在 NVIDIA GTC 2024 上,NVIDIA 宣布,RAPIDS cuDF 當(dāng)前已能夠?yàn)?950 萬(wàn) pandas 用戶帶來(lái) GPU 加速,且無(wú)需修改代碼。
目前,NVIDIA 再次對(duì)這一應(yīng)用進(jìn)行了更新:現(xiàn)在無(wú)需在 Google Colab 中修改代碼,即可直接使用 RAPIDS cuDF 為 pandas 提供加速。現(xiàn)在即可嘗試在 Colab notebook 中使用這一教程。
pandas 是一個(gè)靈活且強(qiáng)大的 Python 數(shù)據(jù)分析和處理程序庫(kù),因其是易于使用的 API,已成為數(shù)據(jù)科學(xué)家的首選。但隨著數(shù)據(jù)集規(guī)模的擴(kuò)大,其在僅使用 CPU 的系統(tǒng)中的處理速度和效率方面遇到了挑戰(zhàn)。
RAPIDS 是一套開(kāi)源的 GPU 加速 Python 程序庫(kù),旨在改進(jìn)數(shù)據(jù)科學(xué)和分析工作流。RAPIDS cuDF 是一個(gè) GPU DataFrame 程序庫(kù),其提供了一個(gè)類似 pandas 的 API,用于加載、過(guò)濾和操作數(shù)據(jù)。cuDF 的早期版本只適用于 GPU 開(kāi)發(fā)工作流程。
去年秋季,RAPIDS 發(fā)布了 cuDF 版本。該版本通過(guò)開(kāi)放測(cè)試版中統(tǒng)一的 CPU/GPU 用戶體驗(yàn),在不修改代碼的情況下將加速計(jì)算引入到 pandas 工作流中。在 GTC 2024 上,NVIDIA 宣布在新發(fā)布的 RAPIDS v24.02 中正式推出 cuDF 加速 pandas 功能。NVIDIA AI Enterprise 5.0 將在晚些時(shí)候支持這一功能。
兩個(gè)相同的 pandas 工作流在 Jupyter notebook 中并列運(yùn)行。其中一個(gè)使用了僅搭載 CPU 的 pandas,另一個(gè)則加載了 cudf.pandas 擴(kuò)展,以便可以使用 RAPIDS cuDF 加速 pandas。
將統(tǒng)一的 CPU/GPU 體驗(yàn)
引入 pandas 工作流
cuDF 一直使用類似于 pandas 的 API 為用戶提供卓越的 DataFrame 程序庫(kù)性能。但使用 cuDF 有時(shí)需要采取變通方法:
對(duì) cuDF 中尚未實(shí)現(xiàn)或支持的任何 pandas 功能采取變通方法。
在必須在異構(gòu)硬件上運(yùn)行的代碼庫(kù)中,為執(zhí)行 CPU 和 GPU 設(shè)計(jì)單獨(dú)的代碼路徑。
在與其他 PyData 程序庫(kù)或?qū)?pandas 設(shè)計(jì)的、特定于組織的工具進(jìn)行交互時(shí),需要手動(dòng)切換 cuDF 和 pandas。
在 24.02 版本中,除了提供現(xiàn)有的僅 GPU 使用體驗(yàn)外,cuDF 還能在無(wú)需更改代碼的情況下加速 pandas,以應(yīng)對(duì)這些挑戰(zhàn)。
該功能專為數(shù)據(jù)科學(xué)家而設(shè)計(jì),旨在即使數(shù)據(jù)規(guī)模增長(zhǎng)到千兆字節(jié)、性能降低時(shí)仍然可以繼續(xù)使用 pandas。當(dāng) cuDF 加速 pandas 時(shí),在可能的情況下操作將在 GPU 上運(yùn)行,否則將在(使用 pandas 的)CPU 上運(yùn)行。這實(shí)現(xiàn)了統(tǒng)一的 CPU/GPU 體驗(yàn),為用戶自己的 pandas 工作流帶來(lái)了領(lǐng)先的性能。
隨著 GA 版本的發(fā)布,cuDF 可提供以下功能:
無(wú)需更改代碼的加速:只需加載 cuDF Jupyter Notebook 擴(kuò)展或使用cuDF Python 模塊選項(xiàng)。
兼容第三方程序庫(kù):pandas 加速器模式與大多數(shù)在 pandas 對(duì)象上運(yùn)行的第三方程序庫(kù)兼容,甚至可以加速這些庫(kù)中的 pandas 操作。
統(tǒng)一的 CPU/GPU 工作流:使用單一代碼路徑進(jìn)行開(kāi)發(fā)、測(cè)試和生產(chǎn)運(yùn)行,不受硬件限制。
