0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
电子发烧友
开通电子发烧友VIP会员 尊享10大特权
海量资料免费下载
精品直播免费看
优质内容免费畅学
课程9折专享价
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

受限空間NCM811鋰離子電池熱失控蔓延及痕跡特征研究

清新電源 ? 來源:儲能科學與技術(shù) ? 2024-12-30 10:27 ? 次閱讀

作者:韓登超(), 裴苑翔, 劉朝陽, 劉松濤, 王淮斌(), 孫均利, 王永路, 韓彧

單位:中國人民警察大學

引用: 韓登超, 裴苑翔, 劉朝陽, 等。 受限空間NCM811鋰離子電池熱失控蔓延及痕跡特征研究[J]。 儲能科學與技術(shù), 2024, 13(11): 4133-4142.

DOI:10.19799/j.cnki.2095-4239.2024.0447

本文亮點:1.。本文通過自主設(shè)計的密閉箱體模擬高鎳鋰離子電池受限空間內(nèi)熱蔓延特性,貼合鋰離子電池實際工作情況。2.本文研究對象選取的是市場占有率越來越高的高鎳鋰離子電池,通過實驗?zāi)M與殘骸理化分析為高鎳鋰離子電池火災(zāi)事故調(diào)查提供理論依據(jù)。3.填補了方殼高鎳鋰離子電池受限空間內(nèi)熱蔓延特性的研究。

摘 要 隨著人們對電動汽車續(xù)航里程要求的不斷提高,Li(NixCoyMn1-x-y)O2(NCM)電池包內(nèi)電池單體正極材料不斷由低鎳Li(NixCoyMn1-x-y)O2(NCM111)向Li(NixCoyMn1-x-y)O2(NCM811)高鎳轉(zhuǎn)變。本文以51 Ah的NCM811鋰離子電池為研究對象,研究其在受限空間內(nèi)的熱蔓延行為、形變特征以及失控前后痕跡特征。結(jié)果表明,100%荷電狀態(tài)(SOC)的NCM811電池模組在受限空間內(nèi)發(fā)生熱失控時,全部電池單體均噴發(fā)大量紅色高溫顆粒物,但僅有觸發(fā)電池失控時出現(xiàn)射流火噴射特征,結(jié)果表明受限空間能夠抑制電池模組熱失控過程中火焰的產(chǎn)生,但是并不能阻止鋰離子電池模組的熱蔓延行為。100%SOC NCM811電池熱失控時的前后表面溫度介于820~979 ℃;熱失控蔓延時間介于52~106 s;質(zhì)量損失介于390~462 g;質(zhì)量損失百分比介于45.58%~52.73%;電池正極材料顆粒熱失控后出現(xiàn)明顯的團聚現(xiàn)象,顆粒表面出現(xiàn)大量孔洞,正極材料表面O元素含量占比由39.96%減小至32.15%。本文研究內(nèi)容可為高鎳三元鋰離子電池模組安全優(yōu)化設(shè)計、熱失控蔓延抑制及高鎳電池熱失控事故調(diào)查提供理論依據(jù)。

關(guān)鍵詞 鋰離子電池;受限空間;熱失控;熱失控蔓延;事故調(diào)查;安全性

傳統(tǒng)石油燃料的大量使用會導致全球變暖和空氣污染等環(huán)境問題。電動汽車的規(guī)范化應(yīng)用對于進一步優(yōu)化產(chǎn)業(yè)結(jié)構(gòu)助力我國早日實現(xiàn)“雙碳”目標至關(guān)重要。鋰離子電池因為具有高能量密度、高電壓、循環(huán)壽命長和環(huán)境污染小等優(yōu)點已經(jīng)成為純電動汽車裝配的首要選擇。由于消費者對電動汽車續(xù)航里程的要求不斷提高,具有更高能量密度的NCM811鋰離子電池已逐漸取代NCM111電池。但是,隨著NCM鋰離子電池正極材料中鎳含量的不斷提高,電池活性不斷增大,安全性也隨之降低,電池安全事故頻發(fā),鋰離子電池安全問題已成為制約電動汽車規(guī)?;瘧?yīng)用的主要瓶頸。解決鋰離子電池的熱失控和熱蔓延問題迫在眉睫。

