0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

著名的 Box86/Box64 模擬器現(xiàn)在有了更好的 RISC-V RVV 1.0 支持,性能提升顯著

RISCV國際人才培養(yǎng)認(rèn)證中心 ? 2024-10-15 08:08 ? 次閱讀

部分機器翻譯。轉(zhuǎn)載自:https://box86.org/2024/10/optimizing-the-risc-v-backend/

915776dc-8a89-11ef-b5cd-92fbcf53809c.png


大家好!一個半月前,我們撰寫了關(guān)于 RISC-V DynaRec(動態(tài)重編譯器,即 Box64 的 JIT 后端)的最新狀態(tài)的文章,并分享了在 RISC-V 上運行《巫師 3》的令人欣慰的進展。如果您還沒有看過那篇文章,千萬不要錯過!無論如何,上個月,我們并沒有只是坐在那里無所事事,而是專注于性能改進,現(xiàn)在我們有一些東西可以分享了。

Are We SIMD Yet?

多年來,x86 指令集慢慢擴展了大量 SIMD 指令,分散在多個 SIMD 擴展中,從最初的 MMX 到 SSE、SSE2、SSE3、SSSE3、SSE4,再到 AVX、AVX-2、AVX-512 以及即將推出的 AVX10。您可能已經(jīng)猜到,這些指令一定有廣泛的應(yīng)用,值得對編碼空間產(chǎn)生如此大的影響。

事實上,由于現(xiàn)代編譯器的存在,如今幾乎所有 x86 程序或多或少都會使用 SIMD 指令。特別是,一些性能敏感且并行友好的程序?qū)⒃跓岽a路徑中使用手寫 SIMD 內(nèi)核,以大幅提高性能。因此,box64 需要有效地翻譯這些指令。

幸運的是,x86 并不是唯一一個擁有 SIMD 或矢量擴展的指令集。它是如此重要,以至于幾乎所有的指令集都有它。例如,AArch64 有 Neon、SVE和 SVE2,LoongArch 有 LSX 和 LASX,RISC-V 有 Vector 擴展(或 RVV)。本質(zhì)上,這些擴展的目標(biāo)是相同的,即加速并行友好代碼的執(zhí)行。因此,即使它們有這樣或那樣的差異,它們通常是相似的,許多基本指令是完全相同的,因此可以通過 box64 等模擬器一對一地翻譯。

那么 box64 對這些 x86 SIMD 指令的支持程度如何?嗯,這是一個復(fù)雜的問題。例如,目前最完整的 AArch64 DynaRec 支持從 MMX 到 AVX-2 的幾乎所有指令。簡單來說,這些指令將被翻譯成一個或多個 Neon 指令來完成等效的工作。同時,最不完整的LoongArch64 DynaRec目前僅支持一小部分MMX和SSE*指令,未實現(xiàn)的操作碼將回退到解釋器,速度非常慢。

So, what about our beloved RISC-V? Are we SIMD yet?

嗯,一個半月前,答案是否定的。RISC-V DynaRec 確實實現(xiàn)了從 MMX 到SSE4的大多數(shù)指令,但這些指令是用標(biāo)量指令模擬的。

For example, for the SSE2paddqopcode, what this instruction does is:

917001e8-8a89-11ef-b5cd-92fbcf53809c.pngSo how is it emulated on RISC-V? Let’s take a look at it via the dump functionality of Box64:

9180e2d8-8a89-11ef-b5cd-92fbcf53809c.png

You can see that the translation is implemented by twoLOAD LOAD ADD STOREsequences, totaling 8 instructions. This is probably the easiest opcode to simulate so it will be even worse for other more complex opcodes.

So how is this implemented on AArch64?

9191bbd0-8a89-11ef-b5cd-92fbcf53809c.png


Ah ha, this opcode is translated one-to-one to theVADDinstruction! No surprises at all.

可以想象,在 RISC-V 上,這種方法確實會比簡單地回退到解釋器有更好的性能,但與手頭有 Neon 指令的 AArch64 相比,它就差遠(yuǎn)了。

RISC-V 指令集以多樣性而聞名(如果你討厭 RISC-V,你也可以說是碎片化)。這意味著除了基本指令集之外,供應(yīng)商還有充分的自由來實現(xiàn)或不實現(xiàn)官方擴展,以及添加或不添加自定義擴展。

你看,在 AArch64 中,Neon 擴展是強制性的,因此 box64 可以隨意使用它,無需擔(dān)心它的存在。但RVV卻大不相同。例如,JH7110(VisionFive 2、MilkV Mars 等)沒有任何矢量擴展,而 SpacemiT K1/M1(Banana Pi F3、MilkV Jupiter 等)支持矢量寄存器寬度為 256 位的 RVV 1.0,SG2042(MilkV Pioneer)支持舊 RVV 版本 0.7.1(或 XTheadVector),寄存器寬度為 128 位。

In fact, the one on SG2042 is not strictly 0.7.1, but based on 0.7.1, that why it is called XTheadVector. Although it has some differences with RVV 1.0, such as the encoding of instructions, the behavior of some instructions, and the lack of a small number of instructions, it is generally very similar.

