0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

提升開(kāi)關(guān)電源效率的理論分析與實(shí)戰(zhàn)經(jīng)驗(yàn)

電源聯(lián)盟 ? 來(lái)源:未知 ? 2025-01-09 10:04 ? 次閱讀

在這里有電源技術(shù)干貨、電源行業(yè)發(fā)展趨勢(shì)分析、最新電源產(chǎn)品介紹、眾多電源達(dá)人與您分享電源技術(shù)經(jīng)驗(yàn),關(guān)注我們,與中國(guó)電源行業(yè)共成長(zhǎng)!

提升開(kāi)關(guān)電源效率的理論分析與實(shí)戰(zhàn)經(jīng)驗(yàn)

引言

開(kāi)關(guān)電源設(shè)計(jì)中,為獲得最高轉(zhuǎn)換效率,工程師必須了解轉(zhuǎn)換電路中產(chǎn)生損耗的機(jī)制,以尋求降低損耗的途徑。另外,工程師還要熟悉開(kāi)關(guān)電源器件的各種特點(diǎn),以選擇最合適的芯片來(lái)達(dá)到高效指標(biāo)。

效率是任何開(kāi)關(guān)電源的基本指標(biāo),任何開(kāi)關(guān)電源的設(shè)計(jì)考首先需要考慮的是效率優(yōu)化,特別是便攜式產(chǎn)品,因?yàn)楦咝视兄谘娱L(zhǎng)電池的工作時(shí)間,消費(fèi)者可以有更多時(shí)間享受便攜產(chǎn)品的各種功能。開(kāi)關(guān)電源設(shè)計(jì)中,為獲得最高轉(zhuǎn)換效率,工程師必須了解轉(zhuǎn)換電路中產(chǎn)生損耗的機(jī)制,以尋求降低損耗的途徑。另外,工程師還要熟悉開(kāi)關(guān)電源器件的各種特點(diǎn),以選擇最合適的芯片來(lái)達(dá)到高效指標(biāo)。

效率估計(jì)

能量轉(zhuǎn)換系統(tǒng)必定存在效率損耗,因此,在實(shí)際應(yīng)用中我們只能盡可能地獲得接近100%的轉(zhuǎn)換效率。目前市場(chǎng)上一些高質(zhì)量開(kāi)關(guān)電源的效率可以達(dá)到95%左右。有的電源效率甚至可以達(dá)到97%以上。

開(kāi)關(guān)電源的損耗大部分來(lái)自開(kāi)關(guān)器件(MOSFET二極管),另外一部分損耗來(lái)自電感和電容。選擇開(kāi)關(guān)電源器件時(shí),需要考慮控制器的架構(gòu)和內(nèi)部元件,以期獲得高效指標(biāo)。提高電源效率的方式有很多種,例如:同步整流,芯片內(nèi)部集成低導(dǎo)通電阻的MOSFET,低靜態(tài)電流和跳脈沖控制模式。

開(kāi)關(guān)器件的損耗

MOSFET和二極管由于其自身特性,會(huì)大大降低系統(tǒng)效率。相關(guān)損耗主要分成兩部分:傳導(dǎo)損耗和開(kāi)關(guān)損耗。簡(jiǎn)單地說(shuō),任何電流回路都存在損耗電阻,造成能量損耗。MOSFET和二極管是開(kāi)關(guān)元件,導(dǎo)通時(shí)電流流過(guò)MOSFET或二極管,會(huì)有導(dǎo)通壓降。由于MOSFET只有在導(dǎo)通時(shí)才有電流流過(guò),MOSFET的傳導(dǎo)損耗與其導(dǎo)通電阻、占空比和導(dǎo)通時(shí)的電流有關(guān):

