0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

量子效率介紹

jf_64961214 ? 來源:jf_64961214 ? 作者:jf_64961214 ? 2024-10-28 06:25 ? 次閱讀

wKgZomcevdmAfOATAAHZgvYlTM0581.png

圖 1:典型背照式硅 CCD 和 InGaAs 傳感器的 QE 曲線。在490-700 nm的波長范圍內(nèi),可以顯示超過90%的CCD QE。

相比之下,對于InGaAs傳感器的960-1600 nm波長范圍,可以顯示超過80%的波長范圍。材料(硅與InGaAs)的差異導致在截然不同的波長范圍(分別為可見光與近紅外)下實現(xiàn)高QE。

量子效率 (QE) 是成像設(shè)備可以轉(zhuǎn)化為電子的入射光子的百分比。例如,如果一個傳感器有 75% 的 QE 并暴露在 100 個光子下,它將能夠轉(zhuǎn)換為 75 個電子的信號。每種傳感器技術(shù)的量化寬松都不同,高端科學傳感器的量化寬松率達到 95%。然而,它是由被檢測到的光的波長和半導體材料決定的。圖 1 顯示了背照式硅 CCD 傳感器和 InGaAs 傳感器之間的 QE 差異。

對于CCD、EMCCD、(em)ICCD和sCMOS技術(shù),在某些波長范圍內(nèi)可以達到95%的QE,但可見光譜的近紅光和紫外區(qū)域的光子具有較低的QE因此,傳感器的效率會降低。為了改善這些地區(qū)的量化寬松,已經(jīng)開發(fā)了深度耗盡傳感器和涂層傳感器,從而提高了量化寬松。

硅傳感器

大多數(shù)科學傳感器都是由硅制成的。由于量化寬松取決于材料,因此重要的是要了解該元素的特性以及它如何與光相互作用。

在高純度晶體形式中,相鄰的硅原子彼此共價鍵合。需要大于帶隙能量的能量才能破壞這些鍵以產(chǎn)生電子/空穴對 (~1.1 eV)。入射光的波長與光子吸收深度直接相關(guān);波長越短,穿透硅的深度越短。

深度耗盡硅傳感器比傳統(tǒng)的硅傳感器更厚,因此能夠檢測更長波長的光(即 > 700 nm,NIR)。近紅外光在硅中的穿透深度比典型的硅傳感器更深,因此硅傳感器對入射的近紅外光實際上是透明的。深度耗盡硅傳感器可在 700 – 850 nm 之間提供 >90% 的 QE,而傳統(tǒng)硅傳感器的 QE 為 >60%,如圖 2 所示。

wKgaomcevdqAXi8HAAMjsiB0CxQ729.png

圖 2:背照式 CCD 傳感器、背照式深耗盡式 CCD 傳感器和前照式 CCD 傳感器的 QE 曲線。

為了進一步改善 QE,可以通過前照式或后照式設(shè)備來改變設(shè)備內(nèi)傳感器的方向(見圖 2)。前照式器件的入射光通常通過并行寄存器的柵極進入傳感器。這些柵極由非常薄的多晶硅制成,在長波長下是相當透明的,但在波長小于 400 nm 時變得不透明。因此,在短波長下,柵極結(jié)構(gòu)會衰減入射光。

如果硅傳感器均勻變薄,則圖像可以聚焦在沒有柵極結(jié)構(gòu)的傳感器后端。有關(guān)比較,請參見圖 3。由于柵極結(jié)構(gòu)沒有光限制,背照式器件對光表現(xiàn)出很高的靈敏度,使 95% 的 QE 成為可能。

wKgZomcevdqAKAvCAAOIqdyq1og122.png

圖 3:前照式和后照式技術(shù)的比較。入射光在照射到傳感器之前必須穿過微透鏡和金屬線,從而降低最大量子效率。與背照式傳感器相互作用的入射光首先照射到傳感器上,因此器件的 QE 不會減少。

InGaAs傳感器

只有當光子的能量高于材料的帶隙能量或更短的波長時,半導體才會檢測到光子。InGaAs傳感器是由InAs和GaAs合金制成的半導體,傳統(tǒng)的InGaAs傳感器的InAs:GaAs比例為x:1-x。由于InGaAs不是天然存在的材料,因此必須在InP襯底上生長單晶。

InGaAs傳感器通常具有比硅更低的帶隙能量,這意味著它們能夠檢測更長的波長,例如短波紅外(SWIR)區(qū)域(900-1700 nm)。因此,InGaAs相機在950-1600 nm區(qū)域內(nèi)可以具有QE >80%。圖4顯示了典型InGaAs傳感器的QE曲線。通過增加單晶內(nèi)InAs的濃度,截止波長可以擴展到2600 nm。

wKgaomcevduAZb58AAB1rITA2xI281.png

圖 4:InGaAs 傳感器的典型 QE 曲線,顯示 950 – 1600 nm 范圍內(nèi)的 QE >80%,使其成為近紅外研究的理想傳感器。

盡管 InGaAs 相機在 900 – 1700 nm 范圍內(nèi)具有高 QE,但隨著器件的冷卻,遠端波長截止會降低。這通常每 10 個偏移 8 nmo冷卻的 C。這意味著最大限度地提高光子進入器件的吞吐量非常重要,但是這種遠端截止的偏移可能是有利的,因為它允許傳感器充當“可調(diào)諧”低通濾波器。圖5顯示了遠端截止如何隨著溫度的降低而變化。

wKgZomcevduAblxXAAC_QQ5BTjI789.png

圖 5:當器件冷卻時,InGaAs 的遠端截止波長會向藍色移動。通常,遠端波長每 8 nm 偏移10oC冷卻。

總結(jié)

