0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

微軟翻譯系統(tǒng)使用深層神經(jīng)網(wǎng)絡(luò),幫助生成更真實(shí)、更準(zhǔn)確的翻譯

傳感器技術(shù) ? 來源:未知 ? 作者:李倩 ? 2018-04-16 14:33 ? 次閱讀

微軟研究人員在3月14日發(fā)表博客文章稱,在利用深層神經(jīng)網(wǎng)絡(luò)人工智能AI)訓(xùn)練技術(shù)翻譯文本方面取得了進(jìn)展。他們發(fā)明了第一臺機(jī)器翻譯系統(tǒng),可以將中文新聞的句子翻譯成英文,準(zhǔn)確率與人類不相上下。系統(tǒng)在一套常用的新聞報道測試集上實(shí)現(xiàn)了達(dá)到了人類水平,測試集名為newstest2017。

在前幾期的文章里,我們介紹了神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)的相關(guān)內(nèi)容,微軟的這套翻譯系統(tǒng)就是使用深層神經(jīng)網(wǎng)絡(luò),幫助生成更真實(shí)、更準(zhǔn)確的翻譯。它還采用了多種不同的人工智能訓(xùn)練方法,包括雙重學(xué)習(xí)、商議網(wǎng)絡(luò)和聯(lián)合訓(xùn)練,試圖模仿人類的學(xué)習(xí)方式。

機(jī)器翻譯

機(jī)器翻譯系統(tǒng)是支持翻譯大量文本的應(yīng)用程序或在線服務(wù),將文本從“源”語言譯成另一種"目標(biāo)"語言的過程。

自從2010年代早期,新的人工智能技術(shù)- 深度神經(jīng)網(wǎng)絡(luò)(又稱深度學(xué)習(xí)),已經(jīng)達(dá)到較高的精準(zhǔn)度,微軟翻譯團(tuán)隊將語音識別結(jié)合其核心文本翻譯技術(shù),推出新的語音翻譯技術(shù)。

雖然機(jī)器翻譯技術(shù)和接口技術(shù)的概念相對簡單,但它背后的科技集成卻是極其復(fù)雜的,集成了多項(xiàng)尖端技術(shù),特別是深度學(xué)習(xí)(人工智能)、 大數(shù)據(jù)、 語言學(xué)、 云計算和 web API。

從歷史上看,曾經(jīng)主流的機(jī)器學(xué)習(xí)技術(shù)在行業(yè)中應(yīng)用是統(tǒng)計機(jī)器翻譯 (SMT)。SMT 使用先進(jìn)的統(tǒng)計分析,從一句話中上下文的幾個詞中來估計最佳可能的翻譯。SMT自20 世紀(jì)中期以來的為所有主要翻譯服務(wù)提供商所使用,其中包括微軟。

基于深度神經(jīng)網(wǎng)絡(luò)(NN) 的翻譯技術(shù)的出現(xiàn),帶動了機(jī)器翻譯技術(shù)的突變,顯著提高了翻譯質(zhì)量。這種新的翻譯技術(shù)在2016年的下半年開始大規(guī)模部署使用。

這兩種技術(shù)共同之處有兩個方面︰

兩者都需要大量的人工翻譯的數(shù)據(jù)(高達(dá)數(shù)百萬的人工翻譯過的句子)用于培訓(xùn)翻譯系統(tǒng)。

既不作為雙語詞典,也不是基于翻譯列表,是根據(jù)詞在句子中使用的上下文來翻譯。

Microsoft翻譯

微軟翻譯文本和語音 API,是微軟認(rèn)知服務(wù)集合的一部分,是微軟云的機(jī)器翻譯服務(wù)。

1、微軟翻譯文本 API

微軟翻譯文本API 已自2006年以來用于微軟多個個業(yè)務(wù)部門的產(chǎn)品和服務(wù)中,并且自2011年向第三方客戶提供。微軟翻譯文本API已經(jīng)在微軟公司內(nèi)部廣泛應(yīng)用,它被用于產(chǎn)品本地化、客戶支持和在線交流(例如,Windows Blog)。還可以從熟悉的微軟產(chǎn)品(Bing、柯塔娜、 Internet Explorer、Lync、Cortana、Office、SharePoint、Skype和Yammer)訪問這一服務(wù),且無需額外付費(fèi)。

