0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

ChatGPT背后的AI背景、技術(shù)門道和商業(yè)應(yīng)用

京東云 ? 來(lái)源:京東科技 李俊兵 ? 作者:京東科技 李俊兵 ? 2024-10-18 15:42 ? 次閱讀

作者:京東科技 李俊兵

各位看官好,我是球神(江湖代號(hào))。

自去年11月30日ChatGPT問(wèn)世以來(lái),迅速爆火出圈。

起初我依然以為這是和當(dāng)年Transformer, Bert一樣的“熱點(diǎn)”模型,但是當(dāng)一篇篇文章/報(bào)告不斷推送到我的眼前,我后知后覺(jué)地發(fā)現(xiàn)這次真的不一樣。

很直接的一點(diǎn)是,ChatGPT已經(jīng)影響到非AI、非互聯(lián)網(wǎng)、非計(jì)算機(jī)的每一個(gè)人了。

你會(huì)看到,眾多科技界大佬,馬斯克、納德拉、李開(kāi)復(fù)、李彥宏、周鴻祎等,都在發(fā)聲稱 ChatGPT 將改變世界;

太多的互聯(lián)網(wǎng)公司,如微軟、谷歌、百度、阿里、騰訊等正在搶占商業(yè)先機(jī);

還有更多的學(xué)術(shù)機(jī)構(gòu)、高校也開(kāi)始討論 ChatGPT 生成論文是否符合學(xué)術(shù)規(guī)范;

突然之間各行各業(yè)從業(yè)者開(kāi)始擔(dān)憂被 ChatGPT 替代……

「初看以為是熱點(diǎn),再看已成經(jīng)典…」

于是我決定好好研究它一番,并力爭(zhēng)把它寫得全面而通俗易懂一點(diǎn),最終就有了這篇萬(wàn)字長(zhǎng)文報(bào)告,建議收藏、慢慢閱讀。

文章主題關(guān)于:「ChatGPT背后的AI背景、技術(shù)門道和商業(yè)應(yīng)用?!?/strong>

image.png

以下是目錄和正文內(nèi)容:

引言

我和聊天機(jī)器人的小故事

一、 AI背景

1.1 ChatGPT的出圈和能力圈

1.2 人工智能發(fā)展簡(jiǎn)史

1.3 ChatGPT背后的NLP和Transformer

二、技術(shù)門道

2.1 GPT-1到ChatGPT的演進(jìn)和技術(shù)原理

2.2 ChatGPT的局限性

2.3 ChatGPT的優(yōu)化和探索方向

三、商業(yè)應(yīng)用

3.1 國(guó)內(nèi)外資本投入層層加碼

3.2 ChatGPT商業(yè)化序幕已經(jīng)拉開(kāi)

3.3 ChatGPT助力AIGC浪潮再起

后記

ChatGPT會(huì)引領(lǐng)第四次科技革命嗎?

ChatGPT會(huì)給人類帶來(lái)失業(yè)潮嗎?

ChatGPT適合下海創(chuàng)業(yè)嗎?

ChatGPT以及AIGC產(chǎn)業(yè)鏈有值得投資的機(jī)會(huì)嗎?

參考文獻(xiàn)

筆者相關(guān)背景簡(jiǎn)介

引言

我和聊天機(jī)器人的小故事

早在2017年末至2018年上半年,我剛拿到計(jì)算機(jī)專業(yè)研究生的入場(chǎng)券,同時(shí)需要完成本科畢業(yè)設(shè)計(jì)。因此,我選擇提前進(jìn)入研究生實(shí)驗(yàn)室并帶回一個(gè)畢設(shè)課題:中文文本對(duì)話系統(tǒng)(俗稱:聊天機(jī)器人)。

沒(méi)錯(cuò),從研究方向來(lái)說(shuō),今天文章的主角ChatGPT正好屬于我那會(huì)的研究范疇—自然語(yǔ)言處理(NLP)。只不過(guò)后來(lái)因?yàn)橐恍┎豢煽匾蛩?,我更加關(guān)注于機(jī)器學(xué)習(xí)計(jì)算機(jī)視覺(jué)領(lǐng)域。

記得最后寫本科畢業(yè)論文和答辯的時(shí)候,我的中文文本聊天機(jī)器人(基于Seq2Seq + Attention架構(gòu))還很low:只能保持4-5輪對(duì)話邏輯;稍微問(wèn)難點(diǎn)答案就面目全非;對(duì)話的文本不能太長(zhǎng)…

雖然同樣在2017年,Transformer架構(gòu)已經(jīng)問(wèn)世,但站在那個(gè)時(shí)間節(jié)點(diǎn),即便是一線研究人員和工程師,恐怕也很難想象到5年后的2022年,就會(huì)有ChatGPT這樣的現(xiàn)象級(jí)通用聊天機(jī)器人程序出現(xiàn)。

“科技的發(fā)展不是均勻的,而是以浪潮的形式出現(xiàn)”。---《浪潮之巔》,吳軍

一、AI背景

1.1 ChatGPT的出圈和能力圈

盡管ChatGPT已經(jīng)火爆到讓很多人瘋狂,我們還是希望靜下心來(lái)仔細(xì)看看它現(xiàn)在到底能做什么,它的邊界又在哪里。

1677726527064.png

各大熱門平臺(tái)產(chǎn)品月活躍用戶數(shù)破億所需時(shí)長(zhǎng)

先看產(chǎn)品實(shí)際應(yīng)用測(cè)試的效果:

1677726500577.pngimage.png

再看產(chǎn)品表現(xiàn)背后抽象出的深層次能力:

image.png

所以,從發(fā)布到現(xiàn)在2個(gè)多月來(lái),ChatGPT已經(jīng)證明了它的能力圈包括:自動(dòng)問(wèn)答、多輪聊天、文章創(chuàng)作、語(yǔ)言翻譯、文本摘要、編寫和debug代碼等,同時(shí)這些表層能力背后反映了其具備理解人類意圖、敢于質(zhì)疑、承認(rèn)不知道、不斷學(xué)習(xí)進(jìn)化等深層次ability。

并且這些能力表現(xiàn)已經(jīng)遠(yuǎn)超過(guò)往其他AI機(jī)器人,也已經(jīng)得到了包括AI研究者、工程師和各行各業(yè)產(chǎn)業(yè)專家們的一致認(rèn)可。

不得不承認(rèn),從單項(xiàng)性能表現(xiàn)、整體功能覆蓋、穩(wěn)定性、時(shí)效性、魯棒性等多個(gè)維度評(píng)價(jià),目前的ChatGPT已經(jīng)足夠顛覆,它讓通用AI研究和產(chǎn)業(yè)落地成為可能。

1.2 人工智能發(fā)展簡(jiǎn)史

提起人工智能和計(jì)算機(jī)科學(xué),有個(gè)名字總是無(wú)法繞開(kāi)。

他是英國(guó)人艾倫·圖靈(Alan Turing)

圖靈(Alan Turing,1912-1954)出生的那年,他的祖國(guó)正處在“日不落”的全盛時(shí)期,占有的殖民地是本土面積的百倍有余。而在遙遠(yuǎn)的東方,中華民國(guó)臨時(shí)政府在南京成立,中山先生就職臨時(shí)大總統(tǒng),屬于中華民族的革命復(fù)興才剛剛開(kāi)始(「ChatGPT應(yīng)該寫不出這段」)。

1950年,時(shí)年38歲的圖靈在數(shù)學(xué)和邏輯學(xué)領(lǐng)域已經(jīng)成就頗豐,但當(dāng)他在《計(jì)算機(jī)與智能》論文中提出著名的“圖靈測(cè)試”構(gòu)想時(shí),后世的人們更加不會(huì)忘記他對(duì)人工智能和計(jì)算機(jī)科學(xué)領(lǐng)域做出的杰出貢獻(xiàn)。

“如果第三者無(wú)法辨別人類與人工智能機(jī)器反應(yīng)的差異,則可以論斷該機(jī)器具備人工智能”。--- 圖靈, 人工智能之父

時(shí)間來(lái)到1956年8月,在美國(guó)達(dá)特茅斯學(xué)院,約翰·麥卡錫、馬文·閔斯基、克勞德·香農(nóng)、艾倫·紐厄爾、赫伯特·西蒙等科學(xué)家 一起討論了用機(jī)器來(lái)模仿人類學(xué)習(xí)以及其他方面的智能等問(wèn)題,首次提出了“人工智能”這個(gè)概念,也就此標(biāo)志了人工智能學(xué)科的誕生。