Anyway, on RISC-V we cannot assume that RVV (or XTheadVector) is always present, so using a scalar implementation as a fallback is reasonable and necessary.

But for a long time, the RISC-V DynaRec only had a scalar solution, which was a huge waste of hardware performance for hardware with RVV (or XTheadVector) support, until recently.Yes, in the past month, we added preliminary RVV and XTheadVector support to the RISC-V backend!Also, we managed to share most of the code between RVV 1.0 and XTheadVector, so no additional maintenance burden for supporting 2 extensions at once.

Ohhhh, I can’t wait, let me show you what thatpaddqlooks like now!

91a3cd70-8a89-11ef-b5cd-92fbcf53809c.png

Hmmm, okay, it looks much nicer. But, you may ask, what the heck is thatVSETIVLI? Well… that’s a long story.

In “traditional” SIMD extensions, the width of the selected elements is encoded directly into the instruction itself, e.g. in x86 there is not onlypaddqfor 64bit addition, but alsopaddb,paddwandpadddfor 8bit, 16bit and 32bit respectively.

In RVV, on the other hand, there is only 1 vector-wise addition instruction, which isvadd.vv. The selected element width (SEW) is instead stored in a control register calledvtype, and you need to use the dedicatedvsetivliinstruction to set the value ofvtype. Every time a vector instruction is executed, thevtyperegister must be in a valid state.

In the abovevsetivliinstruction, we essentially set the SEW to 64bit along with other configurations. However, inserting avsetivlibefore every SIMD opcode doesn’t sound like a good idea. Ifvtypedoes not need to change between adjacent opcodes, we can safely eliminate them. And that’s how we did it in Box64.

Look at these dumps:

91bf34a2-8a89-11ef-b5cd-92fbcf53809c.png

You can see that among the 5 SSE opcodes, as the actual SEW has not changed, we only callvsetivlionce at the top. We achieved this by adding a SEW tracking mechanism to the DynaRec and only insertingvsetvliwhen it’s necessary. This tracking not only includes the linear part but also considers control flow. A lot of state caching in box64 is done using a similar mechanism, so nothing new here.

For now, we haven’t implemented every x86 SIMD instruction in RVV / XTheadVector, but we implemented enough of them to do a proper benchmark. By tradition, we use the dav1d AV1 decoding benchmark as a reference, which happens to use SSE instructions a LOT, and here is the command we used:

dav1d -i ./Chimera-AV1-8bit-480x270-552kbps.ivf --muxer null --threads 8

We did the test on the MilkV Pioneer, which has the XTheadVector extension.

We also tested RVV 1.0 with the SpacemiT K1, the result is more or less the same.

91d24aa6-8a89-11ef-b5cd-92fbcf53809c.png

Compared to the scalar version, we get a nearly 4x performance improvement! Even faster than native! Ugh… well, the faster-than-native part is more symbolic. The comparison is meaningful only if native dav1d fully supports XTheadVector, which the native dav1d does not support at all.

Last But Not Least

In thelast post, we complained about RISC-V not having bit range insert and extract instructions, and therefore not being able to efficiently implement things like 8bit and 16bit x86 opcodes.camel-cdrcame up with a great solution:https://news.ycombinator.com/item?id=41364904. Basically, for anADD AH, BL, you can implement it using the following 4 instructions!

91e7e460-8a89-11ef-b5cd-92fbcf53809c.png

The core idea is to shift the actual addition to the high part to eliminate the effect of the carry, which is a pretty neat trick. And it can be applied to almost all of the 8-bit and 16-bit opcodes when there is noeflagscomputation required, which covers most scenarios. We have adopted this approach as a fast path to box64. Thank you very muchcamel-cdr!

This method requires an instruction from the Zbb extension calledRORI(Rotate Right Immediate). Fortunately, at least all the RISC-V hardware I own provides this extension, so it’s commonly available. (Well, SG2042 does not have Zbb, but it has an equivalent instructionTH.SRRIin the XTheadBb extension).