Microsoft Translator 可在任何硬件平臺上以Web方式或客戶端中使用,與任何操作系統(tǒng)結(jié)合來進(jìn)行語言翻譯和其他語言相關(guān)操作,如文字語言檢測,文本到語音轉(zhuǎn)換,以及詞典。

利用行業(yè)標(biāo)準(zhǔn)的REST技術(shù),開發(fā)人員向服務(wù)發(fā)送源文本以及標(biāo)識目標(biāo)語言的參數(shù),該服務(wù)經(jīng)翻譯后的文本發(fā)送回客戶端或 web 應(yīng)用程序。

微軟翻譯服務(wù)部署在微軟數(shù)據(jù)中心,從安全性、 可伸縮性、 可靠性和不間斷的可用性等方面享受和其他微軟云服務(wù)同樣的好處。

2、微軟翻譯語音API

微軟語音翻譯技術(shù)首先在2014年底通過Skype Translator集成推出的,并且在2016年初是作為開放的API向客戶提供。它集成在Skype,Skype會議廣播和微軟翻譯app中(Android、 iOS 和 Windows版)。

文本翻譯的工作原理

有兩種主流的機(jī)器翻譯技術(shù)︰ 傳統(tǒng)的統(tǒng)計機(jī)器翻譯(SMT) 和新一代之神經(jīng)網(wǎng)絡(luò) (NN) 翻譯。

1、統(tǒng)計機(jī)器翻譯

微軟翻譯使用的統(tǒng)計機(jī)器翻譯(SMT) 是建立在超過十年的微軟自然語言處理研究成果上?,F(xiàn)代翻譯系統(tǒng)不再手動編寫規(guī)則進(jìn)行語言轉(zhuǎn)換,而是將翻譯當(dāng)作基于所有語言現(xiàn)有的人工譯文及相互轉(zhuǎn)換的學(xué)習(xí)問題,并利用了應(yīng)用統(tǒng)計學(xué)和機(jī)器學(xué)習(xí)方面的最新成果。

所謂的"平行語料庫"在很大程度上充當(dāng)現(xiàn)代的羅塞塔石,基于語境為許多語言以及專門領(lǐng)域提供單詞、短語和習(xí)語翻譯。統(tǒng)計建模技術(shù)和高效算法幫助計算機(jī)解決解讀(檢測訓(xùn)練數(shù)據(jù)中源語言和目標(biāo)語言之間的對應(yīng)關(guān)系)以及解碼 (為新輸入句子找到最好的翻譯)等問題。Microsoft Translator 將統(tǒng)計方法的力量與語言信息相結(jié)合,產(chǎn)生歸納更理想譯文和更易理解的輸出。

由于這種方法并不依賴于詞典或語法規(guī)則,它提供基于上下文的最佳翻譯的詞匯和短語。

2、神經(jīng)網(wǎng)絡(luò)翻譯

翻譯質(zhì)量的不斷改善是十分重要的。然而,SMT 技術(shù)自2010年代中期性能改進(jìn)有所停滯。通過大規(guī)模部署的微軟AI 超級計算機(jī),特別是通過微軟認(rèn)知工具包,微軟翻譯現(xiàn)在提供了基于神經(jīng)網(wǎng)絡(luò) (LSTM) 的翻譯,使翻譯質(zhì)量改進(jìn)步入了新的十年。

這些神經(jīng)網(wǎng)絡(luò)模型已經(jīng)在所有微軟語音翻譯中部署,可以通過語音翻譯API調(diào)用,或者通過文本API 使用“generalnn“的Category ID參數(shù)調(diào)用。

