0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
电子发烧友
开通电子发烧友VIP会员 尊享10大特权
海量资料免费下载
精品直播免费看
优质内容免费畅学
课程9折专享价
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

對于一款新的BSP如何添加SPI驅(qū)動

RT-Thread官方賬號 ? 2025-02-26 19:00 ? 次閱讀

介紹

SPI總線由開發(fā),是一種,由四個IO口組成:CS、SCLK、MISO、MOSI;通常用于CPU和外設(shè)之間進行通信,常見的SPI總線設(shè)備有:TFT LCD、QSPI FLASH、時鐘模塊、IMU等;開發(fā)板上集成了兩路SPI總線,本次實驗將重點介紹RT-Thread系統(tǒng)中SPI BSP驅(qū)動的移植過程,以NXP MCXA153為例。

e3650df2-f430-11ef-9434-92fbcf53809c.png

移植流程

以SPI0為例

(1) 在board里邊添加相應(yīng)的外設(shè):配置spi0外設(shè)為復(fù)位狀態(tài)、設(shè)置GPIO引腳功能

(2) 添加相應(yīng)的Kconfig開關(guān),用以指示相應(yīng)的外設(shè)開啟與關(guān)閉(本質(zhì)是通過宏定義或者條件編譯的方式)

(3) 根據(jù)SDK_2_14_2_FRDM-MCXA153提供的spi示例工程編寫spi總線驅(qū)動,需要實現(xiàn)幾個關(guān)鍵的函數(shù)

SDK_2_14_2_FRDM-MCXA153

https://mcuxpresso.nxp.com/zh/builder?hw=FRDM-MCXA153

rt_hw_spi_init

spi_configure

斯皮克斯

(4) 添加相應(yīng)的庫文件依賴:fsl_lpspi.c、fsl_lpspi_edma.c

引腳對應(yīng)關(guān)系

e37d5d26-f430-11ef-9434-92fbcf53809c.png

驅(qū)動文件

板。

在函數(shù)里加入以下代碼 rt_hw_board_init

edma_config_t userConfig = {0};EDMA_GetDefaultConfig(&userConfig);EDMA_Init(DMA0, &userConfig);pin_mux.c

pin_mux.c

在函數(shù)里加入以下代碼 BOARD_InitPins

#ifdef BSP_USING_SPI0 RESET_ReleasePeripheralReset(kLPSPI0_RST_SHIFT_RSTn); const port_pin_config_t port1_0_pin56_config = {/* Internal pull-up/down resistor is disabled */ kPORT_PullDisable, /* Low internal pull resistor value is selected. */ kPORT_LowPullResistor, /* Fast slew rate is configured */ kPORT_FastSlewRate, /* Passive input filter is disabled */ kPORT_PassiveFilterDisable, /* Open drain output is disabled */ kPORT_OpenDrainDisable, /* Low drive strength is configured */ kPORT_LowDriveStrength, /* Normal drive strength is configured */ kPORT_NormalDriveStrength, /* Pin is configured as LPSPI0_SDO */ kPORT_MuxAlt2, /* Digital input enabled */ kPORT_InputBufferEnable, /* Digital input is not inverted */ kPORT_InputNormal, /* Pin Control Register fields [15:0] are not locked */ kPORT_UnlockRegister}; /* PORT1_0 (pin 56) is configured as LPSPI0_SDO */ PORT_SetPinConfig(PORT1, 0U, &port1_0_pin56_config); const port_pin_config_t port1_1_pin57_config = {/* Internal pull-up/down resistor is disabled */ kPORT_PullDisable, /* Low internal pull resistor value is selected. */ kPORT_LowPullResistor, /* Fast slew rate is configured */ kPORT_FastSlewRate, /* Passive input filter is disabled */ kPORT_PassiveFilterDisable, /* Open drain output is disabled */ kPORT_OpenDrainDisable, /* Low drive strength is configured */ kPORT_LowDriveStrength, /* Normal drive strength is configured */ kPORT_NormalDriveStrength, /* Pin is configured as LPSPI0_SCK */ kPORT_MuxAlt2, /* Digital input enabled */ kPORT_InputBufferEnable, /* Digital input is not inverted */ kPORT_InputNormal, /* Pin Control Register fields [15:0] are not locked */ kPORT_UnlockRegister}; /* PORT1_1 (pin 57) is configured as LPSPI0_SCK */ PORT_SetPinConfig(PORT1, 1U, &port1_1_pin57_config); const port_pin_config_t port1_2_pin58_config = {/* Internal pull-up/down resistor is disabled */ kPORT_PullDisable, /* Low internal pull resistor value is selected. */ kPORT_LowPullResistor, /* Fast slew rate is configured */ kPORT_FastSlewRate, /* Passive input filter is disabled */ kPORT_PassiveFilterDisable, /* Open drain output is disabled */ kPORT_OpenDrainDisable, /* Low drive strength is configured */ kPORT_LowDriveStrength, /* Normal drive strength is configured */ kPORT_NormalDriveStrength, /* Pin is configured as LPSPI0_SDI */ kPORT_MuxAlt2, /* Digital input enabled */ kPORT_InputBufferEnable, /* Digital input is not inverted */ kPORT_InputNormal, /* Pin Control Register fields [15:0] are not locked */ kPORT_UnlockRegister}; /* PORT1_2 (pin 58) is configured as LPSPI0_SDI */ PORT_SetPinConfig(PORT1, 2U, &port1_2_pin58_config); const port_pin_config_t port1_3_pin59_config = {/* Internal pull-up/down resistor is disabled */ kPORT_PullDisable, /* Low internal pull resistor value is selected. */ kPORT_LowPullResistor, /* Fast slew rate is configured */ kPORT_FastSlewRate, /* Passive input filter is disabled */ kPORT_PassiveFilterDisable, /* Open drain output is disabled */ kPORT_OpenDrainDisable, /* Low drive strength is configured */ kPORT_LowDriveStrength, /* Normal drive strength is configured */ kPORT_NormalDriveStrength, /* Pin is configured as LPSPI0_PCS0 */ kPORT_MuxAlt2, /* Digital input enabled */ kPORT_InputBufferEnable, /* Digital input is not inverted */ kPORT_InputNormal, /* Pin Control Register fields [15:0] are not locked */ kPORT_UnlockRegister}; /* PORT1_3 (pin 59) is configured as LPSPI0_PCS0 */ PORT_SetPinConfig(PORT1, 3U, &port1_3_pin59_config);#endif