We also found that in the XTheadBb extension, there is aTH.EXTUinstruction, which did the bit extract operation. We’ve adapted this instruction to some places too, for example, the indirect jump table lookup — when box64 DynaRec needs to jump out of the current dynablock to the next dynablock, it needs to find where the next is.

In short, there are two cases. The first is a direct jump, that is, the jump address is known at compile time. In this case, box64 can directly query the jump table at compile time to obtain the jump address and place it in the built-in data area of dynablock, which can be used directly when jumping at runtime, no problem there.

The second is an indirect jump, that is, the jump address is stored in a register or memory and is unknown at compile time. In this case, box64 has no choice but to generate code that queries the jump table at runtime.

The lookup table is a data structure similar to page table, and the code for the lookup is as follows:

92014fcc-8a89-11ef-b5cd-92fbcf53809c.png

Hmmm, I know, it’s hard to see what’s happening there, but it seems like a lot of instructions there for a jump, right? But withTH.ADDSLandTH.EXTUfrom XTheadBb, it becomes:

921d46aa-8a89-11ef-b5cd-92fbcf53809c.png

Now it’s much more readable; you should be able to see that this is a 4-layer lookup table, and the number of instructions required has also been reduced a bit.

Okay, all these optimizations look good, but does it show effects in real-world benchmarks? Well, we tested 7z b, dav1d and coremark, and there are no visible differences in the scores with or without XTheadBb. But, a quote from theSQLite website:

A microoptimization is a change to the code that results in a very small performance increase. Typical micro-optimizations reduce the number of CPU cycles by 0.1% or 0.05% or even less. Such improvements are impossible to measure with real-world timings. But hundreds or thousands of microoptimizations add up, resulting in measurable real-world performance gains.

So, let’s do our best and hope for the best!

In the End

Well, this is the end of this post, but it is not the end of optimizing the RISC-V DynaRec, we’ve barely started!

Next, we’ll add more SSE opcodes to the vector units, as well as MMX opcodes and AVX opcodes, and we will make the RISC-V DynaRec as shiny as the AArch64 one!

So, a bit more work, and we can have a look again at gaming, with, hopefully, playable framerates and more games running so stay tuned!

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 編譯器
    +關(guān)注

    關(guān)注

    1

    文章

    1651

    瀏覽量

    49712
  • 模擬器
    +關(guān)注

    關(guān)注

    2

    文章

    888

    瀏覽量

    43848
  • RISC-V
    +關(guān)注

    關(guān)注

    46

    文章

    2458

    瀏覽量

    47944
收藏 人收藏

    評論

    相關(guān)推薦

    【AI開發(fā)板】正點原子K230D BOX開發(fā)板來了!一款性能強悍且小巧便攜的AI開發(fā)板!

    搭載嘉楠科技推出的K230D主控芯片,該芯片以RISC-V雙核64位的CPU為核心,并搭載嘉楠科技自研的第三代KPU,能提供至高達6TOPS的等效算力,其在典型網(wǎng)絡(luò)下實測推理能力可
    發(fā)表于 02-18 16:56

    關(guān)于RISC-V芯片的應(yīng)用學(xué)習(xí)總結(jié)

    和模塊化設(shè)計成為其顯著優(yōu)勢。物聯(lián)網(wǎng)設(shè)備通常需要長時間運行,且對體積和功耗有嚴(yán)格要求。RISC-V芯片通過精簡指令集和優(yōu)化設(shè)計,實現(xiàn)低功耗的同時保持
    發(fā)表于 01-29 08:38

    【「RISC-V體系結(jié)構(gòu)編程與實踐」閱讀體驗】-- SBI及NEMU環(huán)境

    基于2019版的NEMU進行了增強和維護,以模擬香山處理前期指令集和體系結(jié)構(gòu)。本章把NEMU簡稱為香山模擬器。NEMU支持x86、RV32
    發(fā)表于 11-26 09:37

    什么是RISC-V?以及RISC-V和ARM、X86的區(qū)別

    指令集架構(gòu),為學(xué)生和研究人員提供一個更加友好和易于理解的指令集,以便他們更好地學(xué)習(xí)和研究計算機處理的設(shè)計和開發(fā)。 RISC-V與ARM、X86指令集架構(gòu)的區(qū)別
    發(fā)表于 11-16 16:14

    算能 SG2042 / Milk-V Pioneer 的含金量還在不斷提升RISC-V 生態(tài)逐步完善,玩大型游戲已經(jīng)不遠(yuǎn)了!