神經(jīng)網(wǎng)絡(luò)翻譯從根本上的執(zhí)行方式相對于傳統(tǒng) SMT翻譯不同。

下面的動畫描述了神經(jīng)網(wǎng)絡(luò)翻譯的各個步驟。使用這種方法,翻譯將考慮到上下文完整的句子,而SMT技術(shù)只能考慮上下文的幾個詞語。所以,神經(jīng)網(wǎng)絡(luò)翻譯將會產(chǎn)生更流利和接近人工翻譯的結(jié)果。

基于神經(jīng)網(wǎng)絡(luò)的訓(xùn)練,每個單詞被編碼沿500 維向量 (a) 表示其獨(dú)特的特征,針對特定的語言對(例如英語和中文)。將語言對用于訓(xùn)練,神經(jīng)網(wǎng)絡(luò)將自定義這些維度應(yīng)該是什么。他們可以對簡單的概念,如性別 (女性,男性,中性),禮貌水平(俚語,休閑,書面的正式的等等),類型的詞(動詞、 名詞等),以及任何其他非明顯的特征作為派生的訓(xùn)練數(shù)據(jù)進(jìn)行編碼。

神經(jīng)網(wǎng)絡(luò)翻譯運(yùn)行的步驟如下︰

每個單詞或更具體地說 500-維向量表示它,穿過第一層的"神經(jīng)元",將編碼它在一個1000-維向量 (b) 代表這個詞在上下文句子中其他詞的范圍。

一旦所有單詞均已進(jìn)行這些 1000- 維向量都編碼,過程被重復(fù)幾次,每一層都進(jìn)行更好地微調(diào)這1000- 維度表現(xiàn)這個詞完整的句子(而SMT翻譯只考慮 3 到 5 個單詞的窗口)的范圍內(nèi)。

翻譯注意層(即軟件算法)將使用此最終輸出矩陣和以前翻譯過的單詞來確定來自源句子的哪個詞,應(yīng)該接下來到最終輸出矩陣。它還將使用這些計算在目標(biāo)語言中刪除不必要的詞語。

解碼器(翻譯)層,在它最合適的目標(biāo)語言等效轉(zhuǎn)換選定的詞(或更具體地說 1000-維向量代表這個詞的完整的句子范圍內(nèi))。這個輸出層(C)然后反饋到注意層計算源句子應(yīng)該翻譯的下一個單詞。

在動畫的示例中,"the"的上下文感知的 1000- 維度模型將編碼的名詞 (house)是法語的女性詞 (la maison)。這將"the"適當(dāng)?shù)姆g為"la" 而不是"le" (單數(shù),男性)或"les" (復(fù)數(shù)),當(dāng)它達(dá)到解碼器(翻譯)層。

注意算法還將計算基于以前翻譯過的(在這個案例"the"),下一步這個詞被翻譯應(yīng)該是主題("house") 而不是一個形容詞 ("blue")??梢宰龅竭@一點(diǎn)因?yàn)橄到y(tǒng)學(xué)過英語和法語轉(zhuǎn)換時這些句子中詞語的順序。假如形容詞是"大"而不是一種顏色的形容詞,那它應(yīng)該不反轉(zhuǎn) (“the big house” => “l(fā)a grande maison”)。

基于這種辦法最終的翻譯結(jié)果在大多數(shù)情況下,比基于SMT 的翻譯更流暢和更接近于人類的翻譯。

語音翻譯的工作原理

Microsoft Translator 還能夠翻譯語音。此功能最初僅通過Skype Translator,以及iOS 和 Android的Microsoft Translator 應(yīng)用程序提供?,F(xiàn)在通過最新版的語音翻譯API 提供向開發(fā)人員提供。

雖然乍看上去是個簡單的過程,但這比僅僅將“傳統(tǒng)”人機(jī)語音識別引擎插入現(xiàn)有文本翻譯引擎的過程復(fù)雜得多。

若要正確從一種語言的"源"語音翻譯成不同的"目標(biāo)"語言,系統(tǒng)經(jīng)過四步過程。

語音識別,將音頻轉(zhuǎn)換為文本。

TrueText算法: 微軟特有的技術(shù)將口語優(yōu)化成更標(biāo)準(zhǔn)的文本,使之更適合機(jī)器翻譯。

通過上述的文本翻譯引擎進(jìn)行翻譯,利用專為現(xiàn)實(shí)生活口語會話開發(fā)的翻譯模型。

文本到語音轉(zhuǎn)換,必要時輸出譯文的音頻。

1、自動語音識別 (ASR)