此后,人工智能的發(fā)展經(jīng)歷了四次大的浪潮。

第一次浪潮(1956-1980):初次繁榮到低谷

初代AI中計(jì)算機(jī)被用于證明數(shù)學(xué)定理、解決代數(shù)應(yīng)用題等領(lǐng)域。這一時(shí)期感知機(jī)(1957)、模式識(shí)別(1961)、人機(jī)對(duì)話(1966)、專家系統(tǒng)(1968)、視覺(jué)計(jì)算(1976)等理論先后被提出來(lái)。

好景不長(zhǎng),專家和學(xué)者們發(fā)現(xiàn)僅僅具有邏輯推理能力遠(yuǎn)遠(yuǎn)不夠?qū)崿F(xiàn)人工智能,許多難題并沒(méi)有隨著時(shí)間推移而被解決,很多AI系統(tǒng)一直停留在了玩具階段。之前的過(guò)于樂(lè)觀使人們預(yù)期過(guò)高,又缺乏實(shí)質(zhì)性的進(jìn)展,許多機(jī)構(gòu)逐漸停止了對(duì)AI研究的資助。人工智能遭遇了第一次低谷。

第二次浪潮(1980-1995):二次復(fù)蘇到蕭條

AI 2.0時(shí)代專家系統(tǒng)和多層神經(jīng)網(wǎng)絡(luò)得到推廣應(yīng)用,人機(jī)對(duì)話機(jī)器人、語(yǔ)音控制打字機(jī)逐漸問(wèn)世,這一時(shí)期貝葉斯網(wǎng)絡(luò)(1985)、反向傳播(BP,1986)、支持向量機(jī)(SVM,1995)等算法先后被提出來(lái)。

但是很快,專家系統(tǒng)所存在的應(yīng)用領(lǐng)域狹窄、知識(shí)獲取困難、維護(hù)費(fèi)用居高不下等問(wèn)題開(kāi)始暴露出來(lái)。AI發(fā)展遭遇了一系列財(cái)政問(wèn)題,進(jìn)入第二次低谷。

第三次浪潮(1995-2010):平穩(wěn)中積蓄力量

上個(gè)世紀(jì)90年代中期以來(lái),隨著計(jì)算機(jī)性能的高速發(fā)展和海量數(shù)據(jù)的累積,人工智能的發(fā)展正式進(jìn)入現(xiàn)代AI時(shí)代。

1997年,IBM的國(guó)際象棋機(jī)器人深藍(lán)(Deep Blue)戰(zhàn)勝國(guó)際象棋世界冠軍卡斯帕羅夫,引起世界范圍內(nèi)轟動(dòng)。 隨后,條件隨機(jī)場(chǎng)(CRF,2001)、深度學(xué)習(xí)(Deep Learning, 2006)、遷移學(xué)習(xí)(Transfer Learning,2010)等理論先后被提出來(lái)。

第四次浪潮(2010-至今):爆發(fā)中走向高潮

進(jìn)入21世紀(jì)的第二個(gè)十年以來(lái),工業(yè)界開(kāi)始陸續(xù)推出實(shí)打?qū)嵉娜斯ぶ悄墚a(chǎn)品/應(yīng)用。

2011年2月,IBM的問(wèn)答機(jī)器人Watson在美國(guó)問(wèn)答節(jié)目《Jeopardy!》上擊敗兩位人類冠軍選手;

2012年10月,微軟就在“21世紀(jì)的計(jì)算”大會(huì)上展示了一個(gè)全自動(dòng)同聲傳譯系統(tǒng),它將演講者的英文演講實(shí)時(shí)轉(zhuǎn)換成與他的音色相近、字正腔圓的中文;

2016年3月,谷歌的圍棋人工智能系統(tǒng)AlphaGo與圍棋世界冠軍、職業(yè)九段選手李世石進(jìn)行人機(jī)大戰(zhàn),并以4:1的總比分獲勝;

隨后在2016年末-2017年初,AlphaGo又先后與中日韓數(shù)十位圍棋高手進(jìn)行快棋對(duì)決,連勝60局無(wú)一敗績(jī),包括3:0完勝世界第一、中國(guó)選手柯潔。

與之對(duì)應(yīng)的是,AI學(xué)術(shù)界在這十多年來(lái)可謂百家爭(zhēng)鳴,各顯神通。

2012年,Hinton(深度學(xué)習(xí)三巨頭之一)和他的學(xué)生Alex Krizhevsky設(shè)計(jì)了第一個(gè)深度卷積神經(jīng)網(wǎng)絡(luò)--- AlexNet,并摘得了當(dāng)年ImageNet圖像分類比賽的冠軍;

此后,CV人相繼提出了VGGNet(2014)、Inception Net(2014)、ResNet(2015)、Fast RCNN(2015)、 YOLO(2015)、 Mask RCNN(2017) 、MobileNet(2017)等base model,引領(lǐng)了圖像分類、人臉識(shí)別、目標(biāo)檢測(cè)、圖像分割、視頻理解等領(lǐng)域的快速發(fā)展;

NLP人不甘示弱,他們先設(shè)計(jì)了Word2Vec(2013)類能將單詞轉(zhuǎn)化為向量表示的工具,隨后利用LSTM(1997)系列循環(huán)神經(jīng)網(wǎng)絡(luò),基于Seq2Seq(2014) + Attention(2015)的架構(gòu)實(shí)現(xiàn)了機(jī)器翻譯、對(duì)話系統(tǒng)等復(fù)雜任務(wù),并進(jìn)一步在2017年提出了Transformer這一大殺器,同時(shí)進(jìn)階產(chǎn)生了BERT(2018)系列性能更優(yōu)更穩(wěn)定的大模型。

還有另一群執(zhí)著的AI者,他們更focus深度生成式網(wǎng)絡(luò)模型。從變分自編碼器(VAE,2013)到生成對(duì)抗網(wǎng)絡(luò)(GAN,2014),再到去噪擴(kuò)散模型(DDPM,2020)和生成式預(yù)訓(xùn)練Transformer (GPT系列,2018-至今),這些具有開(kāi)創(chuàng)性的模型真正帶動(dòng)了產(chǎn)業(yè)界AIGC(生成式人工智能技術(shù))的快速發(fā)展。

2017年,微軟“小冰”推出世界首部由人工智能創(chuàng)作的詩(shī)集《陽(yáng)光失了玻璃窗》; 2018年,英偉達(dá)發(fā)布StyleGAN模型可自動(dòng)生成高質(zhì)量圖片; 2019年,Deep Mind發(fā)布DVD-GAN模型可生成連續(xù)性視頻; 直到2022年11月30日,OpenAI發(fā)布ChatGPT,本文的主角終于正式登場(chǎng)。

image.png

一部人工智能發(fā)展史也是一部信息技術(shù)革命發(fā)展史。

不同的是,當(dāng)人工智能發(fā)展到一定階段,它或許終將顛覆“機(jī)器幫助人”的信息化時(shí)代,引領(lǐng)“機(jī)器代替人”的智能化時(shí)代。

「多年以后,也許我們會(huì)看到,ChatGPT正是第四次科技革命開(kāi)始的標(biāo)志性事件之一?!?/strong>

1.3 ChatGPT背后的NLP和Transformer

在了解ChatGPT的能力圈和人工智能的發(fā)展史之后,非AI從業(yè)者也能明白ChatGPT的研究屬于自然語(yǔ)言處理(Natural Language Processing, NLP)領(lǐng)域范疇。

自然語(yǔ)言處理(Natural Language Processing, NLP) 被譽(yù)為“人工智能皇冠上的明珠”,一方面表明了它的重要性,另一方面也突出了它的技術(shù)難度。

簡(jiǎn)單來(lái)說(shuō),NLP要做的事就是利用計(jì)算機(jī)實(shí)現(xiàn)自然語(yǔ)言數(shù)據(jù)的智能化處理、分析和生成,以期讓計(jì)算機(jī)實(shí)現(xiàn)聽(tīng)、說(shuō)、讀、寫、譯這些人類所具備的語(yǔ)言能力。

更具體一點(diǎn),NLP領(lǐng)域根據(jù)下游任務(wù)不同主要包括以下幾類研究方向:

image.png

細(xì)心的讀者已經(jīng)發(fā)現(xiàn)了,ChatGPT基本已經(jīng)實(shí)現(xiàn)了以上7大類任務(wù)的中階目標(biāo),所以NLP研究員和工程師們擔(dān)心自己發(fā)明工具卻搶了自己飯碗不是沒(méi)有道理,其他技術(shù)含量不高的行業(yè)工作者也就更加戰(zhàn)戰(zhàn)兢兢。