PCONDMOSFET = IMOSFETONavg 2 ×RDSON ×D

式1中,IMOSFETONavg是MOSFET在導(dǎo)通時(shí)的平均電流。MOSFET的傳導(dǎo)損耗的起因是導(dǎo)通電阻,導(dǎo)通電阻通常非常小。二極管的傳導(dǎo)損耗則取決于自身的導(dǎo)通壓降(VF),導(dǎo)通壓降相對(duì)較大。因此,二極管與MOSFET相比會(huì)引入更大的傳導(dǎo)損耗。二極管的傳導(dǎo)損耗由導(dǎo)通電流、導(dǎo)通壓降、導(dǎo)通時(shí)間決定。MOSFET關(guān)斷時(shí),二極管導(dǎo)通,二極管的傳導(dǎo)損耗可以由以下公式計(jì)算:

PCONDDIODE = IDIODEONavg ×VF×(1-D)

IDIODEONavg是二極管導(dǎo)通時(shí)的平均電流。從公式可以看出,導(dǎo)通時(shí)間越長(zhǎng),相關(guān)的傳導(dǎo)損耗越大。降壓電路中,輸出電壓越低,二極管的導(dǎo)通時(shí)間越長(zhǎng),相應(yīng)的傳導(dǎo)損耗也越大。

由于開(kāi)關(guān)損耗是由開(kāi)關(guān)的非理想狀態(tài)引起的,很難估算MOSFET和二極管的開(kāi)關(guān)損耗,器件從完全導(dǎo)通到完全關(guān)閉或從完全關(guān)閉到完全導(dǎo)通需要一定時(shí)間,在這個(gè)過(guò)程中會(huì)產(chǎn)生能量損耗。圖2所示MOSFET的漏源電壓和漏源電流的關(guān)系圖可以很好地解釋MOSFET的開(kāi)關(guān)損耗,從上半部分波形可以看出,在MOSFET的開(kāi)關(guān)過(guò)程中,由于對(duì)MOSFET的電容充電、放電,其電流和電壓不能突變。圖中,VDS降到最終狀態(tài)(=ID×RDSON)之前,滿負(fù)荷電流將流過(guò)MOSFET。相反,關(guān)斷時(shí),VDS在MOSFET電流下降到零值之前逐漸上升到關(guān)斷狀態(tài)的最終值。開(kāi)關(guān)過(guò)程中,電壓和電流的交疊部分即為造成開(kāi)關(guān)損耗的來(lái)源,從圖2可以清楚地看到這一點(diǎn)。

00c46bae-cda8-11ef-9310-92fbcf53809c.jpg

開(kāi)關(guān)損耗發(fā)生在MOSFET通斷期間的過(guò)渡過(guò)程

開(kāi)關(guān)過(guò)渡時(shí)間與頻率無(wú)關(guān),因此開(kāi)關(guān)頻率越高開(kāi)關(guān)損耗也越大。這一點(diǎn)很容易理解,開(kāi)關(guān)周期變短時(shí),MOSFET的開(kāi)關(guān)過(guò)渡時(shí)間所占比例會(huì)大大增加,從而增大開(kāi)關(guān)損耗。

與MOSFET相同,二極管也存在開(kāi)關(guān)損耗。這個(gè)損耗很大程度上取決于二極管的反向恢復(fù)時(shí)間,發(fā)生在二極管從正向?qū)ǖ椒聪蚪刂沟霓D(zhuǎn)換過(guò)程。當(dāng)反向電壓加在二級(jí)管兩端時(shí),電流會(huì)對(duì)二極管充電,產(chǎn)生反向電流尖峰(IRRPEAK),從而造成V × I能量損耗,因?yàn)榉聪螂娏骱头聪螂妷和瑫r(shí)存在于二極管。圖3給出了二極管在反向恢復(fù)時(shí)的示意圖。

00cf27f6-cda8-11ef-9310-92fbcf53809c.jpg

反向電壓加在二級(jí)管時(shí)由于正向電流造成的累積電荷的釋放形成了電流尖峰

了解了二極管的反向特性,可以由下式估算二極管的開(kāi)關(guān)損耗:

PSWDIODE ≈ 0.5×VREVERSE×IRRPEAK×tRR2×fs

VREVERSE是二極管的反向偏置電壓,IRRPEAK是反向電流,tRR2是從反向電流峰值到恢復(fù)電流為正的時(shí)間。對(duì)于降壓電路,當(dāng)MOSFET導(dǎo)通的時(shí)候,Vin為二極管的反向偏置電壓。

基于上述討論,減小開(kāi)關(guān)器件損耗的直接途徑是:選擇低導(dǎo)通電阻、可快速切換的MOSFET;選擇低導(dǎo)通壓降、快速恢復(fù)的二極管。通常,增加芯片尺寸和漏源極擊穿電壓,有助于降低導(dǎo)通電阻。因此,選擇MOSFET時(shí)需要在尺寸和效率之間進(jìn)行權(quán)衡。另外,由于MOSFET的正溫度特性,當(dāng)芯片溫度升高時(shí),導(dǎo)通電阻會(huì)相應(yīng)增大。必須采用適當(dāng)?shù)臒峁芾矸桨副3州^低的結(jié)溫,使導(dǎo)通電阻不會(huì)過(guò)大。導(dǎo)通電阻和柵源偏置電壓成反比,因此,推薦使用足夠大的柵極電壓,使MOSFET充分導(dǎo)通,該方案也會(huì)增大柵極驅(qū)動(dòng)損耗。而且,開(kāi)關(guān)控制器件本身通常無(wú)法產(chǎn)生較高的柵極驅(qū)動(dòng)電壓,除非芯片提供有自舉電路,或采用外部柵極驅(qū)動(dòng)。MOSFET的開(kāi)關(guān)損耗取決于寄生電容,較大的寄生電容需要較長(zhǎng)的充電時(shí)間,使開(kāi)關(guān)轉(zhuǎn)換變緩,損耗更多的能量。米勒電容通常反比于MOSFET的傳導(dǎo)電容或柵-漏電容,在開(kāi)關(guān)過(guò)程中對(duì)轉(zhuǎn)換時(shí)間起決定作用。米勒電容的充電電荷定義為QGD,為了快速切換MOSFET,要求盡可能低的米勒電容。一般來(lái)說(shuō),MOSFET的電容和芯片尺寸成反比,因此必須折衷考慮開(kāi)關(guān)損耗和傳導(dǎo)損耗,同時(shí)也要謹(jǐn)慎選擇電路的開(kāi)關(guān)頻率。

對(duì)于二極管,必須降低導(dǎo)通壓降,以降低由此產(chǎn)生的損耗。對(duì)于小尺寸、額定電壓較低的二極管,導(dǎo)通壓降一般在0.7V~1.5V之間。二極管的尺寸、工藝和耐壓等級(jí)都會(huì)影響導(dǎo)通壓降和反向恢復(fù)時(shí)間。額定電壓較高的大尺寸二極管通常具有較高VF的和tRR,這會(huì)造成比較大的損耗。高速應(yīng)用中的開(kāi)關(guān)二極管一般以速度劃分,速度越高,反向恢復(fù)時(shí)間越短??旎謴?fù)二極管的tRR為幾百納秒,而超高速快恢復(fù)二極管的tRR為幾十納秒。PN結(jié)二極管的導(dǎo)通壓降較大,適合大電流、高壓工作場(chǎng)合,通常用于大功率系統(tǒng)。低功率或便攜產(chǎn)品中,即使經(jīng)過(guò)優(yōu)化選擇的導(dǎo)通壓降和tRR二極管仍會(huì)帶來(lái)較大的損耗。

低功耗應(yīng)用中,替代快恢復(fù)二極管的一種選擇是肖特基二極管,這種二極管的恢復(fù)時(shí)間幾乎可以忽略,反向恢復(fù)電壓也只有普通二極管的一半,但它的工作電壓遠(yuǎn)遠(yuǎn)低于快恢復(fù)二極管??紤]到這些特點(diǎn),肖特基二極管被廣泛用于低功耗設(shè)計(jì),在低占空比時(shí)可以降低開(kāi)關(guān)二極管的損耗。

