如果你經(jīng)?;〞r(shí)間和小孩子待在一起的話,你會(huì)不由得思考小孩子怎么能夠?qū)W習(xí)得如此之快。哲學(xué)家們,比如柏拉圖也曾經(jīng)考慮過這個(gè)問題,但是從來沒有找到一個(gè)滿意的答案。我五歲的兒子,奧吉最近認(rèn)識(shí)了植物,動(dòng)物和鐘,當(dāng)然也少不了恐龍和飛船。他還弄懂了如何理解他人的需要和感受。他可以用知識(shí)來定義他看到和聽到的東西,并且做出新的預(yù)測(cè)。比如他最近就說前不久在紐約市美國(guó)自然歷史博物館展示的新雷龍是食草動(dòng)物,所以說并沒有那么可怕。
但其實(shí)奧吉體驗(yàn)到的不過是一串光子到達(dá)了他的視網(wǎng)膜,他的耳膜接收到了空氣的振動(dòng)而已。他藍(lán)眼睛背后的“神經(jīng)電腦”從某種角度上來說通過他感知到的有限的信息做出了食草雷龍不是很可怕的預(yù)測(cè)。那么問題來了,是不是說電腦也可以做到這樣呢?
過去15年的時(shí)間里,計(jì)算機(jī)科學(xué)家和心理學(xué)家一直在嘗試找到一個(gè)答案。兒童從老師和家長(zhǎng)那有限的輸入當(dāng)中獲取了大量的知識(shí)。盡管如今機(jī)器智能風(fēng)頭正盛,但是最厲害的電腦也不能像一個(gè)5歲兒童那樣進(jìn)行學(xué)習(xí)。
搞清楚兒童的大腦究竟是如何運(yùn)轉(zhuǎn)的,然后設(shè)計(jì)出一個(gè)電子版本能夠同樣有效地運(yùn)轉(zhuǎn),可能需要計(jì)算機(jī)科學(xué)家們幾十年的努力。但同時(shí),他們已經(jīng)在開發(fā)融合了人類學(xué)習(xí)模型的人工智能了。
追根溯源
在上世紀(jì)五六十年代的第一次熱潮爆發(fā)以后,接下來對(duì)AI的探索就沉寂了幾十年。不過在過去的幾年里,學(xué)界突然取得了重大進(jìn)展,尤其是在機(jī)器學(xué)習(xí)領(lǐng)域。AI一時(shí)間變成了最熱門的技術(shù)。這些進(jìn)展究竟是拯救人類還是毀滅人類,一時(shí)間也眾說紛紜。AI在也確實(shí)曾被用來預(yù)示永生或者世界末日,這兩種可能性文學(xué)作品里都已經(jīng)寫過很多。
我覺得在AI領(lǐng)域取得了這些發(fā)展引起人們強(qiáng)烈感受的主要原因在于我們內(nèi)心深處其實(shí)非常害怕類人類的出現(xiàn)的。不管是《科學(xué)怪人》里的魔偶還是2015年《機(jī)械姬》電影里的性感機(jī)器人,未來會(huì)出現(xiàn)一種“生物”會(huì)成為連接人類與人工之間鴻溝的橋梁,這種想法本身就讓人覺得恐慌。
但是計(jì)算機(jī)真的能像人類那樣學(xué)習(xí)嗎?那些席卷媒體的熱點(diǎn)新聞,有多少是真正具有革命意義的產(chǎn)品,而又有多少只是噱頭而已呢?電腦學(xué)習(xí)分辨貓,或者一個(gè)平片假名的過程很難被人理解。但是仔細(xì)觀察之后我們會(huì)發(fā)現(xiàn),機(jī)器學(xué)習(xí)背后的基礎(chǔ)理論并沒有一開始看上去的那么難以捉摸。
一種解決辦法是我們接收到的光子和空氣振動(dòng),到了電腦上就會(huì)以數(shù)字圖像的像素和錄音的聲音片段呈現(xiàn)出來。然后試著從數(shù)據(jù)中提取一串圖案用來探測(cè)并識(shí)別周圍世界的物體。這種自底向上的研究方法在一些哲學(xué)家和心理學(xué)家的理論中也可以找到,比如約翰·密爾。