目前研究人員針對鋰離子電池的熱失控和熱蔓延問題,已經(jīng)取得了較多的研究進展。Liu等人利用原位量熱儀研究了具有不同荷電狀態(tài)(SOC)的磷酸鐵鋰電池單體熱失控過程和著火行為,實驗結(jié)果表明電池的SOC對峰值熱釋放速率(HRR)、總放熱量(THR)和質(zhì)量損失有顯著影響。同時隨著SOC的增加,CO和HF的生成量也在逐漸增加,這表明SOC與生成氣體的毒性成正比。Wang等人研究了以不同Li(NixCoyMnz)O2為正極材料的鋰離子電池模組在熱濫用下的熱失控蔓延特性。結(jié)果表明,熱失控首先在靠近外部熱源的表面上觸發(fā),然后蔓延至整個電池模組。熱失控產(chǎn)生的總能量大約90%用于電池自加熱,而僅有10%的能量就可以觸發(fā)熱失控的蔓延。Wang等人研究了加熱功率對以LiNi0.5Co0.2Mn0.3O2為正極材料的電池模組熱失控蔓延時間的研究,通過研究得出在熱失控過程中,加熱功率會影響電池內(nèi)部的熱失控蔓延時間。當加熱功率從300 W增加到670 W時,電池內(nèi)部的熱失控蔓延時間從10 s增加到20 s。Zhou等人研究了鋰離子電池組不同連接方式對熱失控觸發(fā)的影響。通過研究連接方式、并聯(lián)電池數(shù)量等對熱失控觸發(fā)的影響。研究得出在并聯(lián)電池中熱失控的起始溫度遠低于無電氣連接的電池,然而連接方式對熱失控的最高溫度,傳熱功率并沒有顯著的影響。并聯(lián)電池之間的電量轉(zhuǎn)移是導致熱失控提前發(fā)生的主要原因。一旦電量轉(zhuǎn)移的容量超過2.56 Ah(占電池容量的4.6%),就足以提前觸發(fā)電池溫度響應(yīng)(TR)。Zhu等人研究了不同SOC和電池間距對NCM鋰離子電池模組的熱失控蔓延時間的影響,通過研究得出熱失控傳播時間隨著SOC的增加而顯著減少,熱失控蔓延時間和熱失控噴發(fā)持續(xù)時間隨著間隔的增加而逐漸增加。Song等人研究了不同SOC對280 Ah大容量磷酸鐵鋰電池模組熱失控傳播的影響。研究結(jié)果表明,熱失控蔓延只發(fā)生在SOC為100 %的電池模組中,而不會發(fā)生在未滿電的電池模組中,這是由于100%SOC的磷酸鐵鋰電池具有較高的內(nèi)能和傳熱功率所致。對于100%SOC的電池模組而言,熱蔓延時間介于667~1305 s,熱蔓延速度在0.05~0.12 mm/s范圍內(nèi)。此外,根據(jù)對能量流計算,熱失控產(chǎn)生的總能量大約75%用于電池自加熱,20%的能量會因為噴發(fā)物的噴發(fā)而損失,而不到10%的能量就可以觸發(fā)熱失控的蔓延。Liu等人研究了健康狀態(tài)(SOH)對鋰離子電池熱失控的影響。研究結(jié)果表明,熱失控開始時間隨著SOH的降低而提前,老化電池在熱失控之前引起更多的副反應(yīng)因此與新電池相比熱失控發(fā)生得更早。SOH越低,鋰離子電池的危險風險越大。目前對于鋰離子電池的熱失控和熱失控蔓延特性主要集中在開放空間中的磷酸鐵鋰電池和鎳含量較低的NCM鋰離子電池。但是對于受限空間內(nèi)的NCM811鋰離子電池的研究相對較少,對熱失控蔓延特性以及熱失控前后正極材料和噴發(fā)物的理化特性分析方面的綜合研究較為薄弱。

本文選用高鎳Li(Ni0.8Co0.1Mn0.1)O2的三元鋰離子電池,在受限空間內(nèi)進行側(cè)向加熱觸發(fā)熱失控驗,研究其在受限空間中的熱蔓延特性及其在受限空間下電池熱失控噴發(fā)顆粒物和殘骸元素的組成、微觀形貌、晶體結(jié)構(gòu)等痕跡理化特征。本文的研究成果可以為高鎳三元鋰離子電池的安全設(shè)計優(yōu)化、電池模組的熱失控蔓延抑制及新能源汽車電池燃爆事故調(diào)查提供理論參考。