NLP的發(fā)展也經(jīng)歷了三個(gè)大的階段,即以規(guī)則學(xué)習(xí)為代表的第一階段(1960-1990)、以統(tǒng)計(jì)學(xué)習(xí)為代表的第二階段(1990-2010)和以深度學(xué)習(xí)為代表的第三階段(2010-至今)。

image.png

而其中真正影響ChatGPT和其他大語(yǔ)言模型產(chǎn)生的無(wú)疑是Transformer架構(gòu)。

可以說(shuō),Transformer的出現(xiàn)完全打開(kāi)了大規(guī)模預(yù)訓(xùn)練語(yǔ)言模型(Pre-trained Language Model , PLM)的空間,并且奠定了生成式AI的游戲規(guī)則。

2017 年,Google 機(jī)器翻譯團(tuán)隊(duì)在機(jī)器學(xué)習(xí)頂級(jí)會(huì)議NIPS上發(fā)表了《Attention is All You Need》論文,文章的核心正是 Transformer 模型。

Transformer相比之前論文的novalty在于:大膽地拋棄了傳統(tǒng)的CNN和RNN基礎(chǔ)模型,整個(gè)網(wǎng)絡(luò)結(jié)構(gòu)完全是由Attention機(jī)制組成。更準(zhǔn)確地說(shuō),Transformer由且僅由自注意力(self-Attenion)機(jī)制和前饋神經(jīng)網(wǎng)絡(luò)(Feed Forward Neural Network)組成。

而從實(shí)際應(yīng)用的角度來(lái)看,Transformer的主要貢獻(xiàn)(contribution)在于以下幾個(gè)方面:

1.突破了 RNN 模型不能并行計(jì)算的限制

2.精度和模型復(fù)雜度相比RNN/CNN + Attention系列模型更優(yōu)

3.Transformer本身也可以作為base model擴(kuò)展

我們站在此刻回想,ChatGPT背后的Transformer,其思想和架構(gòu)恰恰印證了那句: 「大道至簡(jiǎn)」

它首先在機(jī)器翻譯任務(wù)中取得SOTA,而后成功被應(yīng)用到NLP和CV等各個(gè)任務(wù)中,并獲得了穩(wěn)定優(yōu)異的性能表現(xiàn)。

1677736492369.png

Transformer 模型架構(gòu)圖

后來(lái)的故事很多人都知道了,Google人再接再厲, 他們?cè)?018年10月提出來(lái)的BERT(Bidirectional Encoder Representation from Transformers)模型再次轟動(dòng)業(yè)界。

BERT在機(jī)器閱讀理解頂級(jí)水平測(cè)試SQuAD1.1中表現(xiàn)出驚人的成績(jī): 全部?jī)蓚€(gè)衡量指標(biāo)上全面超越人類,并且在11種不同NLP測(cè)試中創(chuàng)出SOTA(業(yè)界最佳)表現(xiàn),包括將GLUE基準(zhǔn)推高至80.4% (絕對(duì)改進(jìn)7.6%),MultiNLI準(zhǔn)確度達(dá)到86.7% (絕對(duì)改進(jìn)5.6%),成為NLP發(fā)展史上的里程碑式的模型成就。

就當(dāng)所有人以為Google會(huì)在大語(yǔ)言模型賽道中一騎絕塵時(shí),最終率先讓世人熟知的卻是來(lái)自O(shè)penAI的GPT系列模型。

image.png

二、技術(shù)門道

2.1 GPT-1到ChatGPT的演進(jìn)和技術(shù)原理

GPT(Generative Pre-training Transformer)系列模型首先選擇和BERT繞道而行,盡管GPT-1(2018/06)發(fā)布的時(shí)間比BERT(2018/10)還要早。

BERT僅使用了Transformer的編碼器(Encoder)部分進(jìn)行訓(xùn)練,而GPT-1則只使用了Transformer的解碼器(Decoder)部分。

由此二者各自走上了不同的道路。

GPT-1: 預(yù)訓(xùn)練+微調(diào)模式,117M參數(shù)、12層、2億單詞

原文:Improving Language Understanding by Generative Pre-Training

image.png

預(yù)訓(xùn)練階段:基于Transformer Decoder架構(gòu),以語(yǔ)言建模作為訓(xùn)練目標(biāo)(自監(jiān)督,根據(jù)已知的詞預(yù)測(cè)未知的詞)。

image.png

微調(diào)階段:將訓(xùn)練好的Decoder參數(shù)固定,接上一層線性層,通過(guò)有監(jiān)督訓(xùn)練任務(wù)微調(diào)線性層的參數(shù),從而進(jìn)行預(yù)測(cè)。

image.png

GPT-1的局限:微調(diào)只能用到特定任務(wù)中,如果fine-tune一個(gè)分類任務(wù),就不能用到句子相似度任務(wù)中去。

所以能不能用一個(gè)模型去做所有NLP的任務(wù)?

這就是后續(xù)GPT-2和GPT-3的改進(jìn)目標(biāo)。

GPT-2: 多任務(wù)學(xué)習(xí) + zero-shot learning,1542M參數(shù)、48層、400億單詞

原文:Language Models are Unsupervised Multitask Learners

GPT-2的目標(biāo)是試圖用一個(gè)模型去做多個(gè)NLP任務(wù),它的核心思想就反映在論文標(biāo)題里:語(yǔ)言模型=無(wú)監(jiān)督多任務(wù)學(xué)習(xí)。

通俗地解釋一下: 語(yǔ)言模型實(shí)際上是一種自監(jiān)督的方式,根據(jù)已知的詞預(yù)測(cè)未知的詞,只是不需要顯示地定義哪些字段是要預(yù)測(cè)的輸出。 那如何用無(wú)監(jiān)督多任務(wù)的訓(xùn)練方式實(shí)現(xiàn)語(yǔ)言模型自監(jiān)督訓(xùn)練+多任務(wù)微調(diào)的效果呢? 我們只需要將input、output和task都表示為數(shù)據(jù),例如在一個(gè)英文翻譯成法語(yǔ)的機(jī)器翻譯任務(wù)中,我們只需要將樣本、標(biāo)簽和任務(wù)表示成如下格式,就實(shí)現(xiàn)了對(duì)P(output|input,task)的建模。

image.png

重要的是,這種方式可以實(shí)現(xiàn)無(wú)監(jiān)督訓(xùn)練,并且里面的task可以變化,也就是說(shuō)現(xiàn)在GPT-2可以實(shí)現(xiàn)無(wú)監(jiān)督多任務(wù)訓(xùn)練而不需要第二階段分不同任務(wù)有監(jiān)督的微調(diào)!

所以最后我們看到,GPT-2相對(duì)于GPT-1,最大的改進(jìn)就是去掉了第二階段的微調(diào)(fine-tune)層,實(shí)現(xiàn)了多任務(wù)訓(xùn)練和zero-shot方式(Zero-shot learning,零樣本學(xué)習(xí))直接接諸多的下游任務(wù),在多個(gè)任務(wù)下都可以取得很好的效果。

當(dāng)然肉眼可見(jiàn)的還有數(shù)據(jù)集、網(wǎng)絡(luò)層數(shù)、參數(shù)量、詞匯表大小、初始化和LN(layer normalization)的調(diào)整。

GPT-3:in-context learning + few-shot learning,1750億參數(shù)、96層、5000億單詞

原文:Language Models Are Few-shot Learners

GPT-3 基本繼承了GPT-2的模型架構(gòu)和訓(xùn)練模式,除了大力出奇跡的海量數(shù)據(jù)和巨型參數(shù)之外,GPT-3在模型設(shè)計(jì)層面相對(duì)于GPT-1和GPT-2主要的改進(jìn)點(diǎn)在于:in-context learning(上下文情境學(xué)習(xí),ICL) 和 few-shot learning(小樣本學(xué)習(xí),F(xiàn)SL)配合服用。

我們已經(jīng)知道,GPT-1和BERT都需要對(duì)下游任務(wù)進(jìn)行微調(diào),而GPT-2通過(guò)無(wú)監(jiān)督多任務(wù)和零樣本學(xué)習(xí)舍棄了微調(diào),并且驗(yàn)證了性能更加優(yōu)越,那能否在不需要微調(diào)的前提下繼續(xù)提升呢?

答案是可以,引入in-context learning(上下文情境)學(xué)習(xí)機(jī)制。

這種機(jī)制可以理解為給模型加一定的先驗(yàn)知識(shí),適當(dāng)對(duì)模型進(jìn)行引導(dǎo),教會(huì)它應(yīng)當(dāng)輸出什么內(nèi)容。

比如你希望GPT3幫你把中文翻譯成英文,你可以這么向他提問(wèn):

用戶輸入到GPT3:請(qǐng)把以下中文翻譯成英文:你覺(jué)得球神帥嗎?

如果你希望GPT3回答你的問(wèn)題,你可以換個(gè)方式問(wèn):

用戶輸入到GPT3:模型模型你說(shuō)說(shuō):你覺(jué)得球神帥嗎?