使用經(jīng)過數(shù)千小時訓(xùn)練的DNN 系統(tǒng)執(zhí)行自動語音識別(ASR)。此模型基于人和人交互數(shù)據(jù),而非人機(jī)指令訓(xùn)練,可產(chǎn)生適合正常對話優(yōu)化的語音識別效果。為達(dá)此目的,DNN需要相比傳統(tǒng)人機(jī)交互ASR更多大量的生活口語數(shù)據(jù)訓(xùn)練系統(tǒng)。

2、TrueText

我們?nèi)粘5恼f話并不完美,常常不如自己認(rèn)為的那樣清晰和流利。憑借 TrueText技術(shù),可以刪除口語中不流利的部分(贅詞,如"嗯"、"啊"、"和"、"比如")、口吃和重復(fù),使文本經(jīng)轉(zhuǎn)換更貼近地反映用戶意圖。還通過添加斷句、正確標(biāo)點(diǎn)符號和大小寫,使文本更易讀和更易譯。為取得這些成果,我們將數(shù)十年的研究成果應(yīng)用于開發(fā) Translator的語言技術(shù),從而創(chuàng)建出 TrueText。下圖通過真實(shí)的示例演示 TrueText的執(zhí)行過程。

3、翻譯

然后,將相關(guān)文本翻譯成任何微軟翻譯支持的60 多種語言之一。

面向開發(fā)人員提供的語音翻譯API或在語音翻譯應(yīng)用程序或服務(wù)中使用最新的神經(jīng)網(wǎng)絡(luò)翻譯,可以使用所有語音輸入支持的語言(請參閱這里的完整列表)。當(dāng)前現(xiàn)有的翻譯模型大多是書面語文本訓(xùn)練的,通過增加更多的口語文本語料庫,打造更好的為口語會話類型的翻譯建立了的模型。這些模型也可通過'Speech'標(biāo)準(zhǔn)類文本翻譯 API 提供。

對于任何其他非語音類支持語言,仍然使用傳統(tǒng)的SMT 翻譯,除非另有說明如這里。

4、文本到語音

目前我們支持18文本到語音轉(zhuǎn)換語言,如果需要音頻輸出,文本將以語音合成輸出。在語音轉(zhuǎn)文本的翻譯情景中將省略這一階段。

newstest2017系統(tǒng)的新技術(shù)

微軟官方博客中提到,新的翻譯系統(tǒng)中用到了四大技術(shù):對偶學(xué)習(xí)、聯(lián)合訓(xùn)練、推敲網(wǎng)絡(luò)和一致性正則化,對應(yīng)的論文也已經(jīng)公開。

1、對偶學(xué)習(xí)臺(Dual Learning)

對偶學(xué)習(xí)利用的是人工智能任務(wù)的天然對稱性。其發(fā)現(xiàn)是由于現(xiàn)實(shí)中有意義、有實(shí)用價值的人工智能任務(wù)往往會成對出現(xiàn),兩個任務(wù)可以互相反饋,從而訓(xùn)練出更好的深度學(xué)習(xí)模型。例如,在翻譯領(lǐng)域,我們關(guān)心從英文翻譯到中文,也同樣關(guān)心從中文翻譯回英文;在語音領(lǐng)域,我們既關(guān)心語音識別的問題,也關(guān)心語音合成的問題;在圖像領(lǐng)域,圖像識別與圖像生成也是成對出現(xiàn)。此外,在對話引擎、搜索引擎等場景中都有對偶任務(wù)。