QE是衡量設(shè)備將入射光子轉(zhuǎn)換為電子的有效性的指標。QE波長不僅取決于傳感器材料,還取決于傳感器材料。如果入射光子的能量高于半導體的帶隙能量,傳感器將檢測到入射光子。這就是為什么硅在 500-600 nm 之間具有 95% 的 QE,但對于更長的紅外/更短的紫色波長具有較低的 QE,但 InGaAs 在 SWIR 范圍 (900 – 1700 nm) 上具有高 QE,而不是可見光區(qū)域或中紅外波長范圍 (>1700 nm)。

審核編輯 黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 傳感器
    +關(guān)注

    關(guān)注

    2557

    文章

    51751

    瀏覽量

    758918
  • CCD
    CCD
    +關(guān)注

    關(guān)注

    32

    文章

    887

    瀏覽量

    142956
  • QE
    QE
    +關(guān)注

    關(guān)注

    0

    文章

    6

    瀏覽量

    7990
  • 光子
    +關(guān)注

    關(guān)注

    0

    文章

    114

    瀏覽量

    14514
收藏 人收藏

    評論

    相關(guān)推薦

    基于玻色量子相干光量子計算機的混合量子經(jīng)典計算架構(gòu)

    近日,北京玻色量子科技有限公司(以下簡稱“玻色量子”)與北京師范大學、中國移動研究院組成的聯(lián)合研究團隊提出一種基于相干光量子計算機的混合量子-經(jīng)典計算架構(gòu),結(jié)合
    的頭像 發(fā)表于 03-10 15:43 ?76次閱讀
    基于玻色<b class='flag-5'>量子</b>相干光<b class='flag-5'>量子</b>計算機的混合<b class='flag-5'>量子</b>經(jīng)典計算架構(gòu)

    量子處理器的作用_量子處理器的優(yōu)缺點

    量子比特可以同時處于0和1的狀態(tài),這種量子疊加特性使得量子處理器能夠同時處理大量信息。此外,量子比特之間的量子糾纏特性允許一個
    的頭像 發(fā)表于 01-27 13:44 ?369次閱讀

    量子處理器是什么_量子處理器原理

    量子處理器(QPU)是量子計算機的核心部件,它利用量子力學原理進行高速數(shù)學和邏輯運算、存儲及處理量子信息。以下是對量子處理器的詳細
    的頭像 發(fā)表于 01-27 11:53 ?370次閱讀

    量子通信與量子計算的關(guān)系

    量子通信與量子計算是兩個緊密相連的領(lǐng)域,它們之間存在密切的關(guān)系,具體表現(xiàn)在以下幾個方面: 一、基本概念 量子通信 :是利用量子疊加態(tài)和糾纏效應(yīng)進行信息傳遞的新型通信方式。它基于
    的頭像 發(fā)表于 12-19 15:53 ?693次閱讀

    量子通信的基本原理 量子通信網(wǎng)絡(luò)的構(gòu)建

    量子通信的基本原理 1. 量子疊加原理 量子疊加原理是量子通信的基礎(chǔ)之一。在量子力學中,一個量子
    的頭像 發(fā)表于 12-19 15:50 ?1325次閱讀

    本源量子等向北京“金融量子云實驗平臺”提供自主量子算力

    近日,由本源量子提供自主量子主算力的“金融量子云實驗平臺”正式上線,該平臺由北京金融科技產(chǎn)業(yè)聯(lián)盟主辦,本源量子公司聯(lián)合共建,云端可提供量子
    的頭像 發(fā)表于 10-30 08:05 ?367次閱讀
    本源<b class='flag-5'>量子</b>等向北京“金融<b class='flag-5'>量子</b>云實驗平臺”提供自主<b class='flag-5'>量子</b>算力

    量子效率測量系統(tǒng)適用于哪些領(lǐng)域?

    在當今科技飛速發(fā)展的時代,發(fā)光材料的研發(fā)對于眾多領(lǐng)域的進步起著至關(guān)重要的作用。而提高發(fā)光材料的光致發(fā)光效率,關(guān)鍵在于精確的量子效率測量技術(shù)。量子效率
    的頭像 發(fā)表于 08-30 14:01 ?403次閱讀
    <b class='flag-5'>量子</b><b class='flag-5'>效率</b>測量系統(tǒng)適用于哪些領(lǐng)域?