這樣模型就可以根據(jù)用戶提示的情境,進(jìn)行針對(duì)性的回答了。

這里只是告訴了模型怎么做,能不能先給個(gè)示例呢?

用戶輸入到 GPT-3:請(qǐng)回答以下問(wèn)題:你覺(jué)得球神帥嗎?=> 我覺(jué)得還挺帥的呢; 你覺(jué)得科比打球帥還是歐文打球帥?=>

其中回答球神帥不帥就是一個(gè)示例,用于讓模型感知應(yīng)該輸出什么。

基于以上,只給提示就是zero-shot,給一個(gè)示例叫做one-shot,給少量多個(gè)示例就是few-shot。

專業(yè)的讀者應(yīng)該能發(fā)現(xiàn),這里給提示的in-context learning(上下文情境)學(xué)習(xí)跟prompt learning(提示學(xué)習(xí))的思想很相似。

GPT-3論文里提供了3個(gè)版本的性能比較:

image.png

顯然,in-context learning(情境學(xué)習(xí))搭配few-shot learning(小樣本學(xué)習(xí))效果更好。

InstructGPT: RLHF(人類反饋強(qiáng)化學(xué)習(xí))+ PPO(近端策略優(yōu)化)

原文:Training language models to follow instructions with human feedback

InstructGPT相對(duì)GPT-3要解決的是大模型的alignment(對(duì)齊)問(wèn)題。其背景是:大型語(yǔ)言模型會(huì)生成一些不真實(shí)、有毒(不符合人類道德倫理等)或?qū)τ脩艉翢o(wú)幫助的輸出,顯然這些與用戶期待的不一致。

大模型在預(yù)訓(xùn)練過(guò)程中見(jiàn)識(shí)了各種各樣的數(shù)據(jù),因此針對(duì)一個(gè)prompt/instruct(提示)會(huì)輸出什么東西,也可能是多種多樣的,但是預(yù)訓(xùn)練數(shù)據(jù)中出現(xiàn)的數(shù)據(jù)模式,不代表都是人類在使用模型時(shí)希望看到的模式,因此需要一個(gè)alignment(對(duì)齊)的過(guò)程,來(lái)規(guī)范模型的“言行舉止”。

而實(shí)現(xiàn)這個(gè)過(guò)程InstructGPT引入了RLHF機(jī)制(人類反饋強(qiáng)化學(xué)習(xí)),實(shí)際上6年前的AlphaGo正是充分利用了強(qiáng)化學(xué)習(xí),才在圍棋領(lǐng)域?qū)崿F(xiàn)了所到之處無(wú)敵手。

簡(jiǎn)單點(diǎn)說(shuō),InstructGPT就是在GPT-3基礎(chǔ)上利用RLHF機(jī)制(人類反饋強(qiáng)化學(xué)習(xí))做了微調(diào),以解決大模型的alignment(對(duì)齊)問(wèn)題。

我們不妨先想一下,應(yīng)該如何解決模型輸出跟人類期待不匹配的問(wèn)題?

最直接的辦法,就是人工構(gòu)造一大批數(shù)據(jù)(標(biāo)注員自己寫prompt和期待的輸出),完全符合人類的期待的模式,然后交給模型去學(xué)。然而,這代價(jià)顯然太大了。因此,我們得想辦法怎么讓這個(gè)過(guò)程變得更輕松一點(diǎn),RLHF機(jī)制(人類反饋強(qiáng)化學(xué)習(xí))做到了這一點(diǎn)。

下面是InstructGPT的流程圖,看懂了它也就能明白R(shí)LHF機(jī)制是如何實(shí)現(xiàn)的。

image.png

Step-1: 稱初始模型為V0,也就是GPT-3。我們可以先人工構(gòu)造一批數(shù)據(jù),不用數(shù)量很大,盡其所能,然后先讓模型學(xué)一學(xué),稱這個(gè)時(shí)候模型為V1。

Step-2: 然后讓模型再根據(jù)一堆prompt(提示)輸出,看看效果咋樣,我們讓模型V1對(duì)一個(gè)prompt進(jìn)行多個(gè)輸出,然后讓人對(duì)多個(gè)輸出進(jìn)行打分排序,排序的過(guò)程雖然也需要人工,但是比直接讓人寫訓(xùn)練數(shù)據(jù),還是要方便的多,因此這個(gè)過(guò)程可以更輕松地標(biāo)注更多數(shù)據(jù)。然而,這個(gè)標(biāo)注數(shù)據(jù),并不能直接拿來(lái)訓(xùn)練模型,因?yàn)檫@是一個(gè)排序,但我們可以訓(xùn)練一個(gè)打分模型,稱為RM(reward-model,也即獎(jiǎng)勵(lì)模型),RM的作用就是可以對(duì)一個(gè) pair打分,評(píng)價(jià)這個(gè)output跟prompt搭不搭。,output>

Step-3: 接下來(lái),我們繼續(xù)訓(xùn)練V1模型(被一個(gè)策略包裝并且用PPO更新),給定一些prompt,得到輸出之后,把prompt和output輸入給RM,得到打分,然后借助強(qiáng)化學(xué)習(xí)的方法,來(lái)訓(xùn)練V1模型(打分會(huì)交給包著V0模型內(nèi)核的策略來(lái)更新梯度),如此反復(fù)迭代,最終修煉得到V2模型,也就是最終的InstructGPT。

整體理解一下:整個(gè)過(guò)程就是老師(人類標(biāo)注員)先注入一些精華知識(shí),然后讓模型試著模仿老師的喜好做出一些嘗試,然后老師對(duì)模型的這些嘗試進(jìn)行打分,打分之后,學(xué)習(xí)一個(gè)打分機(jī)器,最后打分機(jī)器就可以和模型配合,自動(dòng)化地進(jìn)行模型的迭代,總體思路稱為RLHF:基于人類反饋的強(qiáng)化學(xué)習(xí)。

其中,PPO機(jī)制( Proximal Policy Optimization,近端策略優(yōu)化) 是強(qiáng)化學(xué)習(xí)中AC類(Actor/Critic)的經(jīng)典算法,由OpenAI 2017年提出,既有Policy Gradient方法的優(yōu)勢(shì),同時(shí)基于importance sampling實(shí)現(xiàn)experience buffer的利用,發(fā)揮類似DQN類算法的數(shù)據(jù)利用優(yōu)勢(shì)。

PPO是OpenAI常用的baseline方法,理論部分相當(dāng)復(fù)雜,感興趣的專業(yè)讀者可以閱讀原文和相關(guān)博客。

原文:Proximal policy optimization algorithms

非專業(yè)讀者只需要理解到這是一種適應(yīng)人類反饋強(qiáng)化學(xué)習(xí)(RLHF)機(jī)制完成整個(gè)流程訓(xùn)練的策略優(yōu)化算法即可。

通過(guò)以上流程拆解,我們不難發(fā)現(xiàn)InstructGPT能通過(guò)這種RLHF機(jī)制實(shí)現(xiàn)更好的性能,有一個(gè)大的前提:就是初始模型GPT-3已經(jīng)足夠強(qiáng)大。

只有初始模型本身比較強(qiáng)大了,才能實(shí)現(xiàn)人類提供少量的精華數(shù)據(jù),就可以開(kāi)始進(jìn)行模仿,同時(shí)在第二步產(chǎn)出較為合理的輸出供人類打分。

image.pngimage.png

ChatGPT: 聊天升級(jí)版InstructGPT

根據(jù)OpenAI官方介紹,2022/11 發(fā)布的ChatGPT和2022/02 發(fā)布的InstructGPT在模型結(jié)構(gòu),訓(xùn)練方式上都完全一致,只是采集數(shù)據(jù)的方式上有所差異,但是目前沒(méi)有更多的資料表明數(shù)據(jù)采集上有哪些細(xì)節(jié)不同。

所以,ChatGPT的技術(shù)原理與他的小兄弟InstructGPT基本一致,相當(dāng)于InstructGPT是ChatGPT的預(yù)熱版,也被稱為GPT3.5,而傳言即將發(fā)布的GPT-4是一個(gè)多模態(tài)模型(可以處理圖片+文本+語(yǔ)音等多模態(tài)數(shù)據(jù)),期待。

至此,從GPT-1到ChatGPT的演進(jìn)和技術(shù)原理就解釋得差不多了。

import有點(diǎn)爆肝

最后來(lái)一張Instruct/ChatGPT中文架構(gòu)流程圖,更加清晰易懂。

image.png

2.2 ChatGPT的局限性

盡管ChatGPT已經(jīng)足夠人工智能了,但是在眾多真實(shí)智能人類的鑒定下,它目前還存在不少局限。

功能局限

1.有時(shí)答案會(huì)出現(xiàn)事實(shí)性錯(cuò)誤

2.仍然會(huì)產(chǎn)生有偏見(jiàn)、與人類道德倫理不對(duì)齊的內(nèi)容

3.沒(méi)有與實(shí)時(shí)信息建立關(guān)聯(lián)