1 實驗設(shè)計

1.1樣品電池

本次實驗采用的是某廠商生產(chǎn)的51 Ah的方殼鋰離子電池,該款電池的正極材料為Li(Ni0.8Co0.1Mn0.1)O2,負極材料為石墨。該款電池的幾何尺寸為148 mm×27 mm×90 mm,電池樣品的基本參數(shù)如表1所示。為了保證實驗樣品容量的一致性,在實驗開始前使用充放電機在恒流-恒壓(CC-CV)充電和恒流(CC)放電模式下循環(huán)3次,保證實驗樣品的容量均一性。隨后,將樣品電池充至100%荷電狀態(tài)后靜置2小時開始實驗。

表1 樣品電池基本參數(shù)

1.2電池模組

電池模組由四塊電池單體組裝而成,如圖1(a)所示。圖1(a)中紅色的部分是尺寸為148 mm×96 mm×4 mm的加熱片,加熱片功率為220 V-500 W。為了減少自加熱片和電池模組到固定裝置的散熱,在加熱片和夾具之間設(shè)置有云母片且實驗?zāi)=M沒有進行電氣連接。使用扭矩扳手將電池模組預緊力設(shè)置為1 N·m。模組從右向左分別是1#、2#、3#、4#電池。模組內(nèi)1#電池由加熱片觸發(fā),當1#熱失控被觸發(fā)時,關(guān)閉加熱片,后續(xù)電池在固體傳熱作用下觸發(fā)熱失控蔓延。如圖1(b)所示,分別在每一節(jié)電池的前表面、后表面和側(cè)面幾何中心布置K型熱電偶,在每一節(jié)電池極耳上連接電壓線。熱電偶和電壓線連接數(shù)據(jù)采集儀,用于記錄熱失控蔓延過程中電池溫度和電壓變化情況。

圖1 鋰離子電池模組

1.3受限空間裝置

如圖2所示,密閉箱體主要由三部分組成:主體機柜、蓋板與防爆泄壓閥。主體機柜腔體長1000 mm、寬600 mm、高500 mm,在主體機柜側(cè)面設(shè)置有圓柱形觀察孔及尺寸為900 mm×400 mm的長方形防爆觀察窗,可用于觀察鋰離子電池組在受限空間內(nèi)的熱失控現(xiàn)象。蓋板材質(zhì)為耐熱鋼,采用28個螺栓進行封閉固定,蓋板與主體部分之間設(shè)有5 mm的密封膠條以保證試驗過程中的氣密性。蓋板上設(shè)有兩個防爆泄壓閥,其直徑為50 mm,臨界開啟壓力為4 kPa,關(guān)閉狀態(tài)下空氣不能通過防爆泄壓閥。箱體短邊處設(shè)有線路通道口,以方便熱電偶和電壓線引出。

圖2 熱失控蔓延實驗設(shè)計

受限空間箱體底部鋪設(shè)一塊長1050 mm、寬650 mm厚度為3 mm的預氧絲氣凝膠墊,以減少電池模組與主體機柜底部的熱量傳遞。電池模組放置在主體機柜底面的幾何中心。將熱電偶與電壓線連接到數(shù)據(jù)采集器上,記錄電池模組熱失控過程中的溫度與電壓數(shù)據(jù)。在主體機柜外設(shè)置攝像機以觀察電池模組熱失控過程中的噴發(fā)特征。

1.4理化分析

為分析鋰離子電池熱失控前后正極材料、噴發(fā)顆粒物的理化特性,實驗前后對NCM811電池進行拆解,獲取電池失控前后的正極材料,在鋰電池熱失控實驗結(jié)束后,采用工具收集受限空間內(nèi)噴發(fā)的顆粒物(圖3)。分別對鋰離子電池未失控正極材料,噴發(fā)顆粒物以及失控后正極材料進行掃描電鏡(SEM)與能譜分析(EDS),進一步研究高鎳電池熱失控前后正極材料的微觀形貌和理化特性,為鋰離子電池熱失控事故的深度調(diào)查提供可靠依據(jù)。

