0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于STM32設(shè)計的養(yǎng)殖場環(huán)境監(jiān)測系統(tǒng)(華為云IOT)

DS小龍哥-嵌入式技術(shù) ? 來源:DS小龍哥-嵌入式技術(shù) ? 作者:DS小龍哥-嵌入式技 ? 2024-10-12 14:14 ? 次閱讀

一、前言

項目設(shè)計里用到的全部工具軟件和源碼工程,都可以網(wǎng)盤里下載。

https://pan.quark.cn/s/145a9b3f7f53

1.1 項目介紹

【1】項目開發(fā)背景

隨著現(xiàn)代農(nóng)業(yè)技術(shù)的發(fā)展,智能化管理在農(nóng)業(yè)生產(chǎn)中扮演著越來越重要的角色。特別是在養(yǎng)殖業(yè)中,環(huán)境條件的好壞直接關(guān)系到養(yǎng)殖動物的生長狀態(tài)和健康水平。因此,建立一個能夠?qū)崟r監(jiān)控并調(diào)節(jié)養(yǎng)殖環(huán)境的系統(tǒng)顯得尤為重要。這樣的系統(tǒng)不僅可以提高養(yǎng)殖效率,減少人工成本,還可以通過精準控制環(huán)境參數(shù)來提升動物福利,進而保證產(chǎn)品質(zhì)量。

基于此背景,本項目設(shè)計并實現(xiàn)一套基于STM32微控制器的養(yǎng)殖場環(huán)境監(jiān)測系統(tǒng)。該系統(tǒng)將集成多種傳感器用于采集環(huán)境數(shù)據(jù),如溫度、濕度和光照強度等關(guān)鍵參數(shù)。通過本地OLED顯示屏,工作人員可以實時查看這些數(shù)據(jù),確保養(yǎng)殖環(huán)境處于最佳狀態(tài)。同時,考慮到現(xiàn)代養(yǎng)殖業(yè)對于遠程管理和自動化的需求,系統(tǒng)還將配備ESP8266 WiFi模塊,通過MQTT協(xié)議與華為云物聯(lián)網(wǎng)平臺進行通訊。這樣一來,借助于在Windows平臺上設(shè)計的上位機軟件以及Android移動應(yīng)用,管理者可以從任何地點遠程監(jiān)控環(huán)境狀況,調(diào)整預(yù)設(shè)閾值,并且根據(jù)實際情況啟動相應(yīng)的設(shè)備,比如控制通風(fēng)風(fēng)扇、加濕器或照明燈具。

此外,系統(tǒng)的硬件選型也經(jīng)過了深思熟慮。為了確保系統(tǒng)的穩(wěn)定性和可靠性,采用了成熟可靠的傳感器和技術(shù)方案,如DHT11溫濕度傳感器、BH1750光敏傳感器以及通過繼電器控制的5V風(fēng)扇和加濕器模塊。供電方面選擇了常見的USB線-5V供電方式,既方便又節(jié)能。整個系統(tǒng)的開發(fā)不僅能夠滿足現(xiàn)代化養(yǎng)殖業(yè)的實際需求,同時也為未來進一步的技術(shù)升級提供了堅實的基礎(chǔ)。

image-20240903164002577

【2】設(shè)計實現(xiàn)的功能

(1)實時環(huán)境監(jiān)測

系統(tǒng)配備了DHT11溫濕度傳感器和BH1750光敏傳感器,能夠持續(xù)監(jiān)測養(yǎng)殖區(qū)域內(nèi)的溫度、濕度以及光照強度等關(guān)鍵環(huán)境參數(shù)。這些數(shù)據(jù)的實時收集有助于及時發(fā)現(xiàn)環(huán)境變化,從而迅速采取措施調(diào)整環(huán)境條件。

(2)本地數(shù)據(jù)顯示

通過OLED顯示屏,系統(tǒng)能夠在本地即時顯示所監(jiān)測到的各項環(huán)境參數(shù)。這使得工作人員無需依賴外部設(shè)備即可了解當(dāng)前的環(huán)境狀況,便于快速響應(yīng)環(huán)境變化。

(3)遠程監(jiān)控與管理

系統(tǒng)內(nèi)置了ESP8266 WiFi模塊,允許它通過MQTT協(xié)議與華為云物聯(lián)網(wǎng)平臺建立連接。借助于該平臺,用戶可以利用Windows上位機軟件或Android移動應(yīng)用程序遠程訪問環(huán)境監(jiān)測數(shù)據(jù),實現(xiàn)了跨越地理限制的環(huán)境監(jiān)控。此外,用戶還可以通過上位機軟件或移動應(yīng)用設(shè)置環(huán)境參數(shù)的閾值,并接收超出閾值范圍的告警通知。

(4)自動化控制

當(dāng)環(huán)境監(jiān)測數(shù)據(jù)超出預(yù)定的安全范圍時,系統(tǒng)能夠自動啟動相應(yīng)的設(shè)備進行環(huán)境調(diào)節(jié)。例如,當(dāng)濕度超過預(yù)設(shè)值時,系統(tǒng)會自動開啟通風(fēng)風(fēng)扇來降低濕度;當(dāng)濕度低于設(shè)定值,則啟動加濕器增加空氣濕度;若光照不足,則自動開啟燈光補充光源。這樣,即使在無人值守的情況下,也能確保環(huán)境條件保持在適宜范圍內(nèi)。

(5)設(shè)備控制接口

系統(tǒng)設(shè)計了繼電器控制接口來操作5V風(fēng)扇和加濕器模塊,確保了設(shè)備的安全啟停。通過這種方式,不僅簡化了硬件設(shè)計,而且提高了系統(tǒng)的可靠性和使用壽命。

【3】項目硬件模塊組成

【1】STM32微控制器 :作為整個系統(tǒng)的主控單元,負責(zé)協(xié)調(diào)各個傳感器的數(shù)據(jù)采集、處理邏輯運算以及控制指令的發(fā)送。

【2】DHT11溫濕度傳感器 :用于實時監(jiān)測養(yǎng)殖環(huán)境中的溫度和濕度,并將數(shù)據(jù)傳送給STM32進行處理。

【3】BH1750光敏傳感器 :用于檢測養(yǎng)殖環(huán)境內(nèi)的光照強度,為系統(tǒng)提供光照數(shù)據(jù),以便做出相應(yīng)的照明控制決策。

【4】OLED顯示屏 :用于在本地顯示傳感器采集到的環(huán)境數(shù)據(jù),包括溫度、濕度和光照強度等信息。

【5】ESP8266 WiFi模塊 :使系統(tǒng)能夠接入無線網(wǎng)絡(luò),并通過MQTT協(xié)議與華為云物聯(lián)網(wǎng)平臺通信,實現(xiàn)遠程數(shù)據(jù)傳輸。