4.有時(shí)對(duì)輸入的表達(dá)方式表現(xiàn)敏感

5.有時(shí)回答過(guò)于冗長(zhǎng)

以上限制主要基于以下幾點(diǎn)復(fù)合原因:

1.ChatGPT乃至所有機(jī)器學(xué)習(xí)模型都是基于已有的數(shù)據(jù)、知識(shí)、關(guān)聯(lián)、標(biāo)簽等做出的預(yù)測(cè),因此只要它有所依賴和基于概率預(yù)測(cè),錯(cuò)誤、不準(zhǔn)、有偏見(jiàn)的答案理論上都是存在的,只是精度和召回的問(wèn)題;

2.ChatGPT的人工標(biāo)注(包括指示和輸出)準(zhǔn)確度、表達(dá)層度、“價(jià)值觀”等還可以提升,目前的AI對(duì)齊方式--RLHF機(jī)制也未必是最優(yōu);

3.ChatGPT的信息更新停留在了 2021年,它目前還無(wú)法連接搜索引擎,將最新、最實(shí)時(shí)的信息反饋給用戶。

技術(shù)局限

1.再大的模型都不能無(wú)限大

2.模型受獎(jiǎng)勵(lì)模型和人工標(biāo)注影響較大

這是ChatGPT技術(shù)架構(gòu)的兩大痛點(diǎn),也是目前深度學(xué)習(xí)和強(qiáng)化學(xué)習(xí)研究領(lǐng)域的兩大難點(diǎn)問(wèn)題。

其他局限

1.數(shù)據(jù)和算力帶來(lái)技術(shù)的壟斷

ChatGPT訓(xùn)練需要的這種數(shù)據(jù)和算力體量,使得玩家基本就國(guó)外和國(guó)內(nèi)那些科技巨頭企業(yè)。而且目前ChatGPT也不會(huì)開(kāi)源,這就使得學(xué)校和中小AI企業(yè)沒(méi)得研究,這并不利于ChatGPT本身的進(jìn)步。

2.模型輕量化和性能的平衡

ChatGPT的參數(shù)量已經(jīng)到達(dá)千億級(jí),如此大的模型顯然不適合大規(guī)模真實(shí)場(chǎng)景應(yīng)用,后續(xù)的模型輕量化研究不可回避,而輕量化和性能的平衡也是一個(gè)巨大的挑戰(zhàn)。

3.可解釋性背后的AI可信

即使目前的ChatGPT在各項(xiàng)NLP任務(wù)上表現(xiàn)驚人,但是模型本身還像一個(gè)黑盒,可解釋性依然是專業(yè)算法人需要深入探索的點(diǎn),用戶的期待依然是更加可信的AI。

2.3 ChatGPT的優(yōu)化和探索方向

1.多模態(tài)擴(kuò)展

ChatGPT目前所展示出來(lái)的能力還主要在文本域和少部分跨模態(tài)/域的內(nèi)容生成。

下一步的趨勢(shì)已經(jīng)很明顯,統(tǒng)一集成文本、圖像、語(yǔ)音、視頻等多模態(tài)理解和生成能力,像人一樣,多模態(tài)思考、多模態(tài)處理。

2.不止于RLHF,探索其他AI對(duì)齊方式 RLHF(人類反饋強(qiáng)化學(xué)習(xí))并不是唯一的AI對(duì)齊技術(shù),針對(duì)強(qiáng)化學(xué)習(xí)的AI對(duì)齊還有很多方法、很多策略可以探索。

3.提升指示的泛化和糾錯(cuò)能力

除了人工標(biāo)注的標(biāo)簽(ground truth),ChatGPT對(duì)指示(prompt)的依賴也非常明顯,進(jìn)一步提升模型對(duì)指示的泛化能力以及對(duì)錯(cuò)誤指示的糾錯(cuò)能力,不僅能提升用戶使用模型的體驗(yàn),也能使模型能夠適應(yīng)更廣泛的應(yīng)用場(chǎng)景。

4.模型輕量化技術(shù)探索

自深度學(xué)習(xí)框架效果被廣泛驗(yàn)證以來(lái),CV界和NLP界為了追求性能,過(guò)去10年的研究工作總體趨勢(shì)是模型層數(shù)越來(lái)越深、參數(shù)越來(lái)越多、數(shù)據(jù)量越來(lái)越大。

但是在圈里的每個(gè)人其實(shí)又都知道,到了某個(gè)階段必須得破圈,如今,ChatGPT雖然性能爆棚,但其模型之大之深顯然不適合大規(guī)模真實(shí)場(chǎng)景甚至在端上應(yīng)用,未來(lái)對(duì)模型輕量化的研究不可回避,而輕量化和性能的平衡也非??简?yàn)AI技術(shù)是否真的走向成熟。

5.數(shù)據(jù)+算力+人工標(biāo)注的降本增效

數(shù)據(jù)、算力和算法作為AI三要素,ChatGPT成功地把其中的數(shù)據(jù)、算力附加人工標(biāo)注的資源成本打到高校、研究機(jī)構(gòu)、其他小AI公司無(wú)法承受的水平,所以即便眾多專家學(xué)者吐槽“大力出奇跡”卻也無(wú)可奈何。

技術(shù)似乎又一次走在了科學(xué)的前面,這對(duì)科技本身的長(zhǎng)期進(jìn)步顯然并不有利。

然而,從OpenAI等大型資本加持的巨頭企業(yè)角度來(lái)看,他們也同樣希望在未來(lái)能夠逐步降本增效,畢竟AI開(kāi)發(fā)者的終極目標(biāo)還是“AI,讓生活更美好”,只不過(guò)這其中會(huì)有諸如技術(shù)壟斷、商業(yè)競(jìng)爭(zhēng)等因素夾雜在其中更影響實(shí)現(xiàn)的時(shí)間。

三、商業(yè)應(yīng)用

3.1 國(guó)內(nèi)外資本投入層層加碼

除了ChatGPT能做什么以及背后的技術(shù)門道,人們或許更關(guān)心它未來(lái)的產(chǎn)品化和商業(yè)化的過(guò)程。

而復(fù)雜且高投入的技術(shù)要想能夠大規(guī)模產(chǎn)品化和商業(yè)化,離不開(kāi)資本的助力。

事實(shí)上,OpenAI的發(fā)展歷程首先證明了這一點(diǎn)。

OpenAI由創(chuàng)業(yè)家埃隆·馬斯克、美國(guó)創(chuàng)業(yè)孵化器Y Combinator總裁阿爾特曼、全球在線支付平臺(tái)PayPal聯(lián)合創(chuàng)始人彼得·蒂爾等人于2015年12月在舊金山創(chuàng)立。

起初它的定位是一家非盈利的AI研究公司,而后在2019年3月,OpenAI成立了一家叫做 OpenAI LP 的有限合伙公司,正式過(guò)度到“封頂盈利”性質(zhì)。

轉(zhuǎn)折點(diǎn)在2019年7月,微軟向OpenAI豪注10億美金,并獲得了OpenAI技術(shù)商業(yè)化的授權(quán)。

所以2020年5月OpenAI成功發(fā)布了1750億參數(shù)+45TB數(shù)據(jù)量的GPT-3語(yǔ)言模型,僅僅訓(xùn)練階段就花費(fèi)了大約 1200 萬(wàn)美元。

真就Money is all you need.

image.png

而在ChatGPT大放異彩的2023年初,微軟、谷歌、亞馬遜、百度、騰訊等國(guó)內(nèi)外科技巨頭更加不愿意錯(cuò)過(guò)機(jī)會(huì),隨之而來(lái)的是資本和研發(fā)投入的層層加碼,燒錢 + 燒人。

image.pngimage.png

3.2 ChatGPT商業(yè)化序幕已經(jīng)拉開(kāi)

2月1日,微軟宣布推出由ChatGPT提供技術(shù)支持的視頻會(huì)議及遠(yuǎn)程協(xié)作平臺(tái)Teams的高級(jí)付費(fèi)版Microsoft Teams Premium,訂閱者可享用OpenAI GPT提供支持的大型語(yǔ)言模型技術(shù),用AI自動(dòng)生成會(huì)議筆記。

2月2日,OpenAI宣布,推出其人工智能聊天機(jī)器人ChatGPT的付費(fèi)訂閱版本,新的訂閱服務(wù)名為ChatGPT Plus,月費(fèi)為20美元。訂閱包括在高峰使用時(shí)間訪問(wèn)聊天機(jī)器人。目前的免費(fèi)版本在使用率高的時(shí)間段將限制對(duì)用戶的服務(wù)。

