0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

谷歌推出新的移動(dòng)框架MobileNetV2提高多種計(jì)算機(jī)視覺(jué)任務(wù)

zhKF_jqr_AI ? 2018-04-07 20:57 ? 次閱讀

當(dāng)?shù)貢r(shí)間4月3日,谷歌推出了一款新的移動(dòng)框架MobileNetV2,基于上一代MobileNet,這款模型能顯著提高多種計(jì)算機(jī)視覺(jué)任務(wù)。

去年我們推出了MobileNetV1,這是一款為移動(dòng)設(shè)備而設(shè)計(jì)的通用計(jì)算機(jī)視覺(jué)神經(jīng)網(wǎng)絡(luò)模型,它有分類(lèi)、檢測(cè)等功能。這種可以在個(gè)人移動(dòng)設(shè)備上運(yùn)行深度網(wǎng)絡(luò)的能力極大地提升了用戶體驗(yàn),不僅能隨時(shí)隨地訪問(wèn),還非常安全、私密、省電。隨著新應(yīng)用的出現(xiàn),用戶可以與現(xiàn)實(shí)世界進(jìn)行實(shí)時(shí)交互,同樣對(duì)更高效的深度網(wǎng)絡(luò)也有更多的需求。

今天,我們很高興宣布MobileNetV2已經(jīng)可以支持下一代移動(dòng)視覺(jué)應(yīng)用。MobileNetV2在MobileNetV1上做出了重大改進(jìn),并推動(dòng)了目前移動(dòng)設(shè)備的視覺(jué)識(shí)別技術(shù)的發(fā)展,包括圖像分類(lèi)、檢測(cè)和語(yǔ)義分割。MobileNetV2作為TensorFlow-Slim圖像分類(lèi)庫(kù)的一部分發(fā)布,或者您可以在Colaboratory中探索MobileNetV2。另外,您還可以利用Jupyter下載筆記本并進(jìn)行使用。MobileNetV2也可以作為TF-Hub上的模塊使用,預(yù)訓(xùn)練的檢查點(diǎn)可以在GitHub上找到。

MobileNetV2的創(chuàng)建基于MobileNetV1的思想,使用深度可分離卷積作為高效的構(gòu)建模塊。然而,V2在架構(gòu)中引入了兩種新特征:

圖層間的線性瓶頸層

瓶頸層之間的快捷連接

基本結(jié)構(gòu)如圖所示:

可以看到,瓶頸對(duì)模型的中間輸入和輸出進(jìn)行編碼,而內(nèi)層包括了模型能將低級(jí)概念(如像素)轉(zhuǎn)換為高級(jí)描述符(如圖像類(lèi)別)的能力。最后,剩余的連接和傳統(tǒng)一樣,快速連接可實(shí)現(xiàn)更快的訓(xùn)練速度和更高的準(zhǔn)確性。具體細(xì)節(jié)可以查看論文:MobileNetV2:Inverted Residuals and Linear Bottlenecks:https://arxiv.org/abs/1801.04381。

它與第一代MobileNets相比如何?

總體而言,在整個(gè)延遲頻譜中,MobileNetV2模型在相同精度下的速度更快。特別的是,新模型所用的操作次數(shù)減少了2次,參數(shù)減少了30%,在谷歌pixel手機(jī)上的速度比V1快了30%~40%,同時(shí)達(dá)到了更高的準(zhǔn)確性。

MobileNetV2在目標(biāo)物體檢測(cè)和分割時(shí)是一個(gè)非常高效的特征提取器。例如,當(dāng)與新發(fā)布的SSDLite合作進(jìn)行物體檢測(cè)時(shí),新模型在做到與V1同樣準(zhǔn)確的情況下,速度快了35%。我們已經(jīng)在TensorFlow目標(biāo)物體檢測(cè)API中開(kāi)源了此模型。

為支持移動(dòng)設(shè)備的語(yǔ)義分割,我們將MobileNetV2當(dāng)做特征提取器安裝在簡(jiǎn)化版的DeepLabv3上。在語(yǔ)義分割的基準(zhǔn)PASCAL VOC 2012中,我們的結(jié)果與將V1作為特征提取器實(shí)現(xiàn)了相似的性能,但是參數(shù)少了5.3倍,在乘加運(yùn)算上操作次數(shù)減少了5.2倍。

由此可見(jiàn),MobileNetV2作為許多視覺(jué)識(shí)別任務(wù)的基礎(chǔ),是移動(dòng)設(shè)備上高效的模型。我們希望與學(xué)術(shù)界和開(kāi)源社區(qū)共享,以此幫助更多人的研究和應(yīng)用發(fā)展。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 谷歌
    +關(guān)注