板/Kconfig

加入SPI0相關(guān)配置

menuconfig BSP_USING_SPI config BSP_USING_SPI bool "Enable SPI" select RT_USING_SPI default y if BSP_USING_SPI config BSP_USING_SPI0 bool "Enable SPI0" default endif

drv_spi.c

spi驅(qū)動層修改如下

/* * Copyright (c) 2006-2024, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2024-08-3 hywing The first version for MCXA */#include "rtdevice.h"#include "drv_spi.h"#include "fsl_common.h"#include "fsl_lpspi.h"#include "fsl_lpspi_edma.h"#define DMA_MAX_TRANSFER_COUNT (32767)enum{#ifdef BSP_USING_SPI0 SPI1_INDEX,#endif};struct lpc_spi{ struct rt_spi_bus parent; LPSPI_Type *LPSPIx; clock_attach_id_t clock_attach_id; clock_div_name_t clock_div_name; clock_name_t clock_name; DMA_Type *DMAx; uint8_t tx_dma_chl; uint8_t rx_dma_chl; edma_handle_t dma_tx_handle; edma_handle_t dma_rx_handle; dma_request_source_t tx_dma_request; dma_request_source_t rx_dma_request; lpspi_master_edma_handle_t spi_dma_handle; rt_sem_t sem; char *name;};static struct lpc_spi lpc_obj[] ={#ifdef BSP_USING_SPI0 { .LPSPIx = LPSPI0, .clock_attach_id = kFRO12M_to_LPSPI0, .clock_div_name = kCLOCK_DivLPSPI0, .clock_name = kCLOCK_Fro12M, .tx_dma_request = kDma0RequestLPSPI0Tx, .rx_dma_request = kDma0RequestLPSPI0Rx, .DMAx = DMA0, .tx_dma_chl = 0, .rx_dma_chl = 1, .name = "spi0", },#endif};struct lpc_sw_spi_cs{ rt_uint32_t pin;};rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, rt_uint32_t pin){ rt_err_t ret = RT_EOK;

struct rt_spi_device *spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device)); struct lpc_sw_spi_cs *cs_pin = (struct lpc_sw_spi_cs *)rt_malloc(sizeof(struct lpc_sw_spi_cs)); cs_pin->pin = pin; rt_pin_mode(pin, PIN_MODE_OUTPUT); rt_pin_write(pin, PIN_HIGH); ret = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin); return ret;}static rt_err_t spi_configure(struct rt_spi_device *device, struct rt_spi_configuration *cfg){ rt_err_t ret = RT_EOK;// struct lpc_spi *spi = RT_NULL;// spi = (struct lpc_spi *)(device->bus->parent.user_data);// ret = lpc_spi_init(spi->SPIx, cfg);

return ret;}static void LPSPI_MasterUserCallback(LPSPI_Type *base, lpspi_master_edma_handle_t *handle, status_t status, void *userData){ struct lpc_spi *spi = (struct lpc_spi *)userData; rt_sem_release(spi->sem);}static rt_ssize_t spixfer(struct rt_spi_device *device, struct rt_spi_message *message)