2月8日,微軟推出了由OpenAI提供最新技術(shù)支持的新版搜索引擎必應(yīng)(Bing)和Edge瀏覽器。

ChatGPT 已經(jīng)被亞馬遜用于各種不同的工作職能中,包括回答面試問(wèn)題、編寫軟件代碼和創(chuàng)建培訓(xùn)文檔等。

文案自動(dòng)生成平臺(tái)Jasper,其技術(shù)底層是 OpenAI 的 GPT-3,在成立僅 18 個(gè)月后就達(dá)到了 15 億美元的高估值。

2月7日,百度宣布將在3月份完成其ChatGPT產(chǎn)品的內(nèi)測(cè),面向公眾開(kāi)放,該項(xiàng)目名字為文心一言(ERNIE Bot)。

image.pngimage.png

ChatGPT應(yīng)用場(chǎng)景廣泛,商業(yè)價(jià)值巨大,有望賦能傳媒、影視、營(yíng)銷、教育、金融、醫(yī)療、科研、游戲等多個(gè)行業(yè)。

ChatGPT賦能傳媒:實(shí)現(xiàn)智能新聞寫作,提升新聞的時(shí)效性

ChatGPT可以幫助新聞媒體工作者智能生成報(bào)道,將部分勞動(dòng)性的采編工作自動(dòng)化,更快、更準(zhǔn)、更智能地生成內(nèi)容。

image.png

ChatGPT賦能影視:拓寬創(chuàng)作素材,提升作品質(zhì)量

ChatGPT可以根據(jù)大眾的興趣身定制影視內(nèi)容,從而更有可能吸引大眾的注意力,獲得更好的收視率、票房和口碑。 ChatGPT可以為劇本創(chuàng)作提供新思路,創(chuàng)作者可根據(jù)ChatGPT的生成內(nèi)容再進(jìn)行篩選和二次加工,從而激發(fā)創(chuàng)作者的靈感,開(kāi)拓創(chuàng)作思路,縮短創(chuàng)作周期。

image.png

ChatGPT賦能營(yíng)銷:打造虛擬客服,助力售前和售后

image.png

ChatGPT賦能教育金融醫(yī)療:促進(jìn)數(shù)實(shí)共生,助力產(chǎn)業(yè)升級(jí)

ChatGPT+教育:賦予教育教材新活力,讓教育方式更個(gè)性化、更智能;

ChatGPT+金融:幫助金融機(jī)構(gòu)降本增效,讓金融服務(wù)更有溫度;

ChatGPT+醫(yī)療:賦能醫(yī)療機(jī)構(gòu)診療全過(guò)程。

image.png

另外,ChatGPT和之前熱炒的元宇宙顯然還不太一樣。

元宇宙到目前為止更像是一個(gè)美好的想法,還沒(méi)有實(shí)際的產(chǎn)品和成熟的模式產(chǎn)生,大眾甚至查閱資料都無(wú)法明白元宇宙是要做什么。

但ChatGPT以及背后的生成式人工智能(AIGC),不僅有ChatGPT這樣To C觸感非常強(qiáng)烈的產(chǎn)品,而且已經(jīng)能看到如上述一些比較清晰的商業(yè)化模式。

現(xiàn)在缺的就是資本加速和技術(shù)突破。

3.3 ChatGPT助力AIGC浪潮再起

AIGC(Artificial Intelligence Generated Context),是指利用人工智能技術(shù)來(lái)生成內(nèi)容,常見(jiàn)如AI繪畫、AI寫作、AI生成圖片、代碼、視頻等。

image.png

AIGC順著AI發(fā)展的脈絡(luò),大致經(jīng)歷了三個(gè)大的階段:

image.png

2010年以來(lái),隨著深度學(xué)習(xí)的快速突破以及數(shù)字內(nèi)容的海量增長(zhǎng),AIGC領(lǐng)域相關(guān)技術(shù)打破了預(yù)定義規(guī)則的局限性,算法模型結(jié)構(gòu)不斷創(chuàng)新,使得快速便捷且智慧地輸出多模態(tài)的數(shù)字內(nèi)容成為可能。

從2017年微軟小冰作詩(shī)到2018年英偉達(dá)StyleGAN生成高質(zhì)量圖片,再到2019年谷歌DeepMind DVD-E2生成連續(xù)視頻,AIGC正在經(jīng)歷一波蓬勃發(fā)展。

直到本文的主角ChatGPT 2022年年底出場(chǎng),AIGC終于迎來(lái)了突破式的拐點(diǎn),新一輪的浪潮正在徐徐展開(kāi)。

AIGC應(yīng)用場(chǎng)景

AIGC按內(nèi)容生成類別可劃分為文本、代碼、圖像、音視頻四大類,而跨模態(tài)生成技術(shù)是真正實(shí)現(xiàn)生成式智能的核心。

AIGC的意義在于提高內(nèi)容生產(chǎn)力、打開(kāi)內(nèi)容創(chuàng)作想象空間,這或許也是巨頭爭(zhēng)相加碼AIGC的原因所在。從現(xiàn)有的應(yīng)用場(chǎng)景來(lái)看,AIGC已經(jīng)可以替代部分重復(fù)勞動(dòng)力,并協(xié)助部分創(chuàng)造性勞動(dòng),未來(lái)AI技術(shù)的發(fā)展有望不斷降低內(nèi)容生產(chǎn)成本、提高生產(chǎn)效率并拓展內(nèi)容邊界。

image.pngimage.pngimage.png

AIGC市場(chǎng)空間

2023年人工智能從學(xué)術(shù)研究逐漸走向產(chǎn)業(yè)化,商業(yè)與AI技術(shù)的融合形成互為支點(diǎn)的發(fā)展格局,進(jìn)入產(chǎn)業(yè)規(guī)模商用期。人工智能技術(shù)將不斷地對(duì)AI數(shù)字商業(yè)的各個(gè)領(lǐng)域進(jìn)行滲透。

據(jù)量子位預(yù)測(cè),2030年AIGC市場(chǎng)規(guī)模有望超過(guò)萬(wàn)億元。在內(nèi)容領(lǐng)域,人機(jī)協(xié)同,對(duì)于存量業(yè)務(wù),AIGC的價(jià)值在于降本增效,對(duì)于增量業(yè)務(wù),其價(jià)值在于跨模態(tài)的內(nèi)容生成等。

據(jù)Gartner的“人工智能技術(shù)成熟度曲線”,生成式AI仍處于萌芽期,但其廣闊的應(yīng)用場(chǎng)景和需求空間吸引大量資本和技術(shù)的投入,預(yù)計(jì)將在2-5年內(nèi)實(shí)現(xiàn)規(guī)?;瘧?yīng)用。

AIGC有潛力產(chǎn)生數(shù)萬(wàn)億元的經(jīng)濟(jì)價(jià)值,AIGC繁榮發(fā)展,將促進(jìn)資產(chǎn)服務(wù)快速跟進(jìn),通過(guò)對(duì)生成內(nèi)容合規(guī)評(píng)估、資產(chǎn)管理、產(chǎn)權(quán)保護(hù)、交易服務(wù)等構(gòu)成AIGC完整生態(tài)鏈,并進(jìn)行價(jià)值重塑,充分釋放其商業(yè)潛力,至2025年中國(guó)生成式AI商業(yè)應(yīng)用規(guī)模至2070億元。

image.png

AIGC商業(yè)模式

過(guò)去AI發(fā)展多年,雖然在諸多領(lǐng)域也取得一些顯著成果,但從整個(gè)AI產(chǎn)業(yè)來(lái)看,過(guò)去的應(yīng)用更多的像是經(jīng)過(guò)專業(yè)學(xué)習(xí)的“??粕保痪邆渫ㄓ脠?chǎng)景的泛化性。

但ChatGPT的問(wèn)世,證明了基于大模型的AIGC已經(jīng)像是一位接受過(guò)通識(shí)教育的“本科生”,雖然在發(fā)展初期在特定專業(yè)領(lǐng)域功能有限,卻有著更強(qiáng)的可拓展性,能夠賦能和落地各個(gè)商業(yè)領(lǐng)域。 并且直觀來(lái)看,ChatGPT告訴世人,AI變成了一個(gè)普通人也可以輕松運(yùn)用、提升效率的工具。

這意味著AIGC的商業(yè)模式更加顯式化,不僅可以To B也可以To C。

AIGC To B模式主要希望解決的痛點(diǎn)問(wèn)題在于:用AI代替人工生產(chǎn),幫助企業(yè)實(shí)現(xiàn)降本增效。因?yàn)閷?duì)B端帶來(lái)的效果是快而顯著的,因此客戶的付費(fèi)意愿較強(qiáng)。