上世紀(jì)八十年代,科學(xué)家找到了一種令人信服的方式應(yīng)用這種自底向上的方式讓計(jì)算機(jī)在數(shù)據(jù)中尋找有價(jià)值的圖案。”神經(jīng)網(wǎng)絡(luò)“系統(tǒng)通過神經(jīng)元將視網(wǎng)膜上的光圖案再現(xiàn)了你周圍的環(huán)境。神經(jīng)網(wǎng)絡(luò)也是一樣的圖案。通過互相連接的類似生物細(xì)胞的處理單元將某一層網(wǎng)絡(luò)上的像素轉(zhuǎn)換成抽象的表達(dá)——比如一個(gè)鼻子或一整張臉。
神經(jīng)網(wǎng)絡(luò)的概念由于最近深度學(xué)習(xí)新技術(shù)的出現(xiàn)又重新振興了。深度學(xué)習(xí)這種技術(shù)是由谷歌,F(xiàn)acebook和其他互聯(lián)網(wǎng)巨頭進(jìn)行商業(yè)落地的。計(jì)算機(jī)不斷增長(zhǎng)的能力——比如由摩爾定律體現(xiàn)的計(jì)算能力的指數(shù)增長(zhǎng),也是這些系統(tǒng)獲得成功的一部分原因,大數(shù)據(jù)集地快速發(fā)展也是其中一部分原因。有了更高的處理速度和更多的數(shù)據(jù)之后,連接系統(tǒng)能夠更加高效地學(xué)習(xí)。
就像科學(xué)家一樣,自頂向上的系統(tǒng)形成了抽象廣泛的對(duì)于世界的假設(shè)。這個(gè)系統(tǒng)會(huì)預(yù)測(cè)在假設(shè)是正確的情況下,數(shù)據(jù)會(huì)呈現(xiàn)出什么樣子。同時(shí)這個(gè)系統(tǒng)也會(huì)不斷根據(jù)這些預(yù)測(cè)的結(jié)果來修改自身的假設(shè)。
尼日利亞、萬艾可和垃圾郵件
自底向上的方式可能是最容易被理解的,我們首先來解釋這個(gè)。想像一下你試圖讓計(jì)算機(jī)從你的收件箱中分辨出重要郵件。你可能注意到垃圾郵件都有某種讓人討厭的特征:收件人列表特別長(zhǎng),源地址來自尼日利亞或巴伐利亞,總是提到一百萬美元的獎(jiǎng)金或提到偉哥。但是很可能非常有用的郵件看起來也是這樣。你不想錯(cuò)過表示你升職或者得了學(xué)術(shù)獎(jiǎng)項(xiàng)的郵件。
如果你對(duì)比大量垃圾郵件和正常郵件之后,你會(huì)發(fā)現(xiàn)只有垃圾郵件一般會(huì)具備以上的講故事方式——比如,來自尼日利亞的郵件,并承諾有一百萬美元的獎(jiǎng)金出現(xiàn)了問題。事實(shí)上,也許存在更加明顯的區(qū)分垃圾郵件和正常郵件的方式——比如不太明顯的錯(cuò)誤拼寫和IP地址。如果你能發(fā)現(xiàn)這些信息,你就可以準(zhǔn)確地過濾掉垃圾郵件了,而且也不用擔(dān)心你的正常郵件被攔截。
自底向上的機(jī)器學(xué)習(xí)可以探索出解決這種問題的相關(guān)線索。為了達(dá)到這一目的,神經(jīng)網(wǎng)絡(luò)必須回顧之前的學(xué)習(xí)過程。神經(jīng)網(wǎng)絡(luò)從巨大的數(shù)據(jù)庫中對(duì)成百萬的樣例進(jìn)行評(píng)估,每一個(gè)樣例標(biāo)記為垃圾郵件或者正常郵件。然后計(jì)算機(jī)從一組識(shí)別特征中提取出能區(qū)分垃圾郵件的特征。
這種類似的方式也可以用來給“貓”“房子”之類的網(wǎng)絡(luò)圖片打標(biāo)簽。通過提取一組相同物體圖片的共有特征,比如將所有貓狗區(qū)分開的圖案,系統(tǒng)最終可以識(shí)別新圖片里的貓,即便新的圖片和之前的圖片沒有任何相似點(diǎn)。