圖3 理化分析示意圖

2 結(jié)果與討論

2.1噴發(fā)特征

圖4中展示了NCM811電池模組中1#~4#電池的噴發(fā)現(xiàn)象。對于NCM811電池模組來說,1#~4#電池均發(fā)生了熱失控現(xiàn)象,在熱失控發(fā)生時有大量高溫紅色顆粒(主要為高溫煙氣顆粒與正負極剝離物質(zhì))在電池泄壓口處被噴出,同時伴有大量電解質(zhì)蒸汽和可燃氣體混合物從電池泄壓口釋放。

圖4 鋰離子電池模組熱失控噴發(fā)特性

將加熱片開始加熱時定義為相對0 時刻,隨著加熱片對電池的持續(xù)加熱,電池溫度不斷升高,在265 s時,視野范圍右側(cè)可以看到1#電池單體有少量電解液蒸汽和可燃氣體混合物,這一特征可以為熱失控的早期預警(檢測電解液蒸汽)提供思路。在268 s時,電池單體發(fā)生初噴現(xiàn)象,伴有爆鳴聲,大量高溫煙氣顆粒與正負極剝離物質(zhì)沖破泄壓閥在泄壓口急速噴射。高溫煙氣顆粒與空氣混合而發(fā)生燃燒現(xiàn)象,由于泄壓口高速噴射的氣流導致火焰形態(tài)為典型的噴射火焰,火焰底部距離泄壓口上方1 cm。隨后高溫可燃氣體迅速充滿整個箱體,火焰形態(tài)變?yōu)閳A形火球,發(fā)生轟燃現(xiàn)象。在視頻中可以看出轟燃現(xiàn)象僅維持2 s,之后迅速熄滅。這與電池模組在開放空間中表現(xiàn)截然不同,可以歸結(jié)為受限空間中氧含量不足,不能維持火焰的持續(xù)燃燒。在272 s時,火焰迅速熄滅,大量黑色氣體充滿整個密閉箱腔體,但仍可見大量高溫紅色顆粒噴出,整個噴發(fā)過程持續(xù)7~8 s。隨后2#~4#電池相繼發(fā)生熱失控,在熱失控觸發(fā)時均有大量高溫紅色顆粒物在泄壓口處噴出,但因為受限空間中氧含量的不足未能觀察到明顯火焰。這說明密閉箱體只能抑制電池模組熱失控過程中火焰的產(chǎn)生,但是并不能阻止鋰離子電池模組熱失控的蔓延,這一現(xiàn)象可以為NCM電池包安全設(shè)計提供新思路。2#~4#電池模組因為黑色煙霧過多導致攝像機不能詳細捕捉到噴發(fā)特性。

2.2電壓溫度特性

在圖5中,F(xiàn)表示前表面溫度,S表示電池側(cè)面的溫度,B表示電池后表面的溫度。1,2,3,4對應(yīng)電池編號。可以定義電池從前表面到后表面的熱失控蔓延時間稱為電池內(nèi)部的熱失控蔓延時間,用Δti表示。在NCM811電池模組的熱失控過程中,熱失控首先發(fā)生在電池的前表面,之后蔓延到側(cè)面,最后蔓延至電池的后表面。表2記錄了所有電池的Δti,可以看出NCM811鋰離子電池的Δti介于5~7 s。

圖5 不同電池在 TR 傳播過程中的溫度響應(yīng) (a) 1#電池;(b) 2#電池;(c) 3#電池;(d) 4#電池

表2 熱失控過程中的溫度響應(yīng)特性

圖5為電池的溫度和電壓特征,對于1#電池單體來說:正面熱失控的觸發(fā)溫度Tf為298.8 ℃,背面為58.1 ℃,正面和背面之間形成的溫度梯度ΔTf-b為240.7 ℃,電池單體的熱失控蔓延的失效特征統(tǒng)計見表2,可以發(fā)現(xiàn):ΔTf-b的規(guī)律為:1#《2#,3#,4#,可以發(fā)現(xiàn)電池模組中1#電池前后表面的溫度梯度遠小于模組中其余電池表面溫度梯度,這是因為1#電池受到加熱片的預加熱作用后的電池溫度均一性好于其他電池所致。圖5(a)中,1#電池正表面溫度在初噴時有一個突然升溫的趨勢,這是因為在1#電池熱失控發(fā)生時出現(xiàn)了燃爆現(xiàn)象。然而因為密閉箱中氧氣含量不足,圖5(b)、(c)、(d)中并無因為爆燃現(xiàn)象導致的溫度突變。