【6】繼電器模塊 :用于控制5V風(fēng)扇和加濕器的開關(guān),確保設(shè)備根據(jù)環(huán)境參數(shù)的變化自動啟停。

【7】5V小風(fēng)扇 :當(dāng)濕度超標時,通過繼電器模塊啟動,以幫助降低環(huán)境濕度。

【8】5V加濕器模塊 :當(dāng)濕度低于設(shè)定值時,由繼電器模塊控制開啟,以增加環(huán)境濕度。

【9】LED照明系統(tǒng) :當(dāng)光照強度低于閾值時,自動開啟以補充光照,確保養(yǎng)殖環(huán)境的光照條件符合要求。

【10】USB供電模塊 :系統(tǒng)采用USB線5V供電方式,為整個系統(tǒng)提供穩(wěn)定的電力供應(yīng),確保所有組件正常工作。

【4】需求總結(jié)

基于STM32設(shè)計的養(yǎng)殖場環(huán)境監(jiān)測系統(tǒng)

支持的功能如下:
(1)支持對養(yǎng)殖環(huán)境中的溫度、濕度、光照強度實時監(jiān)測;
(2)本地通過0LED顯示屏實時顯示檢測數(shù)據(jù)。
(3)能夠通過WiFi模塊通過MQTT協(xié)議連接華為云物聯(lián)網(wǎng)平臺,通過Qt設(shè)計Windows上位機和Android手機APP,能遠程查看環(huán)境參數(shù),設(shè)置閥值參數(shù),控制通風(fēng)風(fēng)扇。
(4)當(dāng)濕度超過閥值,通過風(fēng)扇實現(xiàn)送風(fēng);當(dāng)濕度低于值,利用加濕模塊實現(xiàn)加濕;當(dāng)光照強度低于閾值,打開燈;

硬件選型:
(1)WiFi模塊采用ESP8266-WIFI模塊
(2)光敏模塊:采用BH1750光敏傳感器
(3)風(fēng)扇模塊:采用5V小風(fēng)扇,通過繼電器控制開關(guān)。
(4)加濕器模塊:采用5V加濕器模塊,通過繼電器控制開關(guān)。
(5)溫濕度傳感器:采用DHT11
(6)供電電源:采用USB線-5V供電。

1.2 設(shè)計思路

設(shè)計思路的核心在于構(gòu)建一個高效且易于維護的智能環(huán)境監(jiān)測系統(tǒng),通過自動化的手段來優(yōu)化養(yǎng)殖環(huán)境的管理。

第一步,選擇STM32作為主控芯片是因為其高性能與低功耗特性,能夠很好地支持多任務(wù)處理,同時保證了系統(tǒng)的穩(wěn)定運行。此外,STM32豐富的外設(shè)接口也方便了與其他傳感器和執(zhí)行機構(gòu)的連接,為后續(xù)的功能擴展提供了便利。

針對環(huán)境參數(shù)的監(jiān)測,項目選用了DHT11溫濕度傳感器和BH1750光敏傳感器。DHT11因其高性價比和簡單的接口協(xié)議被廣泛應(yīng)用于各種環(huán)境監(jiān)測場景,而BH1750則以其高精度測量能力和良好的穩(wěn)定性成為了光照強度檢測的理想選擇。這兩類傳感器的數(shù)據(jù)采集結(jié)果將通過STM32的ADC模塊進行讀取,并經(jīng)由主控芯片內(nèi)部的邏輯判斷后,決定是否需要啟動環(huán)境調(diào)節(jié)裝置。

為了便于現(xiàn)場人員隨時了解環(huán)境狀況,設(shè)計中加入了OLED顯示屏,用于直觀展示傳感器采集的數(shù)據(jù)。OLED屏幕的優(yōu)勢在于其清晰度高且視角寬廣,即便是在光線較暗的環(huán)境中也能清晰地顯示信息。

考慮到遠程監(jiān)控的重要性,系統(tǒng)引入了ESP8266 WiFi模塊。通過WiFi模塊,系統(tǒng)可以連接至互聯(lián)網(wǎng),并利用MQTT協(xié)議與華為云物聯(lián)網(wǎng)平臺進行數(shù)據(jù)交換。MQTT協(xié)議因其輕量級和高效性非常適合于物聯(lián)網(wǎng)應(yīng)用場景,能夠有效支持大量的并發(fā)連接,確保數(shù)據(jù)的實時傳輸。借助云端服務(wù),用戶可以通過上位機軟件或智能手機應(yīng)用程序?qū)崟r查看環(huán)境參數(shù),并根據(jù)需要調(diào)整設(shè)置。

在執(zhí)行機構(gòu)的選擇上,系統(tǒng)采用了5V小風(fēng)扇和加濕器模塊,并通過繼電器進行控制。這種設(shè)計不僅簡化了電路結(jié)構(gòu),還增強了系統(tǒng)的安全性和可靠性。當(dāng)環(huán)境濕度或光照不符合預(yù)設(shè)標準時,系統(tǒng)會自動啟動相應(yīng)的設(shè)備來進行調(diào)節(jié),確保環(huán)境始終處于最佳狀態(tài)。

在供電方案上選擇了USB線5V供電,這不僅簡化了電源設(shè)計,降低了系統(tǒng)的復(fù)雜性,還使得系統(tǒng)更加節(jié)能環(huán)保。整體設(shè)計思路強調(diào)了系統(tǒng)集成度與自動化程度,力求通過最小的硬件配置實現(xiàn)最有效的環(huán)境管理。

1.3 系統(tǒng)功能總結(jié)

功能類別具體功能描述
環(huán)境監(jiān)測- 實時監(jiān)測養(yǎng)殖環(huán)境中的溫度、濕度及光照強度。- 數(shù)據(jù)通過DHT11溫濕度傳感器和BH1750光敏傳感器采集。
本地數(shù)據(jù)顯示- 利用OLED顯示屏實時顯示各項環(huán)境參數(shù)。
遠程監(jiān)控- 通過ESP8266 WiFi模塊連接互聯(lián)網(wǎng)。- 使用MQTT協(xié)議與華為云物聯(lián)網(wǎng)平臺進行數(shù)據(jù)交互。
遠程管理- 在Windows上位機軟件或Android應(yīng)用程序上查看環(huán)境參數(shù)。- 設(shè)置環(huán)境參數(shù)的閾值。- 接收超出閾值的告警信息。
自動化控制- 當(dāng)濕度超過設(shè)定閾值時,自動啟動風(fēng)扇降低濕度。- 當(dāng)濕度低于設(shè)定閾值時,啟動加濕器增加濕度。- 當(dāng)光照強度低于設(shè)定閾值時,自動開啟燈光補充光照。
設(shè)備控制接口- 通過繼電器模塊控制5V風(fēng)扇和加濕器模塊的開關(guān)。
供電系統(tǒng)- 采用USB線5V供電,確保系統(tǒng)的穩(wěn)定運行。

1.4 開發(fā)工具的選擇

【1】設(shè)備端開發(fā)

STM32的編程語言選擇C語言,C語言執(zhí)行效率高,大學(xué)里主學(xué)的C語言,C語言編譯出來的可執(zhí)行文件最接近于機器碼,匯編語言執(zhí)行效率最高,但是匯編的移植性比較差,目前在一些操作系統(tǒng)內(nèi)核里還有一些低配的單片機使用的較多,平常的單片機編程還是以C語言為主。C語言的執(zhí)行效率僅次于匯編,語法理解簡單、代碼通用性強,也支持跨平臺,在嵌入式底層、單片機編程里用的非常多,當(dāng)前的設(shè)計就是采用C語言開發(fā)。

