìn)行微調(diào),并把經(jīng)過預(yù)訓(xùn)練的自動(dòng)編碼器網(wǎng)絡(luò)放在上面訓(xùn)練。我們輸入一張假臉,把監(jiān)督學(xué)習(xí)的loss設(shè)置成1,啟用skip connection,以便網(wǎng)絡(luò)能輸出更清晰的結(jié)果。

上圖展示了我們的成果。通過拉近特寫鏡頭,可以發(fā)現(xiàn)比起Face2Face,我們改進(jìn)自動(dòng)編碼器后生成的圖片能顯示更多細(xì)節(jié)。Face2Face在鼻孔、鼻子、下巴和臉頰周圍會(huì)生成大量偽影,我們的方法不僅讓這些區(qū)域的線條更清晰,還修改了人臉3D模型與背景之間的過渡錯(cuò)誤。同時(shí),它還改進(jìn)了Face2Face由于照明參數(shù)估計(jì)錯(cuò)誤導(dǎo)致的偽影問題。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

原文標(biāo)題:FaceForensics:一個(gè)用于人臉偽造檢測(cè)的大型視頻數(shù)據(jù)集

文章出處:【微信號(hào):jqr_AI,微信公眾號(hào):論智】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 0人收藏

    評(píng)論

    相關(guān)推薦

    人臉檢測(cè)算法及新的快速算法

    人臉檢測(cè)算法及新的快速算法人臉識(shí)別設(shè)備憑借著便捷的應(yīng)用,以及更加新潮的技術(shù),俘獲不少人的好感。于是,它的應(yīng)用也在日益的變得更加的廣泛。由中國電子學(xué)會(huì)主辦的全國圖形圖像技術(shù)應(yīng)用大會(huì),行
    發(fā)表于 09-26 15:13

    基于openCV的人臉檢測(cè)系統(tǒng)的設(shè)計(jì)

    通過對(duì)基于Adaboost人臉檢測(cè)算法的研究,利用該算法與計(jì)算機(jī)視覺類庫openCV進(jìn)行人臉檢測(cè)系統(tǒng)的設(shè)計(jì),
    發(fā)表于 12-23 14:19

    人臉識(shí)別經(jīng)典算法實(shí)現(xiàn)python

    opencv-python、numpy安裝完成后,可以編程,還是先說明一下需要的算法:特征子技術(shù)的基本思想是:從統(tǒng)計(jì)的觀點(diǎn),尋找人臉圖像分布的基本元素,即
    發(fā)表于 05-04 17:25

    計(jì)算機(jī)視覺/深度學(xué)習(xí)領(lǐng)域常用數(shù)據(jù)匯總

    、定位、檢測(cè)等研究工作大多基于此數(shù)據(jù)展開。Imagenet數(shù)據(jù)文檔詳細(xì),有專門的團(tuán)隊(duì)維護(hù),使用非常方便,在計(jì)算機(jī)視覺領(lǐng)域研究論文中應(yīng)用非
    發(fā)表于 08-29 10:36

    全網(wǎng)唯一一套labview深度學(xué)習(xí)教程:tensorflow+目標(biāo)檢測(cè):龍哥教你學(xué)視覺—LabVIEW深度學(xué)習(xí)教程

    繁多且具有強(qiáng)烈的針對(duì)性,魯棒性差;多種算法計(jì)算量驚人且無法精確的檢測(cè)缺陷的大小和形狀。而深度學(xué)習(xí)可以直接通過學(xué)習(xí)
    發(fā)表于 08-10 10:38

    分享一款高速人臉檢測(cè)算法

    與MTCNN算法的準(zhǔn)確率相當(dāng),可以應(yīng)用將該算法部署在邊緣設(shè)備,進(jìn)行人臉識(shí)別算法進(jìn)行整體算法提速
    發(fā)表于 12-15 07:01

    人臉識(shí)別技術(shù)大火,深度學(xué)習(xí)做支撐

    人臉識(shí)別是當(dāng)下視覺領(lǐng)域人們應(yīng)用的重要技術(shù)支撐,每個(gè)環(huán)節(jié)都因?yàn)?b class='flag-5'>深度學(xué)習(xí)算法的推進(jìn)實(shí)現(xiàn)更優(yōu)的計(jì)算結(jié)
    發(fā)表于 07-18 13:48 ?1153次閱讀