    萊森光學:光致發(fā)光量子效率光譜系統(tǒng)的測量精度是多少?

    在發(fā)光材料的研究與開發(fā)中,光致發(fā)光量子效率光譜系統(tǒng)扮演著至關(guān)重要的角色。而測量精度作為衡量該系統(tǒng)性能的關(guān)鍵指標之一,備受關(guān)注。那么,光致發(fā)光量子效率光譜系統(tǒng)的測量精度究竟是多少呢? 一
    的頭像 發(fā)表于 08-29 17:52 ?547次閱讀
    萊森光學:光致發(fā)光<b class='flag-5'>量子</b><b class='flag-5'>效率</b>光譜系統(tǒng)的測量精度是多少?

    光致發(fā)光量子效率測量系統(tǒng):優(yōu)勢及應(yīng)用領(lǐng)域介紹

    (LiSen Optics)推出的iSpecPQE光致發(fā)光量子效率光譜系統(tǒng),正是為了滿足這一需求而設(shè)計的。本文將詳細介紹該系統(tǒng)的產(chǎn)品特性、技術(shù)優(yōu)勢及其在多個領(lǐng)域的應(yīng)用。 產(chǎn)品詳情 1. 系統(tǒng)組成 iSpecPQE光致發(fā)光
    的頭像 發(fā)表于 08-16 14:44 ?912次閱讀
    光致發(fā)光<b class='flag-5'>量子</b><b class='flag-5'>效率</b>測量系統(tǒng):優(yōu)勢及應(yīng)用領(lǐng)域<b class='flag-5'>介紹</b>

    PHOTONIS 推出新型高量子效率光電陰極

    新型 Hi-QE 光電陰極比 S20 類型提高了 50% 的 QE。荷蘭羅登 - PHOTONIS 荷蘭公司宣布推出一款新型光電陰極,旨在提供極低暗計數(shù)、快速響應(yīng)時間和高量子效率的獨特組合
    的頭像 發(fā)表于 07-17 06:35 ?319次閱讀

    【《計算》閱讀體驗】量子計算

    鑒于本書敘述內(nèi)容著實很豐富,帶有科普性質(zhì)。這里選擇感興趣也是當前科技前沿的量子計算進行閱讀學習分享。 量子計算機操作的是量子比特,可以基于量子的特性大幅提升并行計算能力,從而其被公
    發(fā)表于 07-13 22:15

    新品發(fā)布|美能QE量子效率測試儀提升光伏電池性能的先進工具

    量子效率(QE)測試儀是評估光伏電池性能的關(guān)鍵工具,特別適用于復雜的鈣鈦礦/Si疊層電池。該設(shè)備通過高精度的光源和先進的信號處理技術(shù),確保測量的準確性和重復性。美能QE量子效率測試儀能
    的頭像 發(fā)表于 07-05 08:33 ?1530次閱讀
    新品發(fā)布|美能QE<b class='flag-5'>量子</b><b class='flag-5'>效率</b>測試儀提升光伏電池性能的先進工具

    量子效率測試:Micro-LED量子效率的研究進展

    光電轉(zhuǎn)化效率是評價LED等電致發(fā)光器件性能的重要參數(shù)。電能輸入到LED。熱量積聚會導致管芯溫度的升高,從而直接影響管芯的穩(wěn)定性及壽命。Micro-LED光電轉(zhuǎn)化效率可以用量子效率來表示
    的頭像 發(fā)表于 05-29 10:52 ?847次閱讀
    <b class='flag-5'>量子</b><b class='flag-5'>效率</b>測試:Micro-LED<b class='flag-5'>量子</b><b class='flag-5'>效率</b>的研究進展

    中國科大成功構(gòu)建高糾纏效率城域三節(jié)點量子網(wǎng)絡(luò)

    現(xiàn)有的單光子傳輸量子密鑰網(wǎng)絡(luò)已經(jīng)相對成熟。為了拓展到分布式量子計算和量子傳感器等領(lǐng)域,我們需要借助量子中繼技術(shù)在長達數(shù)十公里內(nèi)的遠距量子存儲
    的頭像 發(fā)表于 05-16 11:26 ?780次閱讀

    電致發(fā)光量子效率光譜系統(tǒng):量子效率的定義與應(yīng)用

    量子效率是描述系統(tǒng)在“輸入”和“輸出”之間轉(zhuǎn)換能力的參數(shù)。常用于現(xiàn)代光電組件或相關(guān)光電效應(yīng)的發(fā)光材料中。光子–電子組件可以是太陽能電池、光電傳感器、雪崩光電二極管、電荷耦合組件、傳感器、CMOS圖像傳感器、發(fā)光二極管 。
    的頭像 發(fā)表于 05-13 11:51 ?863次閱讀
    電致發(fā)光<b class='flag-5'>量子</b><b class='flag-5'>效率</b>光譜系統(tǒng):<b class='flag-5'>量子</b><b class='flag-5'>效率</b>的定義與應(yīng)用