2.3熱失控蔓延特性

熱失控蔓延時間和最高溫度可用來表征電池熱失控的危險程度,熱蔓延時間越短,最高溫度越高,表明電池的熱失控危險性越大??梢远x電池單體從i#-(i+1)#的熱失控蔓延時間稱為電池間的熱失控蔓延時間,用ti#-(i+1)#表示。圖6顯示了NCM811電池模組的熱失控蔓延時間。在圖6中可以看出,不同電池單體的前表面最高溫度介于820~979 ℃,最高溫度為T1#>T2#、T3#、T4#,熱蔓延時間介于52~106 s,熱失控蔓延時間表現(xiàn)為t1#-2#《t2#-3#《t3#-4#。這主要是因為在側(cè)向加熱過程中,2#~4#電池受到預加熱的程度逐漸遞減,4#電池受到夾具額外吸熱影響導致。值得注意的是,在NCM811電池模組發(fā)生熱失控的過程中,有一個溫度急速上升的過程,最高溫度可以達到979 ℃。

圖6 熱失控蔓延特性

基于熱蔓延特征,可將熱失控蔓延分為三個階段。在階段Ⅰ期間,Ti-f迅速升高,這表明靠近i#電池單體的前表面的卷芯內(nèi)部隔膜融化,導致正極與負極直接接觸,發(fā)生內(nèi)短路,產(chǎn)生熱量。之后,熱失控行為擴展到整個電池,Ti-b開始急劇增加。在這個過程中,熱量不斷地從單元i#傳遞到單元(i+1)#,并導致單元(i+1)#的局部熱失控行為的發(fā)生,這是階段Ⅱ。然后,TR在接下來的237 s內(nèi)從1#電池單體蔓延至4#電池單體以觸發(fā)熱失控。

2.4質(zhì)量損失和形變

圖7中顯示了由于熱失控傳播過程中電池發(fā)生的質(zhì)量損失情況。1#~4#電池在熱失控過程中損失的重量分別為390 g、449g、438 g和462 g,質(zhì)量損失百分比分別為52.73%、45.58%、46.84%和49.93%。熱蔓延實驗完成后將模組拆開后發(fā)現(xiàn),所有電池的變形特征基本相同,如圖8所示??梢园l(fā)現(xiàn),電池的前表面會凸向前一塊電池,從而導致每塊電池的后表面形成凹陷痕跡。當電池內(nèi)部的溫度超過240 ℃時,正極、負極和電解質(zhì)會因為高溫而發(fā)生氧化還原反應(yīng)。大量的電解質(zhì)蒸汽、H2、CH4、C2H4、CO、CO2和C3H6積聚在電池內(nèi)部。此時,電池內(nèi)部的壓力增加,導致電池表面的兩側(cè)膨脹。在膨脹的過程中,下一個電池還沒有觸發(fā)TR,所以表面比堅硬,進而形成凸痕指向首節(jié)觸發(fā)電池的痕跡特征。這一特征可為鋰離子電池模組首節(jié)觸發(fā)電池確定提供依據(jù)。