{ int i; lpspi_transfer_t transfer = {0}; RT_ASSERT(device != RT_NULL); RT_ASSERT(device->bus != RT_NULL);

RT_ASSERT(device->bus->parent.user_data != RT_NULL); struct lpc_spi *spi = (struct lpc_spi *)

(device->bus->parent.user_data); struct lpc_sw_spi_cs *cs = device->parent.user_data; if (message->cs_take) { rt_pin_write(cs->pin, PIN_LOW); } transfer.dataSize = message->length; transfer.rxData = (uint8_t *)(message->recv_buf); transfer.txData = (uint8_t *)(message->send_buf); // if(message->length < MAX_DMA_TRANSFER_SIZE) if (0) { LPSPI_MasterTransferBlocking(spi->LPSPIx, &transfer); } else { uint32_t block, remain; block = message->length / DMA_MAX_TRANSFER_COUNT; remain = message->length % DMA_MAX_TRANSFER_COUNT; for (i = 0; i < block; i++)?

{ transfer.dataSize = DMA_MAX_TRANSFER_COUNT; if (message->recv_buf) transfer.rxData = (uint8_t *)(message->recv_buf + i * DMA_MAX_TRANSFER_COUNT); if (message->send_buf) transfer.txData = (uint8_t *)(message->send_buf + i * DMA_MAX_TRANSFER_COUNT); LPSPI_MasterTransferEDMA(spi->LPSPIx, &spi->spi_dma_handle, &transfer); rt_sem_take(spi->sem, RT_WAITING_FOREVER); }

if (remain) { transfer.dataSize = remain; if (message->recv_buf) transfer.rxData = (uint8_t *)(message->recv_buf + i * DMA_MAX_TRANSFER_COUNT); if (message->send_buf) transfer.txData = (uint8_t *)

(message->send_buf + i * DMA_MAX_TRANSFER_COUNT); LPSPI_MasterTransferEDMA(spi->LPSPIx, &spi->spi_dma_handle, &transfer); rt_sem_take(spi->sem, RT_WAITING_FOREVER); }

} if (message->cs_release) { rt_pin_write(cs->pin, PIN_HIGH); } return message->length;}static struct rt_spi_ops lpc_spi_ops ={ .configure = spi_configure, .xfer = spixfer};int rt_hw_spi_init(void){ int i; for (i = 0; i < ARRAY_SIZE(lpc_obj); i++) { CLOCK_SetClockDiv(lpc_obj[i].clock_div_name, 1u);

CLOCK_AttachClk(lpc_obj[i].clock_attach_id); lpc_obj[i].parent.parent.user_data = &lpc_obj[i]; lpc_obj[i].sem = rt_sem_create("sem_spi", 0, RT_IPC_FLAG_FIFO); lpspi_master_config_t masterConfig; LPSPI_MasterGetDefaultConfig(&masterConfig); masterConfig.baudRate = 12 * 1000 * 1000; masterConfig.pcsToSckDelayInNanoSec = 1000000000U / masterConfig.baudRate * 1U; masterConfig.lastSckToPcsDelayInNanoSec = 1000000000U / masterConfig.baudRate * 1U; masterConfig.betweenTransferDelayInNanoSec = 1000000000U / masterConfig.baudRate * 1U; LPSPI_MasterInit(lpc_obj[i].LPSPIx, &masterConfig, CLOCK_GetFreq(lpc_obj[i].clock_name)); EDMA_CreateHandle(&lpc_obj[i].dma_tx_handle, lpc_obj[i].DMAx,

lpc_obj[i].tx_dma_chl); EDMA_CreateHandle(&lpc_obj[i].dma_rx_handle, lpc_obj[i].DMAx, lpc_obj[i].rx_dma_chl); EDMA_SetChannelMux(lpc_obj[i].DMAx, lpc_obj[i].tx_dma_chl,

lpc_obj[i].tx_dma_request);