在一些低壓應(yīng)用中,即便是具有較低壓降的肖特基二極管,所產(chǎn)生的傳導(dǎo)損耗也無(wú)法接受。比如,在輸出為1.5V的電路中,肖特基二極管的0.5V導(dǎo)通壓降會(huì)產(chǎn)生33%的能量損耗。為了解決這一問(wèn)題,可以選擇低導(dǎo)通電阻的MOSFET實(shí)現(xiàn)同步控制架構(gòu)。電路用MOSFET取代二極管,它與另外一個(gè)MOSFET同步工作,所以在交替切換的過(guò)程中,保證只有一個(gè)導(dǎo)通。由此,二極管的高導(dǎo)通壓降問(wèn)題被轉(zhuǎn)換成MOSFET的導(dǎo)通電阻和壓降,取代了二極管的傳導(dǎo)損耗。當(dāng)然,同步整流也會(huì)帶來(lái)其它影響,例如:增加了系統(tǒng)設(shè)計(jì)的復(fù)雜度、成本,特別是在大電流應(yīng)用中,這種架構(gòu)不見(jiàn)得比異步方案更優(yōu)越,因?yàn)镸OSFET傳導(dǎo)損耗的提升與電流的平方成正比。另外,我們還要考慮同步整流中柵極驅(qū)動(dòng)引入的能量損耗。

以上討論了MOSFET和二極管對(duì)開(kāi)關(guān)電源效率的影響。合理選擇開(kāi)關(guān)器件有助于改善效率,但這并非唯一的優(yōu)化開(kāi)關(guān)電源設(shè)計(jì)的渠道。從下面的討論可以看到,電感、電容引入的損耗也是設(shè)計(jì)高效開(kāi)關(guān)電源所面臨的問(wèn)題。

電感損耗

電感功耗包括線圈損耗和磁芯損耗,線圈損耗歸結(jié)于線圈的直流電阻(DCR),磁芯損耗歸結(jié)于電感的磁特性。對(duì)一個(gè)固定的電感值,電感尺寸較小時(shí),為了保持相同匝數(shù)必須減小線圈的橫截面積,因此導(dǎo)致DCR增大;對(duì)于給定的電感尺寸,小電感值允許減小DCR。已知DCR和平均電感電流Ilavq,電感的電阻損耗可以用下式估算。

PLdcr = ILavg 2×DCR

磁芯損耗并不像傳導(dǎo)損耗那樣容易估算。它由磁滯、渦流損耗組成,直接影響鐵芯的交變磁通。開(kāi)關(guān)電源中,盡管平均直流電流流過(guò)電感,由于通過(guò)電感的開(kāi)關(guān)電壓的變化產(chǎn)生的紋波電流導(dǎo)致磁芯周期性的磁通變化。磁滯損耗源于每個(gè)交流周期中磁芯偶極子的重新排列所消耗的功率,正比于頻率和磁通密度。

電容損耗

與理想的電容模型相反,電容元件的實(shí)際物理特性導(dǎo)致了幾種損耗。電容在電源電路中主要起穩(wěn)壓、濾除輸入/輸出噪聲的作用(圖4),電容的這些損耗降低了開(kāi)關(guān)電源的效率。這些損耗可以通過(guò)三種現(xiàn)象描述:等效串聯(lián)電阻損耗、漏電流損耗和電介質(zhì)損耗。電容的阻性損耗顯而易見(jiàn)。既然電流在每個(gè)開(kāi)關(guān)周期流入、流出電容,電容固有的電阻(Rc)將造成一定功耗。漏電流損耗(RL)是由于電容絕緣材料的電阻導(dǎo)致較小電流流過(guò)電容而產(chǎn)生的功率損耗。電介質(zhì)損耗(RD)比較復(fù)雜,由于電容兩端施加了交流電壓,電容電場(chǎng)發(fā)生變化,從而使電介質(zhì)分子極化造成功率損耗。