圖7 模塊中電池的質(zhì)量損失

圖8 熱失控傳播過程中的變形特性

2.5理化特性分析

分析電池正極材料在熱失控前后的成分變化有助于深入了解電池中熱失控的機理,還可為電池燃爆事故調(diào)查提供數(shù)據(jù)支撐。圖9(a)中展示了NCM811正極材料未失控前的微觀形貌,熱失控前正極材料顆粒均勻緊密分布,相對平坦。在熱失控發(fā)生之后,正極材料顆粒之間距離變小,相近顆粒之間發(fā)生團聚現(xiàn)象,顆粒表面出現(xiàn)破碎與孔洞,見圖9(b)。正極材料的形態(tài)變化表明在熱失控發(fā)生過程中正極產(chǎn)生氧氣。如圖9(c),對電池熱失控發(fā)生前后的正極材料進行EDS分析可以看出,熱失控前正極材料的主要元素含量為O、C、F、P、S、Ni、Mn、Co含量分別為39.96%、37.11%、13.04%、0.16%、0.03%、8.05%、1.10%、0.56%。在熱失控后正極材料的主要元素分別變?yōu)?2.15%(O)、37.36%(C)、17.90%(Ni)、4.42%(Mn)、3.33%(Co)。在NCM 811的熱失控發(fā)生之后,正極的氧元素比例從39.96%降低到32.15%,證實了在NCM 811電池在熱失控期間存在從正極材料中釋放的氧。未失控的正極材料中的F主要來源于LiPF6和黏結(jié)劑,當電解質(zhì)開始分解時,LiPF6可以產(chǎn)生PF5。PF5進攻C—O中的O原子,可進一步加速LiPF6分解,產(chǎn)生更多的HF等物質(zhì)。此外,含氟黏結(jié)劑的分解反應(yīng)也會消耗部分氟。這是熱失控后F減少以及Ni、Co和Mn元素含量增加的原因,同時這種現(xiàn)象還可能與樣品采集的區(qū)域有關(guān)。圖9(d)是熱失控后來NCM811電池的排氣顆粒的SEM形態(tài)。一些負極或黏結(jié)劑附著在排氣顆粒的正極表面上。因此,可以推斷,鋰離子電池的排氣顆粒來自TR過程中負極和正極的反應(yīng),并且負極和正極之間的反應(yīng)還涉及黏結(jié)劑。

圖9 電池熱失控前后的化學分析

3 結(jié) 論

本文在受限空間下對NCM811電池模組開展了熱失控蔓延實驗研究,研究了電池模組熱失控蔓延過程中的噴發(fā)行為、溫度電壓特性、熱蔓延時間、形變特性和質(zhì)量損失以及失控前后正極材料和噴發(fā)顆粒物的理化特性,得出了以下結(jié)論。

(1)NCM811電池模組在受限空間中發(fā)生熱失控時,全部電池單體均會被觸發(fā)熱失控,觸發(fā)首節(jié)電池單體熱失控時,會出現(xiàn)射流火,并點燃受限空間內(nèi)的高溫可燃氣體,發(fā)生燃爆現(xiàn)象,之后迅速熄滅。蔓延電池單體熱失控發(fā)生時,含氧量不足不會導致明火燃爆現(xiàn)象出現(xiàn)。受限空間內(nèi)高鎳三元鋰離子電池無射流火的情況下,依然能觸發(fā)熱失控蔓延。

(2)NCM811電池模組熱失控蔓延過程中前表面最高溫度介于820~979 ℃,電池內(nèi)部的熱失控蔓延時間介于5~7s,電池間的熱蔓延時間介于52~106 s。

(3)NCM811電池模組熱失控蔓延過程中,電池單體的質(zhì)量損失介于390~462g,質(zhì)量損失百分比介于49.93%~52.73%,質(zhì)量損失和質(zhì)量損失百分比呈現(xiàn)遞減趨勢。電池模組的凸起方向與熱蔓延方向相反,凸起方向指向最先觸發(fā)電池方向,這為電池事故調(diào)查提供了思路。

(4)NCM811鋰離子電池熱失控發(fā)生前后正極材料顆粒形狀發(fā)生明顯變化,熱失控發(fā)生后正極材料顆粒會發(fā)生團聚現(xiàn)象,顆粒表面因為氧氣的釋放出現(xiàn)孔洞,O元素含量由39.96%降低到32.15%。

目前,針對受限空間內(nèi)鋰離子電池熱失控蔓延特性及失控前后痕跡特征的研究較少,本研究揭示了電池包內(nèi)電池模組熱失控蔓延行為,可為高鎳三元鋰離子電池模組安全優(yōu)化設(shè)計、熱失控蔓延抑制及高鎳電池熱失控事故調(diào)查提供了理論依據(jù)。未來的研究工作還需要補充受限空間內(nèi)不同正極材料的電池模組的熱蔓延特性及失控痕跡特征,揭示全種類電池受限空間內(nèi)的熱蔓延特性,為電動汽車事故溯源和事故調(diào)查提供有力指導。

第一作者:韓登超(1998—),男,碩士研究生,研究方向為鋰離子電池熱失控及事故調(diào)查,E-mail:1301388091@qq.com;

通訊作者:王淮斌,副教授,主要研究方向為鋰離子電池熱失控機理、災(zāi)害防控及事故調(diào)查,E-mail:wanghuaibin@cppu.edu.cn。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 鋰離子電池
    +關(guān)注