    關(guān)注

    27

    文章

    6169

    瀏覽量

    105439
  • 計(jì)算機(jī)視覺(jué)

    關(guān)注

    8

    文章

    1698

    瀏覽量

    46005

原文標(biāo)題:谷歌推出MobileNetV2,為下一代移動(dòng)設(shè)備CV網(wǎng)絡(luò)而生

文章出處:【微信號(hào):jqr_AI,微信公眾號(hào):論智】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    計(jì)算機(jī)視覺(jué)有哪些優(yōu)缺點(diǎn)

    計(jì)算機(jī)視覺(jué)作為人工智能領(lǐng)域的一個(gè)重要分支,旨在使計(jì)算機(jī)能夠像人類(lèi)一樣理解和解釋圖像和視頻中的信息。這一技術(shù)的發(fā)展不僅推動(dòng)了多個(gè)行業(yè)的變革,也帶來(lái)了諸多優(yōu)勢(shì),但同時(shí)也伴隨著一些挑戰(zhàn)和局限性。以下是對(duì)
    的頭像 發(fā)表于 08-14 09:49 ?985次閱讀

    計(jì)算機(jī)視覺(jué)技術(shù)的AI算法模型

    計(jì)算機(jī)視覺(jué)技術(shù)作為人工智能領(lǐng)域的一個(gè)重要分支,旨在使計(jì)算機(jī)能夠像人類(lèi)一樣理解和解釋圖像及視頻中的信息。為了實(shí)現(xiàn)這一目標(biāo),計(jì)算機(jī)視覺(jué)技術(shù)依賴于
    的頭像 發(fā)表于 07-24 12:46 ?885次閱讀

    機(jī)器視覺(jué)計(jì)算機(jī)視覺(jué)有什么區(qū)別

    。機(jī)器視覺(jué)的研究目標(biāo)是讓機(jī)器具有類(lèi)似人類(lèi)的視覺(jué)能力,能夠自動(dòng)、準(zhǔn)確地完成各種視覺(jué)任務(wù)。 計(jì)算機(jī)視覺(jué)
    的頭像 發(fā)表于 07-16 10:23 ?546次閱讀

    計(jì)算機(jī)視覺(jué)的五大技術(shù)

    計(jì)算機(jī)視覺(jué)作為深度學(xué)習(xí)領(lǐng)域最熱門(mén)的研究方向之一,其技術(shù)涵蓋了多個(gè)方面,為人工智能的發(fā)展開(kāi)拓了廣闊的道路。以下是對(duì)計(jì)算機(jī)視覺(jué)五大技術(shù)的詳細(xì)解析,包括圖像分類(lèi)、對(duì)象檢測(cè)、目標(biāo)跟蹤、語(yǔ)義分割
    的頭像 發(fā)表于 07-10 18:26 ?1388次閱讀

    計(jì)算機(jī)視覺(jué)的工作原理和應(yīng)用

    計(jì)算機(jī)視覺(jué)(Computer Vision,簡(jiǎn)稱CV)是一門(mén)跨學(xué)科的研究領(lǐng)域,它利用計(jì)算機(jī)和數(shù)學(xué)算法來(lái)模擬人類(lèi)視覺(jué)系統(tǒng)對(duì)圖像和視頻進(jìn)行識(shí)別、理解、分析和處理。其核心目標(biāo)在于使
    的頭像 發(fā)表于 07-10 18:24 ?2030次閱讀

    計(jì)算機(jī)視覺(jué)與人工智能的關(guān)系是什么

    引言 計(jì)算機(jī)視覺(jué)是一門(mén)研究如何使計(jì)算機(jī)能夠理解和解釋視覺(jué)信息的學(xué)科。它涉及到圖像處理、模式識(shí)別、機(jī)器學(xué)習(xí)等多個(gè)領(lǐng)域的知識(shí)。人工智能則是研究如何使計(jì)算
    的頭像 發(fā)表于 07-09 09:25 ?663次閱讀

    計(jì)算機(jī)視覺(jué)與智能感知是干嘛的

    引言 計(jì)算機(jī)視覺(jué)(Computer Vision)是一門(mén)研究如何使計(jì)算機(jī)能夠理解和解釋視覺(jué)信息的學(xué)科。它涉及到圖像處理、模式識(shí)別、機(jī)器學(xué)習(xí)等多個(gè)領(lǐng)域,是人工智能的重要組成部分。智能
    的頭像 發(fā)表于 07-09 09:23 ?952次閱讀