而 To C模式下,對(duì)于個(gè)人用戶來(lái)說(shuō),一方面AIGC應(yīng)用可以作為效率工具,能夠在信息獲取、格式整理和工作流等各個(gè)流程提高個(gè)人用戶的效率,并且AI模型作為基礎(chǔ)設(shè)施能夠集成到現(xiàn)有的工作流程中;另一方面可以作為創(chuàng)作工具,類似剪輯、修圖軟件一樣,AIGC能夠在用戶原創(chuàng)流行的今天,大幅度降低大眾用戶的創(chuàng)作門檻,強(qiáng)化個(gè)人媒體的IP價(jià)值。

從商業(yè)角度而言,將AIGC作為底層基礎(chǔ)設(shè)施的SaaS訂閱將成為中長(zhǎng)期趨勢(shì)。用戶選擇付費(fèi)的邏輯在于:更高效的信息獲取方式;從輔助表達(dá)到替代表達(dá);集成到已有的工作流;擴(kuò)大用戶創(chuàng)造力。

AIGC產(chǎn)業(yè)鏈

一方面,AIGC產(chǎn)業(yè)鏈可根據(jù)模型層次劃分為基礎(chǔ)層、中間層、應(yīng)用層三層架構(gòu)。

image.png

(1) 基礎(chǔ)層:利用預(yù)訓(xùn)練模型搭建基礎(chǔ)設(shè)施,該環(huán)節(jié)具備最高的進(jìn)入門檻,參與者以頭部企業(yè)為主

預(yù)訓(xùn)練模型是眾多小模型的通用基底,為開(kāi)發(fā)者降低AI開(kāi)發(fā)與應(yīng)用的門檻。預(yù)訓(xùn)練模型初始投入成本高、運(yùn)行成本高,對(duì)軟件、硬件均提出較高要求,因此涉足該環(huán)節(jié)的企業(yè)以微軟、谷歌、英偉達(dá)、Meta等科技巨頭以及OpenAI、Stability.ai等AI研究機(jī)構(gòu)為主。

以O(shè)penAI為例,2020年該機(jī)構(gòu)訓(xùn)練GPT-3的硬件及電力成本達(dá)1200萬(wàn)美元;以Meta為例,為了提供更強(qiáng)大的算力支撐,Meta攜手英偉達(dá)、Penguin Computing及Pure Storage打造AI超級(jí)計(jì)算機(jī)RSC,其測(cè)試數(shù)據(jù)顯示,RSC訓(xùn)練大型NLP模型的速度提升3倍,運(yùn)行計(jì)算機(jī)視覺(jué)工作的速度提升20倍。

(2) 中間層:基于預(yù)訓(xùn)練模型開(kāi)發(fā)垂直化、場(chǎng)景化、個(gè)性化的模型和應(yīng)用工具

中間層廠商基于預(yù)訓(xùn)練的大模型生成場(chǎng)景化定制化的小模型,幫助不同行業(yè)和垂直領(lǐng)域?qū)崿F(xiàn) AIGC 的快速部署。在預(yù)訓(xùn)練模型基礎(chǔ)之上,開(kāi)發(fā)者可根據(jù)不同行業(yè)、不同功能場(chǎng)景生成相應(yīng)的小模型,基礎(chǔ)層企業(yè)向中間層延伸為順勢(shì)而為。

此外,基礎(chǔ)層企業(yè)還可扮演MaaS(Model-as-a-Service)服務(wù)提供方,將其模型開(kāi)源給更多企業(yè)以二次開(kāi)發(fā)模型,如Novel AI基于Stability.ai的開(kāi)源模型Stable Diffusion開(kāi)發(fā)出二次元風(fēng)格AI繪畫工具。

(3) 應(yīng)用層:面向C端用戶提供文本、圖像、音視頻等內(nèi)容生成服務(wù)

應(yīng)用層是指面向 C 端提供 AIGC 相關(guān)服務(wù),典型企業(yè)包括微軟、Meta、百度、騰訊,阿里巴巴等。基于基礎(chǔ)層、中間層的模型及工具,應(yīng)用層企業(yè)可將其重心放在滿足用戶需求乃至創(chuàng)造內(nèi)容消費(fèi)需求上,AI寫作、AI繪畫等AIGC應(yīng)用已在營(yíng)銷、娛樂(lè)、藝術(shù)收藏等領(lǐng)域落地。

以國(guó)內(nèi)企業(yè)為例,視覺(jué)中國(guó)依托其數(shù)字版權(quán)內(nèi)容優(yōu)勢(shì)布局AIGC數(shù)字藏品,借力AI持續(xù)擴(kuò)充藝術(shù)多元性,截至目前多輪發(fā)售的AIGC數(shù)字藏品均已售罄;藍(lán)色光標(biāo)機(jī)器人小藍(lán)博面向廣告主推出AI繪畫、AI寫作工具,其中AI繪畫工具創(chuàng)意畫廊可生成抽象風(fēng)格畫作以適配不同營(yíng)銷場(chǎng)景。

另一方面,「數(shù)據(jù)算力、算法模型和上層應(yīng)用」又構(gòu)成了AIGC產(chǎn)業(yè)鏈的直接上中下游關(guān)系。

AIGC上游主要包括數(shù)據(jù)供給方、算法機(jī)構(gòu)、創(chuàng)作者生態(tài)以及底層配合工具等,中游主要是文字、圖像、音頻和視頻處理廠商,其中玩家眾多;下游主要是各類內(nèi)容創(chuàng)作及分發(fā)平臺(tái)以及內(nèi)容服務(wù)機(jī)構(gòu)等。

image.png

后記

ChatGPT,作為一項(xiàng)影響力出圈的AI技術(shù)應(yīng)用,是近10年來(lái)人工智能和計(jì)算機(jī)技術(shù)快速發(fā)展、不斷更新迭代、多種技術(shù)疊加在一起形成質(zhì)變的產(chǎn)物,是自然語(yǔ)言處理(NLP)領(lǐng)域近年來(lái)研究的結(jié)晶。

ChatGPT實(shí)現(xiàn)了一種使機(jī)器獲得語(yǔ)言智能的完整有效技術(shù)路線,但這個(gè)研究方向仍然面臨諸多挑戰(zhàn),需要在科學(xué)和技術(shù)上進(jìn)一步探索。

同時(shí)展望未來(lái),它對(duì)AIGC、產(chǎn)業(yè)互聯(lián)網(wǎng)、數(shù)字經(jīng)濟(jì)等領(lǐng)域的長(zhǎng)足發(fā)展也將影響深遠(yuǎn)。

最后附上幾個(gè)有爭(zhēng)議性的話題,供讀者思考和交流。

ChatGPT會(huì)引領(lǐng)第四次科技革命嗎?

關(guān)鍵詞:生產(chǎn)力、規(guī)模、效率

ChatGPT會(huì)給人類帶來(lái)失業(yè)潮嗎?

關(guān)鍵詞:情感、創(chuàng)造力、稀缺性

ChatGPT適合下海創(chuàng)業(yè)嗎?

關(guān)鍵詞:技術(shù)、資金、團(tuán)隊(duì)、商業(yè)模式

ChatGPT及AIGC產(chǎn)業(yè)鏈有值得投資的企業(yè)嗎?

關(guān)鍵詞:納指100、中概互聯(lián)、騰訊、百度、科大訊飛

參考文獻(xiàn)

學(xué)術(shù)論文:

Transformer: Attention Is All You Need, 2017. BERT: Bidirectional Encoder Representation from Transformers, 2018.

GPT-1: Improving Language Understanding by Generative Pre-Training, 2018.

GPT-2: Language Models are Unsupervised Multitask Learners, 2019.

GPT-3: Language Models Are Few-shot Learners, 2020.

InstructGPT: Training language models to follow instructions with human feedback, 2022.

ChatGPT: Optimizing Language Models for Dialogue, 2022.