一種自下而上的學(xué)習(xí)方式叫做無監(jiān)督學(xué)習(xí),現(xiàn)在仍處于非常初級(jí)的階段。但是它可以檢測(cè)數(shù)據(jù)中沒有打上標(biāo)簽的圖案。它僅僅尋找能夠識(shí)別一個(gè)物體的特征束,比如說眼睛和鼻子通常會(huì)一起組成一張臉,這有別于背景中的樹或者山。
《自然》雜志2015年發(fā)表了一篇文章解釋了自下而上的方式發(fā)展的進(jìn)城。Google下屬DeepMind的研究者們使用了一種結(jié)合了兩種不同自下而上的方式,即深度學(xué)習(xí)和強(qiáng)化學(xué)習(xí),從某種角度來說能讓電腦掌握玩雅達(dá)利2600電子游戲的訣竅。電腦一開始不知道游戲是如何運(yùn)行的。
最開始是通過隨機(jī)的猜測(cè)最佳行動(dòng)方式并不斷接收結(jié)果反饋。深度學(xué)習(xí)幫助系統(tǒng)發(fā)現(xiàn)屏幕上的特征,而強(qiáng)化學(xué)習(xí)會(huì)根據(jù)特征返回一個(gè)高分。擁有該系統(tǒng)的電腦可以在幾個(gè)游戲上都達(dá)到流暢的水準(zhǔn),甚至在一些案例中,電腦玩的比高級(jí)玩家還要好。也就是說,其他人類可以掌握的游戲,該系統(tǒng)也可以順利掌握。
應(yīng)用AI學(xué)習(xí)大的數(shù)據(jù)集,比如幾百萬張Instagram上的圖片,郵件或者聲音片段,并進(jìn)行圖像識(shí)別或者聲音識(shí)別時(shí),有時(shí)會(huì)得到令人氣餒的結(jié)果。但即便如此,我們應(yīng)該記得,在有限的數(shù)據(jù)或者訓(xùn)練情況下,我的孫子仍然可以準(zhǔn)確識(shí)別動(dòng)物或者回答問題。對(duì)于五歲兒童非常簡(jiǎn)單的問題,對(duì)于計(jì)算機(jī)來說仍然很困難。
要想讓計(jì)算機(jī)識(shí)別出一個(gè)絡(luò)腮胡子的臉需要幾百萬張案例,但是我們只需要幾張就可以了。通過大量的訓(xùn)練之后,計(jì)算機(jī)可能可以識(shí)別出一只之前沒有出現(xiàn)過的貓的圖片。但是這種識(shí)別能力與人類概括的能力是不同的。因?yàn)橛?jì)算機(jī)軟件推理的方式不同,難免會(huì)有失誤。有些貓的圖片可能不會(huì)被標(biāo)注為貓,也有可能會(huì)出現(xiàn)不是貓的圖片被標(biāo)為貓的情況。但即便是模糊的一瞥,人類也不會(huì)弄錯(cuò)。
發(fā)展之路
另外一種近些年改變了AI的深度學(xué)習(xí)方式則是自頂向下的模式。它假設(shè)我們可以從具體的數(shù)據(jù)中得到抽象的解釋,因?yàn)槲覀円呀?jīng)知道了很多知識(shí),并且大腦已經(jīng)可以理解各種基本的抽象概念了。就像科學(xué)家,我們可以使用這些概念來形成關(guān)于世界的假設(shè),并且預(yù)測(cè)假設(shè)正確的情況下會(huì)呈現(xiàn)出哪種情況,這是和自底向上的AI模式相反的方式。
回到剛剛我們討論的垃圾郵件的問題,這個(gè)概念可以得到很好地詮釋。之前我從某個(gè)期刊的編輯收到一封郵件,聲稱我在他們的期刊上發(fā)表了一篇文章,要和我討論一下。這個(gè)編輯的名字很奇怪。這封郵件既沒有尼日利亞,也沒有萬艾可,也沒有百萬美元獎(jiǎng)金——可以說沒有任何垃圾郵件的特征。但是通過我已有的關(guān)于垃圾郵件的抽象認(rèn)識(shí),我就知道這封郵件值得懷疑。