一方面,由于存在特殊的對偶結(jié)構(gòu),兩個任務(wù)可以互相提供反饋信息,而這些反饋信息可以用來訓(xùn)練深度學(xué)習(xí)模型。也就是說,即便沒有人為標(biāo)注的數(shù)據(jù),有了對偶結(jié)構(gòu)也可以做深度學(xué)習(xí)。另一方面,兩個對偶任務(wù)可以互相充當(dāng)對方的環(huán)境,這樣就不必與真實(shí)的環(huán)境做交互,兩個對偶任務(wù)之間的交互就可以產(chǎn)生有效的反饋信號。因此,充分地利用對偶結(jié)構(gòu),就有望解決深度學(xué)習(xí)和增強(qiáng)學(xué)習(xí)的瓶頸,如“訓(xùn)練數(shù)據(jù)從哪里來、與環(huán)境的交互怎么持續(xù)進(jìn)行”等問題。

ICML 2017 對偶監(jiān)督學(xué)習(xí)論文的范式示意圖

2、推敲網(wǎng)絡(luò)(Deliberation Network)

“推敲”二字可以認(rèn)為是來源于人類閱讀、寫文章以及做其他任務(wù)時候的一種行為方式,即任務(wù)完成之后,并不當(dāng)即終止,而是會反復(fù)推敲。微軟亞洲研究院機(jī)器學(xué)習(xí)組將這個過程沿用到了機(jī)器學(xué)習(xí)中。推敲網(wǎng)絡(luò)具有兩段解碼器,其中第一階段解碼器用于解碼生成原始序列,第二階段解碼器通過推敲的過程打磨和潤色原始語句。后者了解全局信息,在機(jī)器翻譯中看,它可以基于第一階段生成的語句,產(chǎn)生更好的翻譯結(jié)果。

3、腦聯(lián)合訓(xùn)練(Joint Training)

這個方法可以認(rèn)為是從源語言到目標(biāo)語言翻譯(Source to Target)的學(xué)習(xí)與從目標(biāo)語言到源語言翻譯(Target to Source)的學(xué)習(xí)的結(jié)合。中英翻譯和英中翻譯都使用初始并行數(shù)據(jù)來訓(xùn)練,在每次訓(xùn)練的迭代過程中,中英翻譯系統(tǒng)將中文句子翻譯成英文句子,從而獲得新的句對,而該句對又可以反過來補(bǔ)充到英中翻譯系統(tǒng)的數(shù)據(jù)集中。同理,這個過程也可以反向進(jìn)行。這樣雙向融合不僅使得兩個系統(tǒng)的訓(xùn)練數(shù)據(jù)集大大增加,而且準(zhǔn)確率也大幅提高。

從源語言到目標(biāo)語言翻譯(Source to Target)P(y|x) 與從目標(biāo)語言到源語言翻譯(Target to Source)P(x|y)

4、一致性規(guī)范(Agreement Regularization)

翻譯結(jié)果可以從左到右按順序產(chǎn)生,也可以從右到左進(jìn)行生成。該規(guī)范對從左到右和從右到左的翻譯結(jié)果進(jìn)行約束。如果這兩個過程生成的翻譯結(jié)果一樣,一般而言比結(jié)果不一樣的翻譯更加可信。這個約束,應(yīng)用于神經(jīng)機(jī)器翻譯訓(xùn)練過程中,以鼓勵系統(tǒng)基于這兩個相反的過程生成一致的翻譯結(jié)果。

復(fù)雜性讓機(jī)器翻譯成為一個極有挑戰(zhàn)性的問題,但也是一個極有意義的問題。微軟亞洲研究院副院長、機(jī)器學(xué)習(xí)組負(fù)責(zé)人劉鐵巖認(rèn)為,我們不知道哪一天機(jī)器翻譯系統(tǒng)才能在翻譯任何語言、任何類型的文本時,都能在“信、達(dá)、雅”等多個維度上達(dá)到專業(yè)翻譯人員的水準(zhǔn)。不過,他對技術(shù)的進(jìn)展表示樂觀,因?yàn)槊磕晡④浀难芯繄F(tuán)隊以及整個學(xué)術(shù)界都會發(fā)明大量的新技術(shù)、新模型和新算法,“我們可以預(yù)測的是,新技術(shù)的應(yīng)用一定會讓機(jī)器翻譯的結(jié)果日臻完善?!?/p>

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 微軟
    +關(guān)注

    關(guān)注

    4

    文章

    6619

    瀏覽量

    104232
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4777

    瀏覽量

    100954
  • AI
    AI
    +關(guān)注

    關(guān)注

    87

    文章

    31292

    瀏覽量

    269644

原文標(biāo)題:逼真人類的微軟AI翻譯系統(tǒng)

文章出處:【微信號:WW_CGQJS,微信公眾號:傳感器技術(shù)】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    人臉識別、語音翻譯、無人駕駛...這些高科技都離不開深度神經(jīng)網(wǎng)絡(luò)了!