    計(jì)算機(jī)視覺(jué)和機(jī)器視覺(jué)區(qū)別在哪

    ,旨在實(shí)現(xiàn)對(duì)圖像和視頻的自動(dòng)分析和理解。 機(jī)器視覺(jué) 機(jī)器視覺(jué)計(jì)算機(jī)視覺(jué)的一個(gè)分支,主要應(yīng)用于工業(yè)自動(dòng)化領(lǐng)域。它利用計(jì)算機(jī)和圖像處理技術(shù),實(shí)
    的頭像 發(fā)表于 07-09 09:22 ?458次閱讀

    計(jì)算機(jī)視覺(jué)和圖像處理的區(qū)別和聯(lián)系

    計(jì)算機(jī)視覺(jué)和圖像處理是兩個(gè)密切相關(guān)但又有明顯區(qū)別的領(lǐng)域。 1. 基本概念 1.1 計(jì)算機(jī)視覺(jué) 計(jì)算機(jī)視覺(jué)
    的頭像 發(fā)表于 07-09 09:16 ?1332次閱讀

    計(jì)算機(jī)視覺(jué)屬于人工智能嗎

    屬于,計(jì)算機(jī)視覺(jué)是人工智能領(lǐng)域的一個(gè)重要分支。 引言 計(jì)算機(jī)視覺(jué)是一門(mén)研究如何使計(jì)算機(jī)具有視覺(jué)
    的頭像 發(fā)表于 07-09 09:11 ?1323次閱讀

    深度學(xué)習(xí)在計(jì)算機(jī)視覺(jué)領(lǐng)域的應(yīng)用

    深度學(xué)習(xí)技術(shù)的引入,極大地推動(dòng)了計(jì)算機(jī)視覺(jué)領(lǐng)域的發(fā)展,使其能夠處理更加復(fù)雜和多樣化的視覺(jué)任務(wù)。本文將詳細(xì)介紹深度學(xué)習(xí)在計(jì)算機(jī)
    的頭像 發(fā)表于 07-01 11:38 ?822次閱讀

    機(jī)器視覺(jué)計(jì)算機(jī)視覺(jué)的區(qū)別

    很多方面有著相似之處,如基礎(chǔ)理論、技術(shù)框架等,但它們?cè)趯W(xué)科分類(lèi)、應(yīng)用領(lǐng)域、側(cè)重點(diǎn)等方面存在明顯的區(qū)別。本文將對(duì)機(jī)器視覺(jué)計(jì)算機(jī)視覺(jué)進(jìn)行詳細(xì)的對(duì)比分析,以便讀者更好地理解兩者的差異。
    的頭像 發(fā)表于 06-06 17:24 ?1346次閱讀

    計(jì)算機(jī)視覺(jué)的主要研究方向

    計(jì)算機(jī)視覺(jué)(Computer Vision, CV)作為人工智能領(lǐng)域的一個(gè)重要分支,致力于使計(jì)算機(jī)能夠像人眼一樣理解和解釋圖像和視頻中的信息。隨著深度學(xué)習(xí)、大數(shù)據(jù)等技術(shù)的快速發(fā)展,計(jì)算機(jī)
    的頭像 發(fā)表于 06-06 17:17 ?988次閱讀

    計(jì)算機(jī)視覺(jué)的十大算法

    視覺(jué)技術(shù)的發(fā)展起到了重要的推動(dòng)作用。一、圖像分割算法圖像分割算法是計(jì)算機(jī)視覺(jué)領(lǐng)域的基礎(chǔ)算法之一,它的主要任務(wù)是將圖像分割成不同的區(qū)域或?qū)ο?。常?jiàn)的圖像分割算法包括基
    的頭像 發(fā)表于 02-19 13:26 ?1247次閱讀
    <b class='flag-5'>計(jì)算機(jī)</b><b class='flag-5'>視覺(jué)</b>的十大算法

    工業(yè)視覺(jué)計(jì)算機(jī)視覺(jué)的區(qū)別

    工業(yè)視覺(jué)主要解決以往需要人眼進(jìn)行的工件的定位、測(cè)量、檢測(cè)等重復(fù)性勞動(dòng);計(jì)算機(jī)視覺(jué)的主要任務(wù)是賦予智能機(jī)器人視覺(jué),利用測(cè)距、物體標(biāo)定與識(shí)別等功
    發(fā)表于 01-16 10:06 ?596次閱讀
    工業(yè)<b class='flag-5'>視覺(jué)</b>與<b class='flag-5'>計(jì)算機(jī)</b><b class='flag-5'>視覺(jué)</b>的區(qū)別