首先,我知道發(fā)送垃圾郵件的人是想通過人的貪心來從其他人那里竊取金錢。我還知道有些合法的“開源”期刊開始通過向作者征收費(fèi)用來盈利了。而且我的研究領(lǐng)域和這些期刊毫無關(guān)系。把這些信息全部整合在一起,我得出一個(gè)可靠的假設(shè)那就是這封郵件想誘惑一些學(xué)術(shù)人士付費(fèi)在這些期刊上發(fā)表假的論文。只要通過這一個(gè)例子我就可以得出這樣的結(jié)論,如果我想繼續(xù)驗(yàn)證我的假設(shè)的話,只需要使用一個(gè)搜索引擎工具來查看編輯的信譽(yù)度就可以了。
計(jì)算機(jī)科學(xué)家會(huì)把我的推理過程稱為生成模型,一種可以代表抽象概念,比如貪婪和欺騙的模型。這種模型同時(shí)也可以用來描述產(chǎn)生假設(shè)的過程——也就是得出這封郵件可能是垃圾郵件的結(jié)論為推斷過程。這個(gè)模型讓我理解了這種垃圾郵件是如何運(yùn)作的,但同時(shí)也讓我思考了一下其他類型的垃圾郵件的模式。
在上個(gè)世紀(jì)五六十年代AI和認(rèn)知科學(xué)第一波浪潮興起時(shí),生成模型非常重要。但是生成模型也有局限性。首先,很多事實(shí)依據(jù)的模式理論上可以用不同的假設(shè)解釋。比如我剛剛提到的案例中,雖然看上去不太像,但是那封郵件也可能是合法郵件。所以,近年來學(xué)界提出生成模型需要和或然性推理結(jié)合起來,這是領(lǐng)域內(nèi)的一次重要發(fā)展。其次,形成生成模型的基本概念的來源通常不是很清晰。
近年的一個(gè)自頂向下的方式的基本案例——貝葉斯模型也許可以解決這兩個(gè)問題。貝葉斯模型是以十八世紀(jì)的統(tǒng)計(jì)學(xué)家和哲學(xué)家托馬斯·貝葉斯的名字命名,該模型使用貝葉斯推論將生成模型和或然性理論結(jié)合起來。如果某個(gè)假設(shè)是對(duì)的,那么概率生成模型會(huì)告訴你看到對(duì)應(yīng)的數(shù)據(jù)型態(tài)的可能性。如果一封郵件是垃圾郵件,那么這封郵件可能迎合了讀者的貪婪之心。不過當(dāng)然,一封不是垃圾郵件的郵件也可能滿足讀者的貪婪。貝葉斯模型將潛在假設(shè)和你看到的數(shù)據(jù)結(jié)合起來,讓你清楚地分辨一封郵件到底是合法郵件還是垃圾郵件。
這種自頂向下的方式比自底向上的方式要更類似兒童學(xué)習(xí)的方式。這就是為什么過去15年里我和我的同事們一直將貝葉斯模型應(yīng)用在兒童學(xué)習(xí)研究中。我們的實(shí)驗(yàn)室一直用這種方式來理解兒童學(xué)習(xí)因果關(guān)系的過程,并預(yù)測(cè)兒童何時(shí)以何種方式發(fā)展出新的關(guān)于世界的理解,或者更新他們已有的認(rèn)知。
貝葉斯模型也是訓(xùn)練機(jī)器像人類那樣思考的最好的方式。2015年,麻省理工學(xué)院的Joshua B. Tenenbaum和紐約大學(xué)的Brenden M. Lake以及他們的同事在《科學(xué)》雜志上發(fā)表了一篇研究論文。他們?cè)O(shè)計(jì)了一種人工智能系統(tǒng),可以認(rèn)出陌生的手寫文字。這件事對(duì)人類來說很容易,但是對(duì)計(jì)算機(jī)來說則非常復(fù)雜。
想想你自己的辨別能力。即便你從來沒有見過日本的片假名,你還是可以發(fā)現(xiàn)片假名之間的區(qū)別。甚至你自己都可以重新寫出一些片假名或者設(shè)計(jì)類似片假名的文字,而且你會(huì)清楚的知道片假名和韓國(guó)文字,俄羅斯文字之間差異很大。這就是Tenenbaum的團(tuán)隊(duì)設(shè)計(jì)的一種軟件。
通過自底向上的方法,計(jì)算機(jī)會(huì)從上千張樣例中找到合適的模式辨別新的文字。而貝葉斯模型則通過一個(gè)通用模型訓(xùn)練機(jī)器來寫文字,比如筆畫可以往左或者往右。當(dāng)該軟件寫完一個(gè)文字的時(shí)候,再寫下一個(gè)。