EDMA_SetChannelMux(lpc_obj[i].DMAx, lpc_obj[i].rx_dma_chl, lpc_obj[i].rx_dma_request); LPSPI_MasterTransferCreateHandleEDMA(lpc_obj[i].LPSPIx, &lpc_obj[i].spi_dma_handle, LPSPI_MasterUserCallback, &lpc_obj[i], &lpc_obj[i].dma_rx_handle, &lpc_obj[i].dma_tx_handle); rt_spi_bus_register(&lpc_obj[i].parent,

lpc_obj[i].name, &lpc_spi_ops); } return RT_EOK;}INIT_DEVICE_EXPORT(rt_hw_spi_init);

SConscript 腳本

在文件里邊加上以下代碼 Libraries/MCXA153/SConscript

if GetDepend('BSP_USING_SPI'): src += ['MCXA153/drivers/fsl_lpspi.c']src+=['MCXA153/drivers/fsl_lpspi_edma.c']

測試用例

打開menuconfig使能spi0驅(qū)動

e386ae08-f430-11ef-9434-92fbcf53809c.png

短接MISO和MOSI引腳(P1_0和P1_2)進行自發(fā)自收測試

e39661fe-f430-11ef-9434-92fbcf53809c.jpg

測試程序

#include #include "rtdevice.h" #include "drv_spi.h"#define SPI_BUS_NAME "spi0" #define SPI_DEV_NAME "spi00" static struct rt_spi_device *spi_device;static void spi_sample(void) { rt_err_t result; struct rt_spi_configuration cfg; uint8_t tx_buf[] = "Hello RT-Thread!"; uint8_t rx_buf[sizeof(tx_buf)]; rt_base_t cs = 1*32+3; rt_hw_spi_device_attach(SPI_BUS_NAME, SPI_DEV_NAME, cs); /* ??è?SPIéè±? */ spi_device = (struct rt_spi_device *)rt_device_find(SPI_DEV_NAME); if (!spi_device) { rt_kprintf("can't find %s device!\n", SPI_BUS_NAME); } /* ????SPIéè±? */ cfg.data_width = 8; cfg.mode = RT_SPI_MASTER | RT_SPI_MODE_0 | RT_SPI_MSB; cfg.max_hz = 12* 1000 * 1000; /* éè??SPIéè±? */ rt_spi_configure(spi_device, &cfg); result = rt_spi_transfer(spi_device, tx_buf, rx_buf, sizeof(tx_buf)); if (result == sizeof(tx_buf)) { rt_kprintf("Send: %s\n", tx_buf); rt_kprintf("Received: %s\n", rx_buf); } else { rt_kprintf("spi transfer failed! error code: %d\n", result); } } int main(void) { spi_sample(); return 0; }

運行結(jié)果

e3a11c8e-f430-11ef-9434-92fbcf53809c.png

總結(jié)

另外,你也可以安裝,通過圖形方式配置時鐘樹、GPIO復(fù)用 MCUXpresso Config Tools v16

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 驅(qū)動
    +關(guān)注

    關(guān)注

    12

    文章

    1866

    瀏覽量

    85947
  • SPI
    SPI
    +關(guān)注

    關(guān)注

    17

    文章

    1731

    瀏覽量

    92884
  • BSP
    BSP
    +關(guān)注

    關(guān)注

    1

    文章

    89

    瀏覽量

    26425
收藏 0人收藏

    評論

    相關(guān)推薦

    一款LED驅(qū)動芯片

    一款LED驅(qū)動芯片,要求輸入24V,輸出電壓20V以上時,電流能達到1.5A左右,可PWM調(diào)光。 有的芯片芯片雖然最大能達到幾安,但輸出電壓高了就1A都不到了,就像GS6300,雖然輸出電壓可以達到37V,輸出電流可以達到3A,但他輸出電壓20V時,電流1A都達不到了{
    發(fā)表于 01-08 15:42

    (轉(zhuǎn)載)20D添加標準SPI驅(qū)動詳解 ——(二)

    標準SPI驅(qū)動詳解 ——(三)中告訴大家具體怎么修改和添加原帖:https://www.ebaina.com/articles/140000003973易百納技術(shù)社區(qū)內(nèi)容涵蓋機器視覺、音頻處理、機器連接、機器感知以及智能終端,是
    發(fā)表于 07-21 19:37

    介紹一款SPI通訊方式的傳感器

    介紹一款SPI通訊方式的傳感器
    發(fā)表于 01-24 06:24

    快速掌握一款新MCU的方法

    任何一款MCU,其基本原理和功能都是大同小異,所不同的只是其外圍功能模塊的配置及數(shù)量、指令系統(tǒng)等。對于指令系統(tǒng),雖然形式上看似千差萬別,但實際上只是符號的不同,其所代表的含義、所要完成的功能和尋址
    發(fā)表于 02-08 06:48