00e58654-cda8-11ef-9310-92fbcf53809c.jpg

開(kāi)關(guān)電源IC的折衷選擇

合理選擇開(kāi)關(guān)電源IC有助于改善系統(tǒng)效率,特別需要考慮IC封裝、設(shè)計(jì)和控制架構(gòu)。功率開(kāi)關(guān)集成到IC內(nèi)部時(shí)可以省去繁瑣的MOSFET或二極管選擇,而且使電路更加緊湊,由于降低了線路損耗和寄生效應(yīng),可以在一定程度上提高效率。IC規(guī)格中值得注意的一項(xiàng)指標(biāo)是靜態(tài)電流(IQ),它是維持電路工作所需的電流。重載情況下(大于一倍或兩倍的靜態(tài)電流),IQ對(duì)效率的影響并不明顯,因?yàn)樨?fù)載電流遠(yuǎn)大于IQ,而隨著負(fù)載電流的降低,效率有下降的趨勢(shì),因?yàn)镮Q對(duì)應(yīng)的功率占總功率的比例提高。對(duì)于便攜產(chǎn)品或電池供電產(chǎn)品,無(wú)疑選擇具有極低IQ的電源IC比較理想,有些IC則通過(guò)不同的工作模式(例如:休眠模式或低功耗關(guān)斷模式)來(lái)降低IQ。

開(kāi)關(guān)電源的控制架構(gòu)是影響開(kāi)關(guān)電源效率的關(guān)鍵因素之一。同步整流架構(gòu)中,由于采用低導(dǎo)通電阻的MOSFET取代了功耗較大的開(kāi)關(guān)二極管,可有效改善效率指標(biāo)。另一種常見(jiàn)的DC-DC控制結(jié)構(gòu)是在輕載時(shí)進(jìn)入跳脈沖工作模式,與單純的PWM開(kāi)關(guān)操作(在重載和輕載時(shí)均采用固定的開(kāi)關(guān)頻率)不同,跳脈沖模式下轉(zhuǎn)換器工作在跳躍的開(kāi)關(guān)周期,可以節(jié)省不必要的開(kāi)關(guān)操作。跳脈沖模式下,在一段較長(zhǎng)時(shí)間內(nèi)電感放電,將能量從電感傳遞給負(fù)載,以維持輸出電壓。但是,跳脈沖模式會(huì)產(chǎn)生額外的輸出噪聲,這些噪聲由于分布在不同頻率,很難濾除。先進(jìn)的開(kāi)關(guān)電源IC會(huì)合理利用兩者的優(yōu)勢(shì):重載時(shí)采用恒定PWM頻率;輕載時(shí)采用跳脈沖模式,IC即提供了這樣的工作模式。

附:提升關(guān)電源效率的一些小經(jīng)驗(yàn)

1、在開(kāi)關(guān)電源次級(jí)輸出端的肖特基上并一個(gè)小功率快速二極管來(lái)代替RC吸收,效率一般可以提高1~2個(gè)點(diǎn)。

2、在體積和面積的允許下,盡量選用PQ RM型的變壓器,在安規(guī)允許的情況下,變壓器不加擋墻效率可以得到提升。

3、輸入和輸出的電解容量值。

AC輸入整流電解容量低時(shí)效率會(huì)低0.2~1個(gè)點(diǎn),何為低?用示波器看AC輸入整流后紋波,小于10W功率,紋波10~30V為佳,大于10W紋波在5~20V為佳。

4、主電流回路PCB盡量短。

5、優(yōu)化變壓器參數(shù)設(shè)計(jì),減少振鈴帶來(lái)的渦流損耗。

6、合理選用開(kāi)關(guān)器件。

7、輸入EMI部分優(yōu)化設(shè)計(jì)

8、選擇高效率的拓補(bǔ)結(jié)構(gòu)

9、選擇好的電解電容

10、啟動(dòng)部分功耗設(shè)計(jì)