    一種新方法來檢測(cè)這些被操縱的換視頻的“跡象”

    利用深度學(xué)習(xí)“換”合成視頻的技術(shù)發(fā)展之快令人驚嘆,也令人深感不安。研究人員已經(jīng)研究出一種新方法來檢測(cè)
    的頭像 發(fā)表于 07-03 09:48 ?5937次閱讀

    人工智能如何避免深度偽造的出現(xiàn)

    采用深度偽造(Deepfake)生成的視頻和音頻,人工智能生成的文本、詩歌和歌詞,網(wǎng)站和假新聞進(jìn)入人們的世界。
    發(fā)表于 02-28 11:41 ?2565次閱讀

    基于深度學(xué)習(xí)人臉識(shí)別算法與其網(wǎng)絡(luò)結(jié)構(gòu)

    基于深度學(xué)習(xí)人臉識(shí)別算法,如何讓神經(jīng)網(wǎng)絡(luò)從訓(xùn)練數(shù)據(jù)學(xué)習(xí)到有效、魯棒的生物特征是至關(guān)重要的。
    的頭像 發(fā)表于 03-12 11:13 ?3460次閱讀
    基于<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>的<b class='flag-5'>人臉</b>識(shí)別<b class='flag-5'>算法</b>與其網(wǎng)絡(luò)結(jié)構(gòu)

    基于深度學(xué)習(xí)的快速人臉識(shí)別算法及模型

    的哈希算法計(jì)算人臉像相似度,并對(duì)多個(gè)哈希相似度值加權(quán)進(jìn)行人臉匹配,是減少運(yùn)算時(shí)間、實(shí)現(xiàn)快速人臉識(shí)別的可行方案。使用輕量化神經(jīng)網(wǎng)絡(luò)Mobile
    發(fā)表于 05-07 14:15 ?13次下載

    基于生成對(duì)抗網(wǎng)絡(luò)的深度偽造視頻綜述

    深度偽造的濫用,給囯家、社會(huì)和個(gè)人帶來了潛在威脅。首先,介紹深度偽造的概念和當(dāng)前發(fā)展趨勢(shì),分析
    發(fā)表于 05-10 15:39 ?11次下載

    人工智能換為什么人臉轉(zhuǎn)到90度時(shí)會(huì)出現(xiàn)漏洞?

    視頻偽造是 Deepfake 技術(shù)最為主要的代表,其制作假視頻的技術(shù)也被稱為人工智能換(AI face swap)。一直以來,研究者發(fā)現(xiàn) DeepFake 存在著這樣一個(gè)漏洞:當(dāng)
    發(fā)表于 08-16 11:04 ?797次閱讀

    使用Pytorch和OpenCV實(shí)現(xiàn)視頻人臉替換

    本文將分成3個(gè)部分,第一部分從兩個(gè)視頻中提取人臉并構(gòu)建標(biāo)準(zhǔn)人臉數(shù)據(jù)。第二部分使用數(shù)據(jù)
    的頭像 發(fā)表于 09-15 10:26 ?838次閱讀
    使用Pytorch和OpenCV<b class='flag-5'>實(shí)現(xiàn)</b><b class='flag-5'>視頻</b><b class='flag-5'>人臉</b>替換

    深度偽造人臉檢測(cè)項(xiàng)目

    各位 AI 愛好者們,準(zhǔn)備好通過各種 AI 技術(shù)來應(yīng)對(duì)一個(gè)迫切需要被解決的全球問題了嗎?MathWorks 誠邀您參加 2025 IEEE Signal Processing Cup 挑戰(zhàn)賽:“野外深度偽造人臉檢測(cè)”(DFWil
    的頭像 發(fā)表于 10-17 10:46 ?616次閱讀
    <b class='flag-5'>深度</b><b class='flag-5'>偽造人臉</b><b class='flag-5'>檢測(cè)</b>項(xiàng)目

    電子發(fā)燒友

    中國電子工程師最喜歡的網(wǎng)站

    • 2931785位工程師會(huì)員交流學(xué)習(xí)
    • 獲取您個(gè)性化的科技前沿技術(shù)信息
    • 參加活動(dòng)獲取豐厚的禮品