開發(fā)工具選擇Keil,keil是一家世界領(lǐng)先的嵌入式微控制器軟件開發(fā)商,在2015年,keil被ARM公司收購。因為當(dāng)前芯片選擇的是STM32F103系列,STMF103是屬于ARM公司的芯片構(gòu)架、Cortex-M3內(nèi)核系列的芯片,所以使用Kile來開發(fā)STM32是有先天優(yōu)勢的,而keil在各大高校使用的也非常多,很多教科書里都是以keil來教學(xué),開發(fā)51單片機、STM32單片機等等。目前作為MCU芯片開發(fā)的軟件也不只是keil一家獨大,IAR在MCU微處理器開發(fā)領(lǐng)域里也使用的非常多,IAR擴展性更強,也支持STM32開發(fā),也支持其他芯片,比如:CC2530,51單片機的開發(fā)。從軟件的使用上來講,IAR比keil更加簡潔,功能相對少一些。如果之前使用過keil,而且使用頻率較多,已經(jīng)習(xí)慣再使用IAR是有點不適應(yīng)界面的。

image-20221210225339928

【2】上位機開發(fā)

上位機的開發(fā)選擇Qt框架,編程語言采用C++;Qt是一個1991年由Qt Company開發(fā)的跨平臺C++圖形用戶界面應(yīng)用程序開發(fā)框架。它既可以開發(fā)GUI程序,也可用于開發(fā)非GUI程序,比如控制臺工具和服務(wù)器。Qt是面向?qū)ο蟮目蚣?,使用特殊的代碼生成擴展(稱為元對象編譯器(Meta Object Compiler, moc))以及一些宏,Qt很容易擴展,并且允許真正地組件編程。Qt能輕松創(chuàng)建具有原生C++性能的連接設(shè)備、用戶界面(UI)和應(yīng)用程序。它功能強大且結(jié)構(gòu)緊湊,擁有直觀的工具和庫。

image-20230218001243591

image-20230218001219105

二、部署華為云物聯(lián)網(wǎng)平臺

**華為云官網(wǎng): **[https://www.huaweicloud.com/]

**打開官網(wǎng),搜索物聯(lián)網(wǎng),就能快速找到 **設(shè)備接入IoTDA。

image-20221204193824815

2.1 物聯(lián)網(wǎng)平臺介紹

華為云物聯(lián)網(wǎng)平臺(IoT 設(shè)備接入云服務(wù))提供海量設(shè)備的接入和管理能力,將物理設(shè)備聯(lián)接到云,支撐設(shè)備數(shù)據(jù)采集上云和云端下發(fā)命令給設(shè)備進行遠程控制,配合華為云其他產(chǎn)品,幫助我們快速構(gòu)筑物聯(lián)網(wǎng)解決方案。

使用物聯(lián)網(wǎng)平臺構(gòu)建一個完整的物聯(lián)網(wǎng)解決方案主要包括3部分:物聯(lián)網(wǎng)平臺、業(yè)務(wù)應(yīng)用和設(shè)備。

物聯(lián)網(wǎng)平臺作為連接業(yè)務(wù)應(yīng)用和設(shè)備的中間層,屏蔽了各種復(fù)雜的設(shè)備接口,實現(xiàn)設(shè)備的快速接入;同時提供強大的開放能力,支撐行業(yè)用戶構(gòu)建各種物聯(lián)網(wǎng)解決方案。

設(shè)備可以通過固網(wǎng)、2G/3G/4G/5G、NB-IoT、Wifi等多種網(wǎng)絡(luò)接入物聯(lián)網(wǎng)平臺,并使用LWM2M/CoAP、MQTT、HTTPS協(xié)議將業(yè)務(wù)數(shù)據(jù)上報到平臺,平臺也可以將控制命令下發(fā)給設(shè)備。

業(yè)務(wù)應(yīng)用通過調(diào)用物聯(lián)網(wǎng)平臺提供的API,實現(xiàn)設(shè)備數(shù)據(jù)采集、命令下發(fā)、設(shè)備管理等業(yè)務(wù)場景。

img

2.2 開通物聯(lián)網(wǎng)服務(wù)

**地址: **[https://www.huaweicloud.com/product/iothub.html]
image-20221204194233414

點擊立即創(chuàng)建。

image-20240117134653452

正在創(chuàng)建標準版實例,需要等待片刻。

image-20240117134729401

創(chuàng)建完成之后,點擊實例名稱。 可以看到標準版實例的設(shè)備接入端口和地址。

image-20240425180759670

在上面也能看到 免費單元的限制。

image-20240425180817704

開通之后,點擊總覽,也能查看接入信息。 我們當(dāng)前設(shè)備準備采用MQTT協(xié)議接入華為云平臺,這里可以看到MQTT協(xié)議的地址和端口號等信息。

image-20240425180845461

總結(jié):

端口號:   MQTT (1883)| MQTTS (8883)	
接入地址:ad635970a1.st1.iotda-device.cn-north-4.myhuaweicloud.com

**根據(jù)域名地址得到IP地址信息: **

打開Windows電腦的命令行控制臺終端,使用ping 命令。ping一下即可。

Microsoft Windows [版本 10.0.19045.4170]
(c) Microsoft Corporation。保留所有權(quán)利。

C:Users11266 >ping ad635970a1.st1.iotda-device.cn-north-4.myhuaweicloud.com

正在 Ping ad635970a1.st1.iotda-device.cn-north-4.myhuaweicloud.com [117.78.5.125] 具有 32 字節(jié)的數(shù)據(jù):
來自 117.78.5.125 的回復(fù): 字節(jié)=32 時間=35ms TTL=93
來自 117.78.5.125 的回復(fù): 字節(jié)=32 時間=36ms TTL=93
來自 117.78.5.125 的回復(fù): 字節(jié)=32 時間=36ms TTL=93
來自 117.78.5.125 的回復(fù): 字節(jié)=32 時間=39ms TTL=93

117.78.5.125 的 Ping 統(tǒng)計信息:
    數(shù)據(jù)包: 已發(fā)送 = 4,已接收 = 4,丟失 = 0 (0% 丟失),
往返行程的估計時間(以毫秒為單位):
    最短 = 35ms,最長 = 39ms,平均 = 36ms

C:Users11266 >

MQTT協(xié)議接入端口號有兩個,1883是非加密端口,8883是證書加密端口,單片機無法加載證書,所以使用1883端口比較合適。 接下來的ESP8266就采用1883端口連接華為云物聯(lián)網(wǎng)平臺。

2.3 創(chuàng)建產(chǎn)品

(1)創(chuàng)建產(chǎn)品

image-20230109164412041

(2)填寫產(chǎn)品信息

根據(jù)自己產(chǎn)品名字填寫,下面的設(shè)備類型選擇自定義類型。

image-20240612094809689

(3)產(chǎn)品創(chuàng)建成功

image-20240612095148945

創(chuàng)建完成之后點擊查看詳情。

image-20240612095134263

(4)添加自定義模型

產(chǎn)品創(chuàng)建完成之后,點擊進入產(chǎn)品詳情頁面,翻到最下面可以看到模型定義。

模型簡單來說: 就是存放設(shè)備上傳到云平臺的數(shù)據(jù)。

你可以根據(jù)自己的產(chǎn)品進行創(chuàng)建。

比如:

煙霧可以叫  MQ2
溫度可以叫  Temperature
濕度可以叫  humidity
火焰可以叫  flame
其他的傳感器自己用單詞簡寫命名即可。 這就是你的單片機設(shè)備端上傳到服務(wù)器的數(shù)據(jù)名字。

先點擊自定義模型。

image-20240612095517900

再創(chuàng)建一個服務(wù)ID。

image-20240612095542749

接著點擊新增屬性。

image-20240612095648815

image-20240612095711898

2.4 添加設(shè)備

產(chǎn)品是屬于上層的抽象模型,接下來在產(chǎn)品模型下添加實際的設(shè)備。添加的設(shè)備最終需要與真實的設(shè)備關(guān)聯(lián)在一起,完成數(shù)據(jù)交互。

(1)注冊設(shè)備

image-20240425181935561

(2)根據(jù)自己的設(shè)備填寫

image-20240612100115167

(3)保存設(shè)備信息

創(chuàng)建完畢之后,點擊保存并關(guān)閉,得到創(chuàng)建的設(shè)備密匙信息。該信息在后續(xù)生成MQTT三元組的時候需要使用。

image-20240612100128061

(4)設(shè)備創(chuàng)建完成

image-20240612100147232

(5)設(shè)備詳情

image-20240612100202960

image-20240612100217236

2.5 MQTT協(xié)議主題訂閱與發(fā)布

(1)MQTT協(xié)議介紹

當(dāng)前的設(shè)備是采用MQTT協(xié)議與華為云平臺進行通信。

MQTT是一個物聯(lián)網(wǎng)傳輸協(xié)議,它被設(shè)計用于輕量級的發(fā)布/訂閱式消息傳輸,旨在為低帶寬和不穩(wěn)定的網(wǎng)絡(luò)環(huán)境中的物聯(lián)網(wǎng)設(shè)備提供可靠的網(wǎng)絡(luò)服務(wù)。MQTT是專門針對物聯(lián)網(wǎng)開發(fā)的輕量級傳輸協(xié)議。MQTT協(xié)議針對低帶寬網(wǎng)絡(luò),低計算能力的設(shè)備,做了特殊的優(yōu)化,使得其能適應(yīng)各種物聯(lián)網(wǎng)應(yīng)用場景。目前MQTT擁有各種平臺和設(shè)備上的客戶端,已經(jīng)形成了初步的生態(tài)系統(tǒng)。

MQTT是一種消息隊列協(xié)議,使用發(fā)布/訂閱消息模式,提供一對多的消息發(fā)布,解除應(yīng)用程序耦合,相對于其他協(xié)議,開發(fā)更簡單;MQTT協(xié)議是工作在TCP/IP協(xié)議上;由TCP/IP協(xié)議提供穩(wěn)定的網(wǎng)絡(luò)連接;所以,只要具備TCP協(xié)議棧的網(wǎng)絡(luò)設(shè)備都可以使用MQTT協(xié)議。 本次設(shè)備采用的ESP8266就具備TCP協(xié)議棧,能夠建立TCP連接,所以,配合STM32代碼里封裝的MQTT協(xié)議,就可以與華為云平臺完成通信。

**華為云的MQTT協(xié)議接入幫助文檔在這里: **https://support.huaweicloud.com/devg-iothub/iot_02_2200.html

img

業(yè)務(wù)流程:

img

(2)華為云平臺MQTT協(xié)議使用限制

描述限制
支持的MQTT協(xié)議版本3.1.1
與標準MQTT協(xié)議的區(qū)別支持Qos 0和Qos 1支持Topic自定義不支持QoS2不支持will、retain msg
MQTTS支持的安全等級采用TCP通道基礎(chǔ) + TLS協(xié)議(最高TLSv1.3版本)
單帳號每秒最大MQTT連接請求數(shù)無限制
單個設(shè)備每分鐘支持的最大MQTT連接數(shù)1
單個MQTT連接每秒的吞吐量,即帶寬,包含直連設(shè)備和網(wǎng)關(guān)3KB/s
MQTT單個發(fā)布消息最大長度,超過此大小的發(fā)布請求將被直接拒絕1MB
MQTT連接心跳時間建議值心跳時間限定為30至1200秒,推薦設(shè)置為120秒
產(chǎn)品是否支持自定義Topic支持
消息發(fā)布與訂閱設(shè)備只能對自己的Topic進行消息發(fā)布與訂閱
每個訂閱請求的最大訂閱數(shù)無限制

(3)主題訂閱格式

幫助文檔地址:https://support.huaweicloud.com/devg-iothub/iot_02_2200.html

image-20221207153310037

對于設(shè)備而言,一般會訂閱平臺下發(fā)消息給設(shè)備 這個主題。

設(shè)備想接收平臺下發(fā)的消息,就需要訂閱平臺下發(fā)消息給設(shè)備 的主題,訂閱后,平臺下發(fā)消息給設(shè)備,設(shè)備就會收到消息。

如果設(shè)備想要知道平臺下發(fā)的消息,需要訂閱上面圖片里標注的主題。

以當(dāng)前設(shè)備為例,最終訂閱主題的格式如下:
$oc/devices/{device_id}/sys/messages/down

最終的格式:
$oc/devices/663cb18871d845632a0912e7_dev1/sys/messages/down

(4)主題發(fā)布格式

對于設(shè)備來說,主題發(fā)布表示向云平臺上傳數(shù)據(jù),將最新的傳感器數(shù)據(jù),設(shè)備狀態(tài)上傳到云平臺。

這個操作稱為:屬性上報。

幫助文檔地址:https://support.huaweicloud.com/usermanual-iothub/iot_06_v5_3010.html

image-20221207153637391

根據(jù)幫助文檔的介紹, 當(dāng)前設(shè)備發(fā)布主題,上報屬性的格式總結(jié)如下:

發(fā)布的主題格式:
$oc/devices/{device_id}/sys/properties/report

最終的格式:
$oc/devices/663cb18871d845632a0912e7_dev1/sys/properties/report
發(fā)布主題時,需要上傳數(shù)據(jù),這個數(shù)據(jù)格式是JSON格式。

上傳的JSON數(shù)據(jù)格式如下:

{
  "services": [
    {
      "service_id": < 填服務(wù)ID >,
      "properties": {
        "< 填屬性名稱1 >": < 填屬性值 >,
        "< 填屬性名稱2 >": < 填屬性值 >,
        ..........
      }
    }
  ]
}
根據(jù)JSON格式,一次可以上傳多個屬性字段。 這個JSON格式里的,服務(wù)ID,屬性字段名稱,屬性值類型,在前面創(chuàng)建產(chǎn)品的時候就已經(jīng)介紹了,不記得可以翻到前面去查看。

根據(jù)這個格式,組合一次上傳的屬性數(shù)據(jù):
{"services": [{"service_id": "stm32","properties":{"DHT11_T":30,"DHT11_H":10,"BH1750":1,"MQ135":0}}]}