11、芯片輔助供電優(yōu)化

開(kāi)關(guān)電源因其高效率指標(biāo)得到廣泛應(yīng)用,但其效率仍然受開(kāi)關(guān)電路的一些固有損耗的制約。設(shè)計(jì)開(kāi)關(guān)電源時(shí),需要仔細(xì)研究造成開(kāi)關(guān)電源損耗的來(lái)源,合理選擇器件,從而充分利用開(kāi)關(guān)電源的高效優(yōu)勢(shì)。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 二極管
    +關(guān)注

    關(guān)注

    147

    文章

    9665

    瀏覽量

    166838
  • MOSFET
    +關(guān)注

    關(guān)注

    147

    文章

    7201

    瀏覽量

    213625
  • 開(kāi)關(guān)電源
    +關(guān)注

    關(guān)注

    6468

    文章

    8353

    瀏覽量

    482580
  • 開(kāi)關(guān)器件
    +關(guān)注

    關(guān)注

    1

    文章

    192

    瀏覽量

    16894

原文標(biāo)題:【干貨】提升開(kāi)關(guān)電源效率的理論分析與實(shí)戰(zhàn)經(jīng)驗(yàn)!

文章出處:【微信號(hào):Power-union,微信公眾號(hào):電源聯(lián)盟】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    pcb制造業(yè)節(jié)約用電實(shí)戰(zhàn)經(jīng)驗(yàn)

    pcb制造業(yè)節(jié)約用電實(shí)戰(zhàn)經(jīng)驗(yàn)
    發(fā)表于 08-20 20:36

    開(kāi)關(guān)電源維修方法和實(shí)戰(zhàn)經(jīng)驗(yàn)

    開(kāi)關(guān)電源維修方法和實(shí)戰(zhàn)經(jīng)驗(yàn)  一、開(kāi)關(guān)電源維修具體方法  1、開(kāi)關(guān)電源維修的時(shí)候,我們首先需要利用萬(wàn)用表檢測(cè)一下各功率器件是否存在擊穿短路,例如電源
    發(fā)表于 11-30 15:00

    【資料分享】ST MCU實(shí)戰(zhàn)經(jīng)驗(yàn)10篇,應(yīng)用問(wèn)題,官方解答

    ST MCU實(shí)戰(zhàn)經(jīng)驗(yàn)10篇,應(yīng)用問(wèn)題,官方解答
    發(fā)表于 03-21 15:12

    反激開(kāi)關(guān)電源變壓器設(shè)計(jì)及調(diào)試

    發(fā)熱因素調(diào)試,高頻噪音EMC 調(diào)試。6、輸出電壓改變調(diào)試。7、輕載和重載測(cè)試。受眾群體有哪些?1、如果你還是學(xué)生,正厭倦于枯燥的課堂理論課程,想得到電子技術(shù)研發(fā)的實(shí)戰(zhàn)經(jīng)驗(yàn);2、如果你即將畢業(yè)或已經(jīng)畢業(yè)
    發(fā)表于 07-25 14:03

    淺談開(kāi)關(guān)電源的維修方法和經(jīng)驗(yàn)

    開(kāi)關(guān)電源維修方法和實(shí)戰(zhàn)經(jīng)驗(yàn)
    發(fā)表于 03-19 07:31

    開(kāi)關(guān)電源磁元件的EMI分析與設(shè)計(jì)

    對(duì)于開(kāi)關(guān)電源磁元件的EMI分析與設(shè)計(jì)這個(gè)話題而言,工程師們還是比較頭疼的。因?yàn)槌跞朊]資歷淺,經(jīng)驗(yàn)不豐富,缺乏實(shí)戰(zhàn)經(jīng)驗(yàn),四處碰壁。電源網(wǎng)也是
    發(fā)表于 11-02 07:12

    精通開(kāi)關(guān)電源設(shè)計(jì)PDF【共349頁(yè)】,看這一本就夠了!