    需要用到無監(jiān)督學(xué)習(xí)了。最近比較受矚目的是 GAN(生成對抗網(wǎng)絡(luò)),它不屬于圖像識別,而是可以生成圖像! 網(wǎng)絡(luò)生成圖像 一般別人只使用單個的
    發(fā)表于 05-11 11:43

    改善深層神經(jīng)網(wǎng)絡(luò)--超參數(shù)優(yōu)化、batch正則化和程序框架 學(xué)習(xí)總結(jié)

    《深度學(xué)習(xí)工程師-吳恩達(dá)》02改善深層神經(jīng)網(wǎng)絡(luò)--超參數(shù)優(yōu)化、batch正則化和程序框架 學(xué)習(xí)總結(jié)
    發(fā)表于 06-16 14:52

    基于BP神經(jīng)網(wǎng)絡(luò)控制+Simulink雙閉環(huán)直流調(diào)速系統(tǒng)仿真設(shè)計

    最近一個月的時間沒有博,跟隨老師出差談項(xiàng)目了。前段時間學(xué)習(xí)了電機(jī)的智能控制,這次把設(shè)計好的基于BP神經(jīng)網(wǎng)絡(luò)PID控制器應(yīng)用于雙閉環(huán)直流調(diào)速系統(tǒng)。雙閉環(huán)直流調(diào)速系統(tǒng)的動態(tài)數(shù)學(xué)模型如下圖
    發(fā)表于 06-28 12:03

    探尋神經(jīng)網(wǎng)絡(luò)的本質(zhì) 分析神經(jīng)網(wǎng)絡(luò)做機(jī)器翻譯和語音識別過程

    使用新的解釋技術(shù),來分析神經(jīng)網(wǎng)絡(luò)做機(jī)器翻譯和語音識別的訓(xùn)練過程,神經(jīng)網(wǎng)絡(luò)語言處理工作原理有待破解。
    發(fā)表于 12-12 14:31 ?1686次閱讀

    利用深層神經(jīng)網(wǎng)絡(luò)人工智能(AI)訓(xùn)練技術(shù)翻譯文本

    從歷史上看,曾經(jīng)主流的機(jī)器學(xué)習(xí)技術(shù)在行業(yè)中應(yīng)用是統(tǒng)計機(jī)器翻譯 (SMT)。SMT 使用先進(jìn)的統(tǒng)計分析,從一句話中上下文的幾個詞中來估計最佳可能的翻譯。SMT自20 世紀(jì)中期以來的為所有主要翻譯服務(wù)提供商所使用,其中包括
    的頭像 發(fā)表于 03-21 16:26 ?7426次閱讀

    微軟最新的翻譯系統(tǒng)是利用深層神經(jīng)網(wǎng)絡(luò)人工智能訓(xùn)練技術(shù)翻譯文本

    雙猴全語通PRO在線人工翻譯有中譯提供,中譯副總裁梁鎮(zhèn)爽說:“中譯的翻譯水平是國家級的,G20會議、奧運(yùn)會期間的人工翻譯等等都是有中譯提供,目前國家級的對外翻譯基本上都是接入中譯平臺,
    的頭像 發(fā)表于 04-08 15:02 ?7935次閱讀

    循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的詳細(xì)介紹

    在循環(huán)神經(jīng)網(wǎng)絡(luò)可以用于文本生成、機(jī)器翻譯還有看圖描述等,在這些場景中很多都出現(xiàn)了RNN的身影。
    的頭像 發(fā)表于 05-11 14:58 ?1.4w次閱讀
    循環(huán)<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>(RNN)的詳細(xì)介紹