2.6 MQTT三元組

**MQTT協(xié)議登錄需要填用戶ID,設(shè)備ID,設(shè)備密碼等信息,就像我們平時登錄QQ,微信一樣要輸入賬號密碼才能登錄。MQTT協(xié)議登錄的這3個參數(shù),一般稱為MQTT三元組。 **

接下來介紹,華為云平臺的MQTT三元組參數(shù)如何得到。

(1)MQTT服務(wù)器地址

要登錄MQTT服務(wù)器,首先記得先知道服務(wù)器的地址是多少,端口是多少。

幫助文檔地址:https://console.huaweicloud.com/iotdm/?region=cn-north-4#/dm-portal/home

image-20240509193207359

MQTT協(xié)議的端口支持1883和8883,它們的區(qū)別是:8883 是加密端口更加安全。但是單片機上使用比較困難,所以當(dāng)前的設(shè)備是采用1883端口進連接的。

根據(jù)上面的域名和端口號,得到下面的IP地址和端口號信息: 如果設(shè)備支持填寫域名可以直接填域名,不支持就直接填寫IP地址。 (IP地址就是域名解析得到的)

華為云的MQTT服務(wù)器地址:117.78.5.125
華為云的MQTT端口號:1883

如何得到IP地址?如何域名轉(zhuǎn)IP? 打開Windows的命令行輸入以下命令。

ping  ad635970a1.st1.iotda-device.cn-north-4.myhuaweicloud.com

image-20240425182610048

(2)生成MQTT三元組

**華為云提供了一個在線工具,用來生成MQTT鑒權(quán)三元組: **https://iot-tool.obs-website.cn-north-4.myhuaweicloud.com/

打開這個工具,填入設(shè)備的信息(也就是剛才創(chuàng)建完設(shè)備之后保存的信息),點擊生成,就可以得到MQTT的登錄信息了。

下面是打開的頁面:

image-20240425183025893

填入設(shè)備的信息: (上面兩行就是設(shè)備創(chuàng)建完成之后保存得到的)

直接得到三元組信息。

image-20240509193310020

得到三元組之后,設(shè)備端通過MQTT協(xié)議登錄鑒權(quán)的時候,填入?yún)?shù)即可。

ClientId  663cb18871d845632a0912e7_dev1_0_0_2024050911
Username  663cb18871d845632a0912e7_dev1
Password  71b82deae83e80f04c4269b5bbce3b2fc7c13f610948fe210ce18650909ac237

2.7 模擬設(shè)備登錄測試

**經(jīng)過上面的步驟介紹,已經(jīng)創(chuàng)建了產(chǎn)品,設(shè)備,數(shù)據(jù)模型,得到MQTT登錄信息。 接下來就用MQTT客戶端軟件模擬真實的設(shè)備來登錄平臺。測試與服務(wù)器通信是否正常。 **

(1)填入登錄信息

打開MQTT客戶端軟件,對號填入相關(guān)信息(就是上面的文本介紹)。然后,點擊登錄,訂閱主題,發(fā)布主題。

image-20240509193457358

(2)打開網(wǎng)頁查看

完成上面的操作之后,打開華為云網(wǎng)頁后臺,可以看到設(shè)備已經(jīng)在線了。

image-20240612100508790

點擊詳情頁面,可以看到上傳的數(shù)據(jù):

image-20240612100529581

到此,云平臺的部署已經(jīng)完成,設(shè)備已經(jīng)可以正常上傳數(shù)據(jù)了。

(3)MQTT登錄測試參數(shù)總結(jié)

MQTT服務(wù)器:  117.78.5.125
MQTT端口號:  183

//物聯(lián)網(wǎng)服務(wù)器的設(shè)備信息
#define MQTT_ClientID "663cb18871d845632a0912e7_dev1_0_0_2024050911"
#define MQTT_UserName "663cb18871d845632a0912e7_dev1"
#define MQTT_PassWord "71b82deae83e80f04c4269b5bbce3b2fc7c13f610948fe210ce18650909ac237"

//訂閱與發(fā)布的主題
#define SET_TOPIC  "$oc/devices/663cb18871d845632a0912e7_dev1/sys/messages/down"  //訂閱
#define POST_TOPIC "$oc/devices/663cb18871d845632a0912e7_dev1/sys/properties/report"  //發(fā)布


發(fā)布的數(shù)據(jù):
{"services": [{"service_id": "stm32","properties":{"DHT11_T":30,"DHT11_H":10,"BH1750":1,"MQ135":0}}]}

2.8 創(chuàng)建IAM賬戶

創(chuàng)建一個IAM賬戶,因為接下來開發(fā)上位機,需要使用云平臺的API接口,這些接口都需要token進行鑒權(quán)。簡單來說,就是身份的認證。 調(diào)用接口獲取Token時,就需要填寫IAM賬號信息。所以,接下來演示一下過程。

**地址: **https://console.huaweicloud.com/iam/?region=cn-north-4#/iam/users

**【1】獲取項目憑證 ** 點擊左上角用戶名,選擇下拉菜單里的我的憑證

image-20240509193646253

image-20240509193701262

項目憑證:

28add376c01e4a61ac8b621c714bf459

【2】創(chuàng)建IAM用戶

鼠標放在左上角頭像上,在下拉菜單里選擇統(tǒng)一身份認證。

image-20240509193729078

點擊左上角創(chuàng)建用戶

image-20240509193744287

image-20240314153208692

image-20240314153228359

image-20240314153258229

創(chuàng)建成功:

image-20240314153315444

【3】創(chuàng)建完成

image-20240509193828289

用戶信息如下:

主用戶名  l19504562721
IAM用戶  ds_abc
密碼     DS12345678

2.9 獲取影子數(shù)據(jù)

幫助文檔:https://support.huaweicloud.com/api-iothub/iot_06_v5_0079.html

設(shè)備影子介紹:

設(shè)備影子是一個用于存儲和檢索設(shè)備當(dāng)前狀態(tài)信息的JSON文檔。
每個設(shè)備有且只有一個設(shè)備影子,由設(shè)備ID唯一標識
設(shè)備影子僅保存最近一次設(shè)備的上報數(shù)據(jù)和預(yù)期數(shù)據(jù)
無論該設(shè)備是否在線,都可以通過該影子獲取和設(shè)置設(shè)備的屬性

簡單來說:設(shè)備影子就是保存,設(shè)備最新上傳的一次數(shù)據(jù)。

我們設(shè)計的軟件里,如果想要獲取設(shè)備的最新狀態(tài)信息,就采用設(shè)備影子接口。

如果對接口不熟悉,可以先進行在線調(diào)試:https://apiexplorer.developer.huaweicloud.com/apiexplorer/doc?product=IoTDA&api=ShowDeviceShadow

在線調(diào)試接口,可以請求影子接口,了解請求,與返回的數(shù)據(jù)格式。

調(diào)試完成看右下角的響應(yīng)體,就是返回的影子數(shù)據(jù)。

image-20240509194152229

設(shè)備影子接口返回的數(shù)據(jù)如下:

{
 "device_id": "663cb18871d845632a0912e7_dev1",
 "shadow": [
  {
   "service_id": "stm32",
   "desired": {
    "properties": null,
    "event_time": null
   },
   "reported": {
    "properties": {
     "DHT11_T": 18,
     "DHT11_H": 90,
     "BH1750": 38,
     "MQ135": 70
    },
    "event_time": "20240509T113448Z"
   },
   "version": 3
  }
 ]
}

調(diào)試成功之后,可以得到訪問影子數(shù)據(jù)的真實鏈接,接下來的代碼開發(fā)中,就采用Qt寫代碼訪問此鏈接,獲取影子數(shù)據(jù),完成上位機開發(fā)。

image-20240509194214716

鏈接如下:

https://ad635970a1.st1.iotda-app.cn-north-4.myhuaweicloud.com:443/v5/iot/28add376c01e4a61ac8b621c714bf459/devices/663cb18871d845632a0912e7_dev1/shadow

三、上位機開發(fā)

為了方便查看設(shè)備上傳的數(shù)據(jù),接下來利用Qt開發(fā)一款A(yù)ndroid手機APP 和 Windows上位機。

使用華為云平臺提供的API接口獲取設(shè)備上傳的數(shù)據(jù),進行可視化顯示,以及遠程控制設(shè)備。

3.1 Qt開發(fā)環(huán)境安裝

**Qt的中文官網(wǎng): **https://www.qt.io/zh-cn/image-20221207160550486

image-20221207160606892

QT5.12.6的下載地址:https://download.qt.io/archive/qt/5.12/5.12.6

或者去網(wǎng)盤里下載:https://pan.quark.cn/s/145a9b3f7f53

打開下載鏈接后選擇下面的版本進行下載:

qt-opensource-windows-x86-5.12.6.exe 13-Nov-2019 07:28 3.7G Details

軟件安裝時斷網(wǎng)安裝,否則會提示輸入賬戶。

安裝的時候,第一個復(fù)選框里勾選一個mingw 32編譯器即可,其他的不管默認就行,直接點擊下一步繼續(xù)安裝。

image-20221203151742653

選擇MinGW 32-bit 編譯器: (一定要看清楚了)

image-20221203151750344

說明: 我這里只是介紹PC端,也就是Windows系統(tǒng)下的Qt環(huán)境搭建。 Android的開發(fā)環(huán)境比較麻煩,如果想學(xué)習(xí)Android開發(fā),想編譯Android程序的APP,需要自己去搭建Android環(huán)境。

也可以看下面這篇文章,不過這個文章是在Qt開發(fā)專欄里付費的,需要訂閱專欄才可以看。 如果不想付費看,也可以自行找其他教程,自己搭建好必須的環(huán)境就行了

Android環(huán)境搭建的博客鏈接:https://blog.csdn.net/xiaolong1126626497/article/details/117254453

3.2 新建上位機工程

前面2講解了需要用的API接口,接下來就使用Qt設(shè)計上位機,設(shè)計界面,完成整體上位機的邏輯設(shè)計。

【1】新建工程

image-20240117144052547

【2】設(shè)置項目的名稱。

image-20240509195711965

【3】選擇編譯系統(tǒng)

image-20240117144239681

【4】選擇默認繼承的類

image-20240117144302275

【5】選擇編譯器

image-20240314162137170

【6】點擊完成

image-20240117144354252

【7】工程創(chuàng)建完成

image-20230421094133333

3.3 設(shè)計UI界面與工程配置

【1】打開UI文件

image-20230421094815236

打開默認的界面如下:

image-20240425194845233

【2】開始設(shè)計界面

根據(jù)自己需求設(shè)計界面。

image-20240903163631112

3.5 編譯Windows上位機

點擊軟件左下角的綠色三角形按鈕進行編譯運行。

image-20240509202031739

編譯之后的效果:

image-20240903163952415

3.6 配置Android環(huán)境

如果想編譯Android手機APP,必須要先自己配置好自己的Android環(huán)境。(搭建環(huán)境的過程可以自行百度搜索學(xué)習(xí))

然后才可以進行下面的步驟。

【1】選擇Android編譯器

image-20240425232651515

image-20240509202408776

【2】創(chuàng)建Android配置文件

image-20240117144604025

image-20240117144635052

image-20240117144652014

創(chuàng)建完成。

【3】配置Android圖標與名稱

image-20240612100947190

【3】編譯Android上位機

Qt本身是跨平臺的,直接選擇Android的編譯器,就可以將程序編譯到Android平臺。

然后點擊構(gòu)建。

image-20240509202534407

成功之后,在目錄下可以看到生成的apk文件,也就是Android手機的安裝包,電腦端使用QQ發(fā)送給手機QQ,手機登錄QQ接收,就能直接安裝。

生成的apk的目錄在哪里呢? 編譯完成之后,在控制臺會輸出APK文件的路徑。

知道目錄在哪里之后,在Windows的文件資源管理器里,找到路徑,具體看下圖,找到生成的apk文件。

image-20240509202712295

D:/linux-share-dir/QT/build-app_Huawei_Eco_tracking-Android_for_arm64_v8a_Clang_Qt_5_12_6_for_Android_ARM64_v8a-Release/android-build//build/outputs/apk/debug/android-build-debug.apk

四、STM32代碼開發(fā)

4.1 MQTT協(xié)議設(shè)計

#include "MQTTClient.h"
#include < string.h >
#include < stdlib.h >

#if !defined(_WINDOWS)
	#include < sys/time.h >
  	#include < sys/socket.h >
	#include < unistd.h >
  	#include < errno.h >
#else
#include < winsock2.h >
#include < ws2tcpip.h >
#define MAXHOSTNAMELEN 256
#define EAGAIN WSAEWOULDBLOCK
#define EINTR WSAEINTR
#define EINPROGRESS WSAEINPROGRESS
#define EWOULDBLOCK WSAEWOULDBLOCK
#define ENOTCONN WSAENOTCONN
#define ECONNRESET WSAECONNRESET
#endif

#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))


char* topics[] =  {"TopicA", "TopicA/B", "Topic/C", "TopicA/C", "/TopicA"};
char* wildtopics[] = {"TopicA/+", "+/C", "#", "/#", "/+", "+/+", "TopicA/#"};
char* nosubscribe_topics[] = {"nosubscribe",};

struct Options
{
	char* connection;         /**< connection to system under test. */
	char* clientid1;
	char* clientid2;
	char* username;
	char* password;
	int verbose;
	int MQTTVersion;
	int iterations;
	int run_dollar_topics_test;
	int run_subscribe_failure_test;
} options =
{
	"tcp://localhost:1883",
	"myclientid",
	"myclientid2",
	NULL,
	NULL,
	0,
	MQTTVERSION_3_1_1,
	1,
	0,
	0,
};


void usage(void)
{
	printf("options:n  connection, clientid1, clientid2, username, password, MQTTversion, iterations, verbosen");
	exit(EXIT_FAILURE);
}

void getopts(int argc, char** argv)
{
	int count = 1;
	