證券研報(bào):

1.國(guó)泰君安-計(jì)算機(jī)行業(yè):ChatGPT 研究框架(2023)

2.華西證券-計(jì)算機(jī)行業(yè)深度研究報(bào)告:ChatGPT,開(kāi)啟AI新紀(jì)元

3.銀河證券-計(jì)算機(jī)行業(yè):聊天機(jī)器人頂流ChatGPT,開(kāi)啟自然語(yǔ)言處理領(lǐng)域新篇章

4.招商證券-計(jì)算機(jī)行業(yè):ChatGPT快速流行,重構(gòu)AI商業(yè)模式

5.國(guó)聯(lián)證券-計(jì)算機(jī)行業(yè):ChatGPT風(fēng)口已至,商業(yè)化落地加速

6.東方證券-計(jì)算機(jī)行業(yè):ChatGPT引領(lǐng)AI新浪潮,AIGC商業(yè)化啟程

7.興業(yè)證券-計(jì)算機(jī)行業(yè):從AIGC到ChatGPT,原理、前景和機(jī)會(huì)

8.華泰證券-計(jì)算機(jī)行業(yè):ChatGPT:深度拆解

9.招銀國(guó)際-中國(guó)互聯(lián)網(wǎng)行業(yè):ChatGPT & AIGC在中國(guó)市場(chǎng)的發(fā)展前景

公眾號(hào)文章:

慧博資訊:《ChatGPT行業(yè)深度報(bào)告》

慧博資訊:《AIGC行業(yè)深度報(bào)告》

TJUNLP:《對(duì)ChatGPT的二十點(diǎn)看法》,作者:熊得意老師

知乎文章:

https://zhuanlan.zhihu.com/p/589621442

https://zhuanlan.zhihu.com/p/517219229

https://zhuanlan.zhihu.com/p/34656727

https://zhuanlan.zhihu.com/p/595891945

https://zhuanlan.zhihu.com/p/597264009

https://zhuanlan.zhihu.com/p/563166533

https://zhuanlan.zhihu.com/p/606901798

https://www.zhihu.com/question/570431477/answer/2888747398

https://www.zhihu.com/question/581311491/answer/2882281060

審核編輯 黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • AI
    AI
    +關(guān)注

    關(guān)注

    87

    文章

    30851

    瀏覽量

    269028
  • 語(yǔ)言模型
    +關(guān)注

    關(guān)注

    0

    文章

    523

    瀏覽量

    10277
  • ChatGPT
    +關(guān)注

    關(guān)注

    29

    文章

    1560

    瀏覽量

    7641
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    ChatGPT背后的算力芯片

    今年以來(lái)可以說(shuō)是最熱的賽道,而AI大模型對(duì)算力的需求爆發(fā),也帶動(dòng)了AI服務(wù)器中各種類型的芯片需求,所以本期核芯觀察將關(guān)注ChatGPT背后所用到的算力芯片產(chǎn)業(yè)鏈,梳理目前主流類型的
    的頭像 發(fā)表于 05-21 00:01 ?3485次閱讀
    <b class='flag-5'>ChatGPT</b><b class='flag-5'>背后</b>的算力芯片

    【國(guó)產(chǎn)FPGA+OMAPL138開(kāi)發(fā)板體驗(yàn)】(原創(chuàng))6.FPGA連接ChatGPT 4

    訪問(wèn)ChatGPT 4這樣的AI模型是非常復(fù)雜的,因?yàn)檫@涉及到大量的數(shù)據(jù)傳輸、協(xié)議實(shí)現(xiàn)、并行處理、優(yōu)化等等。更重要的是,ChatGPT 4這樣的模型通常是運(yùn)行在強(qiáng)大的服務(wù)器集群上。不過(guò),我可以寫一個(gè)非常
    發(fā)表于 02-14 21:58

    在FPGA設(shè)計(jì)中是否可以應(yīng)用ChatGPT生成想要的程序呢

    當(dāng)下AI人工智能崛起,很多開(kāi)發(fā)領(lǐng)域都可看到ChatGPT的身影,F(xiàn)PGA設(shè)計(jì)中,是否也可以用ChatGPT輔助設(shè)計(jì)呢?
    發(fā)表于 03-28 23:41

    科技大廠競(jìng)逐AIGC,中國(guó)的ChatGPT在哪?

    產(chǎn)業(yè)版ChatGPT--ChatJD。 可見(jiàn),大廠的態(tài)度十分鮮明:ChatGPT已經(jīng)是既定的未來(lái),這場(chǎng)新的科技競(jìng)技賽哨聲響起,誰(shuí)都不甘落于下風(fēng)。從科技巨頭,到行業(yè)龍頭,中國(guó)企業(yè)競(jìng)逐AI賽道,AIGC(利用人工智能
    發(fā)表于 03-03 14:28

    ChatGPT系統(tǒng)開(kāi)發(fā)AI人功智能方案

    隨著人工智能技術(shù)的不斷發(fā)展,本文由小編:Congge420整理發(fā)布。社交聊天系統(tǒng)在人們生活中扮演著越來(lái)越重要的角色。尤其是當(dāng)人們想要與他人交流時(shí),這個(gè)工具可以幫助他們更好地表達(dá)自己的想法和感受
    發(fā)表于 05-18 10:16

    ChatGPT背后的核心技術(shù)

    輸入幾個(gè)簡(jiǎn)單的關(guān)鍵詞,AI能幫你生成一篇短篇小說(shuō)甚至是專業(yè)論文。最近大火的ChatGPT在郵件撰寫、文本翻譯、代碼編寫等任務(wù)上強(qiáng)大表現(xiàn),讓埃隆·馬斯克都聲稱感受到了AI的“危險(xiǎn)”。ChatGP
    的頭像 發(fā)表于 02-09 16:18 ?7.3w次閱讀

    ChatGPT背后:OpenAI 創(chuàng)始人Sam Altman如何用微軟的數(shù)十億美元打造了全球最熱門技術(shù)

    內(nèi)容來(lái)自?MoPaaS 編者按: ChatGPT產(chǎn)生的影響還在繼續(xù),ChatGPT 以及其創(chuàng)造者 OpenAI 背后的故事卻鮮為人知。OpenAI 是怎樣偏離其初心堅(jiān)持商業(yè)化?憑什么
    的頭像 發(fā)表于 02-10 09:10 ?3986次閱讀

    ChatGPT關(guān)于幾個(gè)硬件問(wèn)題的回答

    相比以往的AI對(duì)話模型,ChatGPT背后的自然語(yǔ)言處理技術(shù)著實(shí)讓人感到驚嘆。
    發(fā)表于 02-15 14:42 ?480次閱讀

    ChatGPT技術(shù)掀起國(guó)內(nèi)AI新熱潮

    ChatGPT技術(shù)的出現(xiàn)掀起了AI軍備競(jìng)賽,因?yàn)镚PT技術(shù)可以幫助機(jī)器學(xué)習(xí)模型更好地理解和處理復(fù)雜的數(shù)據(jù)。
    的頭像 發(fā)表于 02-15 16:37 ?2519次閱讀

    ChatGPT成功背后技術(shù)原因

    ChatGPT不僅是自然語(yǔ)言理解領(lǐng)域的一項(xiàng)技術(shù)進(jìn)步,會(huì)引發(fā)新一輪信息服務(wù)和內(nèi)容生成領(lǐng)域的商業(yè)潮流,同時(shí),其背后基于海量數(shù)據(jù)的深度生成技術(shù),以
    發(fā)表于 02-21 09:40 ?1146次閱讀

    一文解析ChatGPT 數(shù)據(jù)集之謎

    Meta 首席 AI 科學(xué)家 Yann LeCun 最近抨擊 ChatGPT 的名言實(shí)際上解釋了背后門道。他說(shuō),ChatGPT “只是巧妙
    發(fā)表于 02-21 14:19 ?1540次閱讀

    ChatGPT背后的大模型技術(shù)

    由于ChatGPT可以適用于非常多的任務(wù),很多人認(rèn)為 AI 已經(jīng)迎來(lái)拐點(diǎn)。李開(kāi)復(fù)將此前的 AI 定義為 AI 1.0,此后的AI定義為
    的頭像 發(fā)表于 05-29 11:16 ?1466次閱讀
    <b class='flag-5'>ChatGPT</b><b class='flag-5'>背后</b>的大模型<b class='flag-5'>技術(shù)</b>

    ChatGPT背后:OpenAI 創(chuàng)始人Sam Altman如何用微軟的數(shù)十億美元打造了全球最熱門技術(shù)

    內(nèi)容來(lái)自MoPaaS編者按:ChatGPT產(chǎn)生的影響還在繼續(xù),ChatGPT以及其創(chuàng)造者OpenAI背后的故事卻鮮為人知。OpenAI是怎樣偏離其初心堅(jiān)持商業(yè)化?憑什么Altman可以
    的頭像 發(fā)表于 02-13 14:28 ?797次閱讀
    <b class='flag-5'>ChatGPT</b> 的<b class='flag-5'>背后</b>:OpenAI 創(chuàng)始人Sam Altman如何用微軟的數(shù)十億美元打造了全球最熱門<b class='flag-5'>技術(shù)</b>

    chatgpt是什么意思 ChatGPT背后技術(shù)原理

      今天我們?yōu)榇蠹規(guī)?lái)的文章,深入淺出地闡釋了ChatGPT背后技術(shù)原理,沒(méi)有NLP或算法經(jīng)驗(yàn)的小伙伴,也可以輕松理解ChatGPT是如何工作的?! ?/div>
    發(fā)表于 07-18 17:12 ?0次下載