    關(guān)注

    85

    文章

    3334

    瀏覽量

    78766
  • 熱失控
    +關(guān)注

    關(guān)注

    0

    文章

    38

    瀏覽量

    9093
  • NCM811
    +關(guān)注

    關(guān)注

    0

    文章

    6

    瀏覽量

    1477

原文標題:《儲能科學與技術(shù)》推薦|王淮斌等:受限空間NCM811鋰離子電池熱失控蔓延及痕跡特征研究

文章出處:【微信號:清新電源,微信公眾號:清新電源】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 0人收藏

    評論

    相關(guān)推薦
    熱點推薦

    車用鋰離子電池機理建模與并聯(lián)模組不一致性研究

    車用鋰離子電池機理建模與并聯(lián)模組不一致性研究
    發(fā)表于 05-16 21:02

    電池失控原理及安全檢測技術(shù)解析

    #鋰電池失控原理及安全檢測技術(shù)解析 大規(guī)模儲能場站的出現(xiàn),是新能源應(yīng)用發(fā)展的必然結(jié)果。與此同時,其基礎(chǔ)元件——鋰電池
    發(fā)表于 05-12 16:51

    FIB-SEM技術(shù)在鋰離子電池的應(yīng)用

    鋰離子電池材料的構(gòu)成鋰離子電池作為現(xiàn)代能源存儲領(lǐng)域的重要組成部分,其性能的提升依賴于對電池材料的深入研究。鋰離子電池通常由正極、負極、電解質(zhì)
    的頭像 發(fā)表于 02-08 12:15 ?542次閱讀
    FIB-SEM技術(shù)在<b class='flag-5'>鋰離子電池</b>的應(yīng)用

    鋰離子電池和三元鋰電池,誰更安全?

    鋰離子電池和三元鋰電池在安全性上各有優(yōu)劣。鋰離子電池憑借其成熟的技術(shù)和穩(wěn)定的性能,在安全性方面有著堅實的保障;三元鋰電池雖然在能量密度上表現(xiàn)突出,但在安全性上仍需不斷改進和完善。隨著科
    的頭像 發(fā)表于 01-23 15:19 ?713次閱讀
    <b class='flag-5'>鋰離子電池</b>和三元鋰<b class='flag-5'>電池</b>,誰更安全?

    具有優(yōu)越循環(huán)性的雙重改性的低應(yīng)變富鎳正極軟包全電池

    研究背景鋰離子電池 (LIB) 陰極材料是高容量富鎳層狀氧化物 LiTMO2(其中 TM = Ni、Mn、Co)的深入研究主題,特別是在 LiNi0.8Co0.1Mn0.1O2 的背景下
    的頭像 發(fā)表于 01-07 14:47 ?1175次閱讀
    具有優(yōu)越循環(huán)性的雙重改性的低應(yīng)變富鎳正極軟包全<b class='flag-5'>電池</b>

    朗凱威鋰電池組定制新能源汽車 “動力源”—— 鋰離子電池詳解

    鋰離子電池作為新能源汽車的核心部件,具有高能量密度、長壽命、環(huán)保性能好等優(yōu)點。隨著技術(shù)的不斷進步,鋰離子電池的性能將不斷提高,成本將逐步降低,安全性將得到更好的保障。同時,我們也應(yīng)該正確使用和保養(yǎng)新能源汽車鋰離子電池,以延長其使
    的頭像 發(fā)表于 12-16 15:58 ?494次閱讀
    朗凱威鋰<b class='flag-5'>電池</b>組定制新能源汽車 “動力源”—— <b class='flag-5'>鋰離子電池</b>詳解

    智能化進程中的鋰離子電池

    。1992年,鋰離子電池實現(xiàn)商品化。 ? 鋰離子電池 鋰離子電池是一種充電電池,它主要依靠鋰離子在正極和負極之間移動來工作。在充放電過程中,
    的頭像 發(fā)表于 12-06 10:45 ?796次閱讀

    石墨負極在鋰離子電池中的發(fā)展與儲鋰機制

    近日,清華大學張強教授團隊總結(jié)并展望了石墨負極界面的調(diào)控方法及其對鋰離子電池電化學性能的影響機制,重點介紹了石墨負極在鋰離子電池中的發(fā)展與儲鋰機制、炭負極的表界面表征方法與界面調(diào)控方法,結(jié)合目前國內(nèi)
    的頭像 發(fā)表于 10-28 11:28 ?2769次閱讀
    石墨負極在<b class='flag-5'>鋰離子電池</b>中的發(fā)展與儲鋰機制