	while (count < argc)
	{
		if (strcmp(argv[count], "--dollar_topics_test") == 0 || strcmp(argv[count], "--$") == 0)
		{
			options.run_dollar_topics_test = 1;
			printf("Running $ topics testn");
		}
		else if (strcmp(argv[count], "--subscribe_failure_test") == 0 || strcmp(argv[count], "-s") == 0)
		{
			options.run_subscribe_failure_test = 1;
			printf("Running subscribe failure testn");
		}
		else if (strcmp(argv[count], "--connection") == 0)
		{
			if (++count < argc)
			{
				options.connection = argv[count];
				printf("Setting connection to %sn", options.connection);
			}
			else
				usage();
		}
		else if (strcmp(argv[count], "--clientid1") == 0)
		{
			if (++count < argc)
			{
				options.clientid1 = argv[count];
				printf("Setting clientid1 to %sn", options.clientid1);
			}
			else
				usage();
		}
		else if (strcmp(argv[count], "--clientid2") == 0)
		{
			if (++count < argc)
			{
				options.clientid2 = argv[count];
				printf("Setting clientid2 to %sn", options.clientid2);
			}
			else
				usage();
		}
		else if (strcmp(argv[count], "--username") == 0)
		{
			if (++count < argc)
			{
				options.username = argv[count];
				printf("Setting username to %sn", options.username);
			}
			else
				usage();
		}
		else if (strcmp(argv[count], "--password") == 0)
		{
			if (++count < argc)
			{
				options.password = argv[count];
				printf("Setting password to %sn", options.password);
			}
			else
				usage();
		}
		else if (strcmp(argv[count], "--MQTTversion") == 0)
		{
			if (++count < argc)
			{
				options.MQTTVersion = atoi(argv[count]);
				printf("Setting MQTT version to %dn", options.MQTTVersion);
			}
			else
				usage();
		}
		else if (strcmp(argv[count], "--iterations") == 0)
		{
			if (++count < argc)
			{
				options.iterations = atoi(argv[count]);
				printf("Setting iterations to %dn", options.iterations);
			}
			else
				usage();
		}
		else if (strcmp(argv[count], "--verbose") == 0)
		{
			options.verbose = 1;
			printf("nSetting verbose onn");
		}
		count++;
	}
}


#if defined(_WIN32) || defined(_WINDOWS)
#define msleep Sleep
#define START_TIME_TYPE DWORD
static DWORD start_time = 0;
START_TIME_TYPE start_clock(void)
{
	return GetTickCount();
}
#elif defined(AIX)
#define mqsleep sleep
#define START_TIME_TYPE struct timespec
START_TIME_TYPE start_clock(void)
{
	static struct timespec start;
	clock_gettime(CLOCK_REALTIME, &start);
	return start;
}
#else
#define msleep(A) usleep(A*1000)
#define START_TIME_TYPE struct timeval
/* TODO - unused - remove? static struct timeval start_time; */
START_TIME_TYPE start_clock(void)
{
	struct timeval start_time;
	gettimeofday(&start_time, NULL);
	return start_time;
}
#endif

#define LOGA_DEBUG 0
#define LOGA_INFO 1
#include < stdarg.h >
#include < time.h >
#include < sys/timeb.h >
void MyLog(int LOGA_level, char* format, ...)
{
	static char msg_buf[256];
	va_list args;
#if defined(_WIN32) || defined(_WINDOWS)
	struct timeb ts;
#else
	struct timeval ts;
#endif
	struct tm timeinfo;

	if (LOGA_level == LOGA_DEBUG && options.verbose == 0)
	  return;

#if defined(_WIN32) || defined(_WINDOWS)
	ftime(&ts);
	localtime_s(&timeinfo, &ts.time);
#else
	gettimeofday(&ts, NULL);
	localtime_r(&ts.tv_sec, &timeinfo);
#endif
	strftime(msg_buf, 80, "%Y%m%d %H%M%S", &timeinfo);

#if defined(_WIN32) || defined(_WINDOWS)
	sprintf(&msg_buf[strlen(msg_buf)], ".%.3hu ", ts.millitm);
#else
	sprintf(&msg_buf[strlen(msg_buf)], ".%.3lu ", ts.tv_usec / 1000L);
#endif

	va_start(args, format);
	vsnprintf(&msg_buf[strlen(msg_buf)], sizeof(msg_buf) - strlen(msg_buf), format, args);
	va_end(args);

	printf("%sn", msg_buf);
	fflush(stdout);
}

int tests = 0;
int failures = 0;


void myassert(char* filename, int lineno, char* description, int value, char* format, ...)
{
	++tests;
	if (!value)
	{
		int count;
		va_list args;

		++failures;
		printf("Assertion failed, file %s, line %d, description: %sn", filename, lineno, description);

		va_start(args, format);
		count = vprintf(format, args);
		va_end(args);
		if (count)
			printf("n");

		//cur_output += sprintf(cur_output, "< failure type="%s" >file %s, line %d < /failure >n", 
        //               description, filename, lineno);
	}
    else
    	MyLog(LOGA_DEBUG, "Assertion succeeded, file %s, line %d, description: %s", filename, lineno, description);  
}


#define assert(a, b, c, d) myassert(__FILE__, __LINE__, a, b, c, d)
#define assert1(a, b, c, d, e) myassert(__FILE__, __LINE__, a, b, c, d, e)

typedef struct
{
	char* topicName;
	int topicLen;
	MQTTClient_message* m;
} messageStruct;

messageStruct messagesArrived[1000];
int messageCount = 0;

int messageArrived(void* context, char* topicName, int topicLen, MQTTClient_message* m)
{
	messagesArrived[messageCount].topicName = topicName;
	messagesArrived[messageCount].topicLen = topicLen;
	messagesArrived[messageCount++].m = m;
	MyLog(LOGA_DEBUG, "Callback: %d message received on topic %s is %.*s.",
					messageCount, topicName, m- >payloadlen, (char*)(m- >payload));
	return 1;
}


void clearMessages(void)
{
	int i;

	for (i = 0; i < messageCount; ++i)
	{
		MQTTClient_free(messagesArrived[i].topicName);
		MQTTClient_freeMessage(&messagesArrived[i].m);
	}
	messageCount = 0;
}

void cleanup(void)
{
	// clean all client state
	char* clientids[] = {options.clientid1, options.clientid2};
	int i, rc;
	MQTTClient_connectOptions opts = MQTTClient_connectOptions_initializer;
	MQTTClient aclient;

	MyLog(LOGA_INFO, "Cleaning up");

	opts.keepAliveInterval = 20;
	opts.cleansession = 1;
	opts.username = options.username;
	opts.password = options.password;
	opts.MQTTVersion = options.MQTTVersion;
	
	for (i = 0; i < 2; ++i)
	{
		rc = MQTTClient_create(&aclient, options.connection, clientids[i], MQTTCLIENT_PERSISTENCE_DEFAULT, NULL);
		assert("good rc from create",  rc == MQTTCLIENT_SUCCESS, "rc was %dn", rc);

		rc = MQTTClient_connect(aclient, &opts);
		assert("Good rc from connect", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

		rc = MQTTClient_disconnect(aclient, 100);
		assert("Disconnect successful", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