如要將 GPU 加速功能引入 Jupyter notebook 中的 pandas 工作流,請(qǐng)加載 cudf.pandas 擴(kuò)展:
%load_ext cudf.pandas import pandas as pd
如要在運(yùn)行 Python 腳本時(shí)訪問(wèn),請(qǐng)使用 cudf.pandas 模塊選項(xiàng):
python -m cudf.pandas script.py
為 pandas 工作流帶來(lái)頂尖的性能
當(dāng)數(shù)據(jù)規(guī)模達(dá)到千兆字節(jié)時(shí),pandas 往往會(huì)因?yàn)樾阅茌^慢而變得在使用過(guò)程中面臨較多挑戰(zhàn),導(dǎo)致一些數(shù)據(jù)科學(xué)家不得不放棄他們喜愛(ài)的 pandas API。有了新的 RAPIDS cuDF,就可以繼續(xù)將 pandas 作為主要工具使用并獲得頂尖的性能。
用戶可以通過(guò)運(yùn)行流行的 DuckDB Database-like Ops Benchmark 中的 pandas 部分來(lái)了解這一點(diǎn),該基準(zhǔn)測(cè)試最初由 H2o.ai 開(kāi)發(fā)。DuckDB 的基準(zhǔn)測(cè)試方式是將一系列常見(jiàn)分析任務(wù),例如將數(shù)據(jù)連接在一起或計(jì)算每組的統(tǒng)計(jì)量作為基準(zhǔn),來(lái)比較基于 CPU 的流行 DataFrame 和 SQL 引擎的性能。
在數(shù)據(jù)量為 5 GB 的情況下,pandas 的性能大幅下降,變得非常慢,僅僅執(zhí)行一系列連接和高級(jí)分組操作就需要數(shù)分鐘時(shí)間。
以往使用 cuDF 代替 pandas 運(yùn)行此基準(zhǔn)測(cè)試時(shí),需要更改代碼并解決功能缺失的問(wèn)題?,F(xiàn)在,借助 cuDF 的全新 pandas 加速模式,這個(gè)問(wèn)題迎刃而解。用戶可以在不改變pandas基準(zhǔn)代碼的情況下運(yùn)行該基準(zhǔn)測(cè)試,而且速度將大幅提升。其中的大部分操作由 GPU 執(zhí)行,小部分操作由 CPU 執(zhí)行,保證了工作流的順利操作。
這樣操作所取得的結(jié)果非常出色。cuDF 的統(tǒng)一 CPU/GPU 體驗(yàn)無(wú)需更改代碼,即可將處理時(shí)間從原本幾分鐘縮短至 1 到 2 秒(圖 1)。
圖 1.cuDF.pandas 與傳統(tǒng) pandas v2.2 在標(biāo)準(zhǔn) DuckDB 數(shù)據(jù)基準(zhǔn)測(cè)試(5 GB)中的性能比較
硬件:NVIDIA Grace Hopper;CPU:英特爾 Xeon Platinum 8480C|軟件:pandas v2.2、RAPIDS cuDF 23.10
結(jié)語(yǔ)
pandas 是 Python 生態(tài)系統(tǒng)中最流行的 DataFrame 程序庫(kù),但它的速度會(huì)隨著 CPU 上數(shù)據(jù)量的增加而變慢。
現(xiàn)在只需一條命令,用戶就可以在無(wú)需更改代碼的情況下,使用 cuDF 將加速計(jì)算引入到其 pandas 工作流中。根據(jù)數(shù)據(jù)集大小為 5 GB 的分析基準(zhǔn)測(cè)試結(jié)果,處理時(shí)間縮短到原來(lái)的 150 分之一。
您可參考詳細(xì)的教程在 Google Colab 上的免費(fèi) GPU 環(huán)境中試用 cuDF 的 pandas 加速功能。
-
cpu
+關(guān)注
關(guān)注
68文章
10863瀏覽量
211743 -
NVIDIA
+關(guān)注
關(guān)注
14文章
4986瀏覽量
103044 -
代碼
+關(guān)注
關(guān)注
30文章
4788瀏覽量
68602
原文標(biāo)題:無(wú)需更改代碼,RAPIDS cuDF 將 pandas 提速近 150 倍
文章出處:【微信號(hào):NVIDIA-Enterprise,微信公眾號(hào):NVIDIA英偉達(dá)企業(yè)解決方案】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論