    在便攜式應(yīng)用中使用鎳氫電池鋰離子電池

    電子發(fā)燒友網(wǎng)站提供《在便攜式應(yīng)用中使用鎳氫電池鋰離子電池.pdf》資料免費下載
    發(fā)表于 10-24 09:35 ?0次下載
    在便攜式應(yīng)用中使用鎳氫<b class='flag-5'>電池</b>和<b class='flag-5'>鋰離子電池</b>

    鋰離子電池的種類有哪些

    鋰離子電池的工作原理其實相當精妙。它主要由四大主材構(gòu)成:正極材料、負極材料、電解液和隔膜。其中,正極和負極材料統(tǒng)稱為電極材料,是電池性能與價格的關(guān)鍵因素。
    的頭像 發(fā)表于 10-16 14:22 ?1033次閱讀
    <b class='flag-5'>鋰離子電池</b>的種類有哪些

    電動汽車電池失控研究

    定位的數(shù)字傳感器來研究電池熱點結(jié)晶區(qū)域,這些區(qū)域代表著失控的潛在危險。高壓溫度測量01背景在對動力電池進行分析和測試時,需要特別注意
    的頭像 發(fā)表于 08-30 12:49 ?1496次閱讀
    電動汽車<b class='flag-5'>電池</b><b class='flag-5'>熱</b><b class='flag-5'>失控</b><b class='flag-5'>研究</b>

    新能源行業(yè)鋰離子電池測試

    01背景新能源行業(yè)是近年來快速發(fā)展的一個新興產(chǎn)業(yè),其主要特點是利用可再生能源和清潔能源來替代傳統(tǒng)化石能源,從而實現(xiàn)能源的可持續(xù)發(fā)展。鋰離子電池作為新能源行業(yè)的核心部件之一,其性能和穩(wěn)定性對整個系統(tǒng)
    的頭像 發(fā)表于 07-21 08:33 ?972次閱讀
    新能源行業(yè)<b class='flag-5'>鋰離子電池</b>測試

    了解鋰電池失控:原因及預防

    電池失控是一種重要的故障模式,其中鋰離子電池由于自我維持的放熱響應(yīng)而變得無法控制的過熱。這種情況通常是由于內(nèi)部短路、機械損壞、過度充電或暴露在過高溫度下造成的,從而損害了
    的頭像 發(fā)表于 07-11 11:20 ?1718次閱讀

    工信部升級鋰離子電池行業(yè)規(guī)范,引領(lǐng)產(chǎn)業(yè)高質(zhì)量發(fā)展

    隨著全球?qū)η鍧嵞茉春涂沙掷m(xù)發(fā)展的日益重視,鋰離子電池作為電動汽車、智能手機等電子產(chǎn)品的重要動力源,其行業(yè)規(guī)范與標準的重要性愈發(fā)凸顯。近日,工業(yè)和信息化部(簡稱“工信部”)發(fā)布了最新修訂的《鋰離子電池
    的頭像 發(fā)表于 06-20 10:15 ?1926次閱讀

    基于多物理參數(shù)數(shù)據(jù)融合和先進人工智能算法的鋰電池失控監(jiān)測傳感器

    基于多物理參數(shù)數(shù)據(jù)融合和先進人工智能算法的鋰電池失控監(jiān)測傳感器是多種方案中的優(yōu)選項!是一種快速、準確、可靠、應(yīng)用廣泛的傳感方案!可有效監(jiān)測鋰離子電池
    的頭像 發(fā)表于 06-18 17:19 ?1285次閱讀
    基于多物理參數(shù)數(shù)據(jù)融合和先進人工智能算法的鋰<b class='flag-5'>電池</b><b class='flag-5'>熱</b><b class='flag-5'>失控</b>監(jiān)測傳感器

    電子發(fā)燒友

    中國電子工程師最喜歡的網(wǎng)站

    • 2931785位工程師會員交流學習
    • 獲取您個性化的科技前沿技術(shù)信息
    • 參加活動獲取豐厚的禮品