    SPI驅(qū)動為例展示如何使用ENV工具對BSP進行配置

    :如何使用開發(fā)板上更多的板載資源如何使用更多的片上資源如何添加更多片上資源選項2、前提要求學(xué)會如何使用 ENV 工具熟悉 FSP 配置工具的使用3、如何使用更多的外設(shè)資源開發(fā)板上般有很多外設(shè)資源,如 SPI
    發(fā)表于 07-15 10:55

    基于MM32F5270開發(fā)板RT-Thread SPI驅(qū)動適配指南

    1、第次給RT-Thread添加芯片SPI驅(qū)動  為MM32F5370開發(fā)板添加SPI
    發(fā)表于 09-02 14:59

    RT-Thread studio華大的HC32F460 BSP工程中有沒有SPI相關(guān)的驅(qū)動

    rt thread studio 華大的HC32F460 BSP 工程中,沒有SPI相關(guān)的驅(qū)動呢,而官方提供的HC32F4A0SITB BSP工程中有
    發(fā)表于 09-05 14:55

    bsp是什么

    BSP是什么 板級支持包(BSP)是介于主板硬件和操作系統(tǒng)中驅(qū)動層程序之間的層,般認為它
    發(fā)表于 10-16 15:59 ?13.4w次閱讀

    如何對SPI驅(qū)動做出具體的修改

    SPI接口設(shè)備是一款使用率較高的設(shè)備,在用戶使用OKMX8MQ-C時可能需要添加新的SPI設(shè)備,或者將現(xiàn)有的SPI設(shè)備從當前的總線上更換到別
    發(fā)表于 04-27 14:17 ?1448次閱讀
    如何對<b class='flag-5'>SPI</b><b class='flag-5'>驅(qū)動</b>做出具體的修改

    嵌入式中的BSP---BSP到底是什么

    package)是介于主板硬件和操作系統(tǒng)之間的層,應(yīng)該說是屬于操作系統(tǒng)的部分,主要目的是為了支持操作系統(tǒng),使之能夠更好的運行于硬件主板。BSP是相對于操作系統(tǒng)而言的,不同的操作系
    發(fā)表于 10-21 13:36 ?5次下載
    嵌入式中的<b class='flag-5'>BSP---BSP</b>到底是什么

    一款32Mb的PSRAM芯片—JS7324SU16BSP-70LFI

    。 ? JSC 代理英尚微介紹一款32Mb的PSRAM芯片-JS7324SU16BSP-70LFI ? JS7324SU16BSP-70LFI 是33,554,432位的Pseudo?SRAM,由2,097,152個字x16位組
    的頭像 發(fā)表于 06-29 16:59 ?3824次閱讀

    記錄為BL808添加GPIO驅(qū)動

    該文主要記錄為 BL808 BSP 添加 GPIO 驅(qū)動時踩到的些坑及解決方案。這是我第次對接 RT-Thread
    的頭像 發(fā)表于 10-13 11:18 ?720次閱讀

    設(shè)計一款高效智能LED驅(qū)動電源

    電子發(fā)燒友網(wǎng)站提供《設(shè)計一款高效智能LED驅(qū)動電源.pdf》資料免費下載
    發(fā)表于 11-02 09:58 ?2次下載
    設(shè)計<b class='flag-5'>一款</b>高效智能LED<b class='flag-5'>驅(qū)動</b>電源

    一款低功耗LED燈驅(qū)動電路原理介紹

    電子發(fā)燒友網(wǎng)站提供《一款低功耗LED燈驅(qū)動電路原理介紹.doc》資料免費下載
    發(fā)表于 11-14 11:23 ?0次下載
    <b class='flag-5'>一款</b>低功耗LED燈<b class='flag-5'>驅(qū)動</b>電路原理介紹

    labview怎么添加設(shè)備驅(qū)動

    、型號、通信協(xié)議等等。這些信息對于確定驅(qū)動程序的選擇和配置非常重要。 第步:確定設(shè)備驅(qū)動需求 在添加設(shè)備
    的頭像 發(fā)表于 01-02 16:10 ?2735次閱讀

    電子發(fā)燒友

    中國電子工程師最喜歡的網(wǎng)站

    • 2931785位工程師會員交流學(xué)習(xí)
    • 獲取您個性化的科技前沿技術(shù)信息
    • 參加活動獲取豐厚的禮品