當(dāng)該軟件對(duì)一個(gè)現(xiàn)有文字進(jìn)行識(shí)別時(shí),軟件可以推測(cè)出寫出該文字的筆順,然后會(huì)自動(dòng)設(shè)計(jì)出一組類似的筆順。該軟件識(shí)別文字并設(shè)計(jì)筆順的方式和我推理自己收到的郵件是不是垃圾郵件的方式是一樣的,但是Tenenbaum的模型的推理過程目的在于得到想要的文字。數(shù)據(jù)一樣的情況下,這種自頂向下的程序比深度學(xué)習(xí)要有效的多,甚至接近人類表現(xiàn)。
完美融合
自底向上和自頂向下的方式都是深度學(xué)習(xí)的有效方式,并且各有優(yōu)劣。使用自底向上的方式,計(jì)算機(jī)不需要理解任何有關(guān)貓的內(nèi)容,但是需要大量的數(shù)據(jù)來訓(xùn)練。
貝葉斯模型只需要一小部分?jǐn)?shù)據(jù),便可以大范圍應(yīng)用。但是這種自頂而下的方式需要對(duì)正確的假設(shè)做大量的解釋。兩種方式的設(shè)計(jì)者可能會(huì)碰到同樣的問題。這兩種方式都只適合用來解決一些簡(jiǎn)單清晰的問題,比如識(shí)別手寫的文字或者貓的圖片或者是玩Atari游戲。
但是兒童學(xué)習(xí)的過程卻沒有這種限制。發(fā)展心理學(xué)家們發(fā)現(xiàn)兒童在某種程度上能融合這兩種方式的優(yōu)點(diǎn),并且最大化應(yīng)用這兩種方式。像我的孫子學(xué)習(xí)的時(shí)候只需要一兩個(gè)例子,就像自頂而下的方式。但是他某種程度上也會(huì)通過這些數(shù)據(jù)整理出關(guān)于這些例子的抽象概念,就像自底向上的方式。
我的孫子可以做的事情還有很多。他可以很快地辨認(rèn)貓和字母,甚至可以得出一些遠(yuǎn)遠(yuǎn)超出他的經(jīng)驗(yàn)和背景知識(shí)的推斷。他最近說,要是一個(gè)大人想變成孩子,就應(yīng)該不吃健康的蔬菜,因?yàn)檫@些東西讓孩子長(zhǎng)成了大人。而我們卻不知道這種富有創(chuàng)意的推理是從哪里來的。
當(dāng)我們聽到人工智能對(duì)人類是一種威脅這種觀點(diǎn)的時(shí)候,我們應(yīng)該想到人類大腦的神秘力量。人工智能和機(jī)器學(xué)習(xí)聽起來很可怕,當(dāng)然從某種角度來說,確實(shí)也是。部隊(duì)在考慮用這些技術(shù)來控制武器。比起人工智能,人類的愚蠢有時(shí)候能帶來更大的威脅,我們應(yīng)該盡可能地正確地規(guī)范使用這些技術(shù)。摩爾定律早已表明,即便在理解人類思維上沒有什么革命性的理論,僅僅是數(shù)據(jù)和計(jì)算能力的大量增長(zhǎng)也可以帶來計(jì)算結(jié)果的顯著提升,并且產(chǎn)生重要的具有實(shí)質(zhì)意義的結(jié)果。也就是說,人工智能的出現(xiàn)并不意味著顛覆世界。
-
人工智能
+關(guān)注
關(guān)注
1791文章
47314瀏覽量
238648 -
深度學(xué)習(xí)
+關(guān)注
關(guān)注
73文章
5503瀏覽量
121206
原文標(biāo)題:一文帶你讀懂深度學(xué)習(xí):AI 認(rèn)識(shí)世界的方式如同小孩
文章出處:【微信號(hào):gh_211d74f707ff,微信公眾號(hào):重慶人工智能】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論