    設(shè)計(jì)已成為電力電子學(xué)最重要的應(yīng)用領(lǐng)域。然而,開(kāi)關(guān)電源的原理看似簡(jiǎn)單,但實(shí)際上想要設(shè)計(jì)一個(gè)好的電源,要涉及半導(dǎo)體物理、控制理論、磁學(xué)等眾多學(xué)科,對(duì)設(shè)計(jì)者的專業(yè)要求很高,因此許多初學(xué)者歷經(jīng)艱苦,仍然
    發(fā)表于 07-24 12:52

    理論+實(shí)戰(zhàn)】精通BUCK開(kāi)關(guān)電源設(shè)計(jì)

    開(kāi)關(guān)電源主要以小型、輕量和高效率的特點(diǎn)被廣泛應(yīng)用到幾乎所有的電子設(shè)備,開(kāi)關(guān)電源設(shè)計(jì)也成為硬件工程師的熱門(mén)知識(shí)。BUCK開(kāi)關(guān)電源是現(xiàn)代電力電子技術(shù)中一種常用的重要的電能變換方法。本課程力
    發(fā)表于 01-06 14:43

    開(kāi)關(guān)電源維修方法和實(shí)戰(zhàn)經(jīng)驗(yàn)

    本文著重介紹開(kāi)關(guān)電源維修方法和實(shí)際操作的一些經(jīng)驗(yàn)
    發(fā)表于 11-13 15:50 ?5611次閱讀

    開(kāi)關(guān)電源維修方法和實(shí)戰(zhàn)經(jīng)驗(yàn)

    開(kāi)關(guān)電源維修方法和實(shí)戰(zhàn)經(jīng)驗(yàn)開(kāi)關(guān)電源維修方法和實(shí)戰(zhàn)經(jīng)驗(yàn)
    發(fā)表于 01-15 16:38 ?49次下載

    開(kāi)關(guān)電源的EMI_處理經(jīng)驗(yàn)

    開(kāi)關(guān)電源的相關(guān)知識(shí)學(xué)習(xí)教材資料——開(kāi)關(guān)電源的EMI_處理經(jīng)驗(yàn)
    發(fā)表于 09-20 15:44 ?0次下載

    開(kāi)關(guān)電源維修步驟及經(jīng)驗(yàn)

    開(kāi)關(guān)電源的相關(guān)知識(shí)學(xué)習(xí)教材資料——開(kāi)關(guān)電源維修步驟及經(jīng)驗(yàn)
    發(fā)表于 09-20 16:10 ?0次下載

    ARM全國(guó)產(chǎn)云平臺(tái)部署容器實(shí)戰(zhàn)經(jīng)驗(yàn)分享

    ARM全國(guó)產(chǎn)云平臺(tái)部署容器實(shí)戰(zhàn)經(jīng)驗(yàn)分享
    發(fā)表于 07-18 16:11 ?71次下載
    ARM全國(guó)產(chǎn)云平臺(tái)部署容器<b class='flag-5'>實(shí)戰(zhàn)經(jīng)驗(yàn)</b>分享

    嵌入式項(xiàng)目實(shí)戰(zhàn)經(jīng)驗(yàn)

    嵌入式項(xiàng)目實(shí)戰(zhàn)經(jīng)驗(yàn)分享,C/C++、Linux、STM32、51單片機(jī)、FPGA、IoT、OpenCV、數(shù)字圖像處理、通信、算法!
    發(fā)表于 11-03 12:36 ?23次下載
    嵌入式項(xiàng)目<b class='flag-5'>實(shí)戰(zhàn)經(jīng)驗(yàn)</b>

    怎樣提高開(kāi)關(guān)電源效率

    最為關(guān)心的因素之一,它能夠在提供輸出電能的同時(shí)減少損失,延長(zhǎng)設(shè)備的壽命,為用戶節(jié)約成本。那么如何提高開(kāi)關(guān)電源效率呢?本文將從開(kāi)關(guān)電源的結(jié)構(gòu)、工作原理、影響效率因素的
    的頭像 發(fā)表于 08-27 16:05 ?2707次閱讀