    谷歌翻譯加入離線AI翻譯功能,離線也能翻譯而且準(zhǔn)確

    更強(qiáng)、方便使用的離線 AI 翻譯可不是微軟的專利,谷歌今天也宣布為旗下的翻譯應(yīng)用加入相關(guān)功能,讓使用者的 Android 或 iOS 設(shè)備即使在沒有
    的頭像 發(fā)表于 08-13 15:56 ?5553次閱讀

    “閱讀級”AI翻譯上線,或?qū)⒙氏却蚱迫藱C(jī)翻譯壁壘

    AI翻譯是否精準(zhǔn)一直是人們重點(diǎn)關(guān)心的問題。盡管Google翻譯、科大訊飛翻譯機(jī)2.0、騰訊“翻譯君”等由行業(yè)巨頭推出的產(chǎn)品紛紛亮相,海量翻譯
    發(fā)表于 09-11 10:12 ?948次閱讀

    騰訊推出人工智能輔助翻譯 實(shí)現(xiàn)實(shí)時交互式翻譯

    Lab官方介紹,“騰訊輔助翻譯”采用自研的人機(jī)交互式機(jī)器翻譯技術(shù),融合神經(jīng)網(wǎng)絡(luò)機(jī)器翻譯、統(tǒng)計機(jī)器翻譯、輸入法、語義理解、數(shù)據(jù) ... 騰訊
    發(fā)表于 11-26 20:55 ?657次閱讀

    微軟發(fā)明了第一臺AI翻譯系統(tǒng),英漢互譯準(zhǔn)確率媲美人工

    微軟研究人員在3月14日發(fā)表博客文章稱,在利用深層神經(jīng)網(wǎng)絡(luò)人工智能(AI)訓(xùn)練技術(shù)翻譯文本方面取得了進(jìn)展。他們發(fā)明了第一臺機(jī)器翻譯
    的頭像 發(fā)表于 03-01 16:25 ?6077次閱讀

    采用人工智能的器翻譯系統(tǒng)

    機(jī)器翻譯 根據(jù)用戶領(lǐng)域需求,通過人工智能技術(shù),定制專業(yè)機(jī)器翻譯。 采用神經(jīng)網(wǎng)絡(luò)翻譯技術(shù)(NMT),支持訓(xùn)練和部署細(xì)分領(lǐng)域的垂直機(jī)器翻譯引擎,
    的頭像 發(fā)表于 09-21 14:45 ?1138次閱讀

    機(jī)器翻譯研究進(jìn)展

    成為主流,如神經(jīng)網(wǎng)絡(luò)機(jī)器翻譯。神經(jīng)網(wǎng)絡(luò)機(jī)器翻譯是機(jī)器從大量數(shù)據(jù)中自動學(xué)習(xí)翻譯知識,而不依靠人類專家撰寫規(guī)則,可以顯著提升
    的頭像 發(fā)表于 07-06 11:19 ?863次閱讀
    機(jī)器<b class='flag-5'>翻譯</b>研究進(jìn)展

    遞歸神經(jīng)網(wǎng)絡(luò)是循環(huán)神經(jīng)網(wǎng)絡(luò)

    遞歸神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,簡稱RNN)和循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,簡稱RNN)實(shí)際上是同一個概念,只是不同的翻譯方式
    的頭像 發(fā)表于 07-04 14:54 ?827次閱讀

    RNN神經(jīng)網(wǎng)絡(luò)適用于什么

    RNN(Recurrent Neural Network,循環(huán)神經(jīng)網(wǎng)絡(luò))是一種具有循環(huán)結(jié)構(gòu)的神經(jīng)網(wǎng)絡(luò),它可以處理序列數(shù)據(jù),具有記憶功能。RNN在許多領(lǐng)域都有廣泛的應(yīng)用,以下是一些RNN神經(jīng)網(wǎng)絡(luò)的適用
    的頭像 發(fā)表于 07-04 15:04 ?1038次閱讀