    近期,Box64開源二進制模擬器項目對于RISC-V架構(gòu)的支持和優(yōu)化得到了進一步提升,已經(jīng)可以玩《Hades》這樣的游戲神作。
    的頭像 發(fā)表于 11-01 08:10 ?735次閱讀
    算能 SG2042 / Milk-<b class='flag-5'>V</b> Pioneer 的含金量還在不斷<b class='flag-5'>提升</b>:<b class='flag-5'>RISC-V</b> 生態(tài)逐步完善,玩大型游戲已經(jīng)不遠(yuǎn)了!

    淺談RISC-C C Intrinsic的發(fā)展情況

    Intrinsic 特別適用于向量擴展(RVV),這是因為RVV提供對數(shù)據(jù)并行處理的原生支持。 ## RISC-V C Intrins
    發(fā)表于 10-16 16:55

    RISC-V Vector Intrinsic使用標(biāo)準(zhǔn)

    RISC-V Vector1.0的Intrinsic有定義的標(biāo)準(zhǔn)嗎? 在每個地方看到的都不一樣。平頭哥的編譯工具鏈帶的RVV1.0 Intrinsic 的編寫,每個函數(shù)的開頭都是__riscv_
    發(fā)表于 10-14 16:15

    risc-v的發(fā)展歷史

    RISC-V v2.1,增加了對64位體系結(jié)構(gòu)的支持,并提供更詳細(xì)的文檔和規(guī)范。 2017年:RISC
    發(fā)表于 07-29 17:20

    探索RISC-V二進制翻譯,openKylin成功在SG2042平臺運行X86架構(gòu)軟件!

    眾所周知,在新的指令集架構(gòu)發(fā)展初期,往往采用兼容其他架構(gòu)軟件的方法來拓展自身生態(tài)體系,如蘋果公司的Rosetta2和微軟的Arm64EC,都是將X86架構(gòu)軟件運行在ARM架構(gòu)的系統(tǒng)之上。RISC-V
    的頭像 發(fā)表于 07-24 08:34 ?825次閱讀
    探索<b class='flag-5'>RISC-V</b>二進制翻譯,openKylin成功在SG2042平臺運行X<b class='flag-5'>86</b>架構(gòu)軟件!

    risc-v的mcu對RTOS兼容性如何

    是否支持特定的RISC-V變種。 大多數(shù)現(xiàn)代RTOS都支持多種處理架構(gòu),包括RISC-V。例如,F(xiàn)reeRTOS、RT-Thread等RT
    發(fā)表于 05-27 16:26

    RISC-V的MCU與ARM對比

    開發(fā)者提供豐富的資源和支持,降低了開發(fā)難度和成本。 成本 RISC-V :由于RISC-V是開源的,因此使用RISC-V的MCU可以
    發(fā)表于 05-27 15:58

    RISC-V在服務(wù)方面應(yīng)用與發(fā)展前景

    計算技術(shù)研究所等機構(gòu)發(fā)布的“香山”開源高性能RISC-V處理核,不僅性能卓越,而且有效匯聚了全球創(chuàng)新力量,加速
    發(fā)表于 04-28 09:04

    RISC-V有哪些優(yōu)點和缺點

    模塊化設(shè)計提高了RISC-V的適應(yīng)性和靈活性。 簡潔的指令集:RISC-V的設(shè)計簡潔,指令數(shù)量相對較少,這有助于提高處理的執(zhí)行速度和降低功耗。 強大的社區(qū)支持
    發(fā)表于 04-28 09:03

    RISC-V有哪些優(yōu)缺點?是堅持ARM方向還是投入risc-V的懷抱?

    。這種模塊化設(shè)計提高了RISC-V的適應(yīng)性和靈活性。 簡潔的指令集 :RISC-V的設(shè)計簡潔,指令數(shù)量相對較少,這有助于提高處理的執(zhí)行速度和降低功耗。 強大的社區(qū)支持
    發(fā)表于 04-28 08:51

    RISC-V在服務(wù)方面的應(yīng)用與發(fā)展前景如何?剛畢業(yè)的學(xué)生才開始學(xué)來的及嗎?

    計算技術(shù)研究所等機構(gòu)發(fā)布的“香山”開源高性能RISC-V處理核,不僅性能卓越,而且有效匯聚了全球創(chuàng)新力量,加速
    發(fā)表于 04-28 08:49

    電子發(fā)燒友

    中國電子工程師最喜歡的網(wǎng)站

    • 2931785位工程師會員交流學(xué)習(xí)
    • 獲取您個性化的科技前沿技術(shù)信息
    • 參加活動獲取豐厚的禮品