		MQTTClient_destroy(&aclient);
	}

	// clean retained messages 
	rc = MQTTClient_create(&aclient, options.connection, options.clientid1, MQTTCLIENT_PERSISTENCE_DEFAULT, NULL);
	assert("good rc from create",  rc == MQTTCLIENT_SUCCESS, "rc was %dn", rc);

	rc = MQTTClient_setCallbacks(aclient, NULL, NULL, messageArrived, NULL);
	assert("Good rc from setCallbacks", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_connect(aclient, &opts);
	assert("Good rc from connect", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_subscribe(aclient, "#", 0);
	assert("Good rc from subscribe", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	msleep(2000); // wait for all retained messages to arrive

	rc = MQTTClient_unsubscribe(aclient, "#");
	assert("Good rc from unsubscribe", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	for (i = 0; i < messageCount; ++i)
	{
		if (messagesArrived[i].m- >retained)
		{
			MyLog(LOGA_INFO, "Deleting retained message for topic %s", (char*)messagesArrived[i].topicName);
			rc = MQTTClient_publish(aclient, messagesArrived[i].topicName, 0, "", 0, 1, NULL);
			assert("Good rc from publish", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);
		}
	}

	rc = MQTTClient_disconnect(aclient, 100);
	assert("Disconnect successful", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	MQTTClient_destroy(&aclient);

	clearMessages();

	MyLog(LOGA_INFO, "Finished cleaning up");
}


int basic_test(void)
{
	int i, rc;
	MQTTClient_connectOptions opts = MQTTClient_connectOptions_initializer;
	MQTTClient aclient;

	MyLog(LOGA_INFO, "Starting basic test");

	tests = failures = 0;

	opts.keepAliveInterval = 20;
	opts.cleansession = 1;
	opts.username = options.username;
	opts.password = options.password;
	opts.MQTTVersion = options.MQTTVersion;

	rc = MQTTClient_create(&aclient, options.connection, options.clientid1, MQTTCLIENT_PERSISTENCE_DEFAULT, NULL);
	assert("good rc from create",  rc == MQTTCLIENT_SUCCESS, "rc was %dn", rc);

	rc = MQTTClient_setCallbacks(aclient, NULL, NULL, messageArrived, NULL);
	assert("Good rc from setCallbacks", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_connect(aclient, &opts);
	assert("Good rc from connect", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_disconnect(aclient, 100);
	assert("Disconnect successful", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_connect(aclient, &opts);
	assert("Good rc from connect", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_subscribe(aclient, topics[0], 0);
	assert("Good rc from subscribe", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_publish(aclient, topics[0], 5, "qos 0", 0, 0, NULL);
	assert("Good rc from publish", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_publish(aclient, topics[0], 5, "qos 1", 1, 0, NULL);
	assert("Good rc from publish", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_publish(aclient, topics[0], 5, "qos 2", 2, 0, NULL);
	assert("Good rc from publish", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	msleep(1000);

	rc = MQTTClient_disconnect(aclient, 10000);
	assert("Disconnect successful", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	assert("3 Messages received", messageCount == 3, "messageCount was %d", messageCount);
	clearMessages();

	/*opts.MQTTVersion = MQTTVERSION_3_1;
	rc = MQTTClient_connect(aclient, &opts); // should fail - wrong protocol version
	assert("Bad rc from connect", rc == MQTTCLIENT_FAILURE, "rc was %d", rc);*/
	
	MQTTClient_destroy(&aclient);

	MyLog(LOGA_INFO, "Basic test %s", (failures == 0) ?  "succeeded" : "failed");
	return failures;
}



int offline_message_queueing_test(void)
{
	int i, rc;
	MQTTClient_connectOptions opts = MQTTClient_connectOptions_initializer;
	MQTTClient aclient;
	MQTTClient bclient;

	MyLog(LOGA_INFO, "Offline message queueing test");

	tests = failures = 0;

	opts.keepAliveInterval = 20;
	opts.cleansession = 0;
	opts.username = options.username;
	opts.password = options.password;
	opts.MQTTVersion = options.MQTTVersion;

	rc = MQTTClient_create(&aclient, options.connection, options.clientid1, MQTTCLIENT_PERSISTENCE_DEFAULT, NULL);
	assert("good rc from create",  rc == MQTTCLIENT_SUCCESS, "rc was %dn", rc);

	rc = MQTTClient_setCallbacks(aclient, NULL, NULL, messageArrived, NULL);
	assert("Good rc from setCallbacks", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_connect(aclient, &opts);
	assert("Good rc from connect", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_subscribe(aclient, wildtopics[5], 2);
	assert("Good rc from subscribe", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_disconnect(aclient, 100);
	assert("Disconnect successful", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_create(&bclient, options.connection, options.clientid2, MQTTCLIENT_PERSISTENCE_DEFAULT, NULL);
	assert("good rc from create",  rc == MQTTCLIENT_SUCCESS, "rc was %dn", rc);

	opts.cleansession = 1;
	rc = MQTTClient_connect(bclient, &opts);
	assert("Good rc from connect", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_publish(bclient, topics[1], 5, "qos 0", 0, 0, NULL);
	assert("Good rc from publish", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_publish(bclient, topics[2], 5, "qos 1", 1, 0, NULL);
	assert("Good rc from publish", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);	

	rc = MQTTClient_publish(bclient, topics[3], 5, "qos 2", 2, 0, NULL);
	assert("Good rc from publish", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	msleep(2000);

	rc = MQTTClient_disconnect(bclient, 100);
	assert("Disconnect successful", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	MQTTClient_destroy(&bclient);

	opts.cleansession = 0;
	rc = MQTTClient_connect(aclient, &opts);
	assert("Good rc from connect", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

    msleep(1000);  // receive the queued messages

	rc = MQTTClient_disconnect(aclient, 100);
	assert("Disconnect successful", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	MQTTClient_destroy(&aclient);

	assert("2 or 3 messages received", messageCount == 3 || messageCount == 2, "messageCount was %d", messageCount);

	MyLog(LOGA_INFO, "This server %s queueing QoS 0 messages for offline clients", (messageCount == 3) ? "is" : "is not");

	clearMessages();

	MyLog(LOGA_INFO, "Offline message queueing test %s", (failures == 0) ?  "succeeded" : "failed");
	return failures;
}


int retained_message_test(void)
{ 
	int i, rc;
	MQTTClient_connectOptions opts = MQTTClient_connectOptions_initializer;
	MQTTClient aclient;

	MyLog(LOGA_INFO, "Retained message test");

	tests = failures = 0;

	opts.keepAliveInterval = 20;
	opts.cleansession = 1;
	opts.username = options.username;
	opts.password = options.password;
	opts.MQTTVersion = options.MQTTVersion;

	assert("0 messages received", messageCount == 0, "messageCount was %d", messageCount);

    // set retained messages
	rc = MQTTClient_create(&aclient, options.connection, options.clientid1, MQTTCLIENT_PERSISTENCE_DEFAULT, NULL);
	assert("good rc from create",  rc == MQTTCLIENT_SUCCESS, "rc was %dn", rc);

	rc = MQTTClient_setCallbacks(aclient, NULL, NULL, messageArrived, NULL);
	assert("Good rc from setCallbacks", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_connect(aclient, &opts);
	assert("Good rc from connect", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_publish(aclient, topics[1], 5, "qos 0", 0, 1, NULL);
	assert("Good rc from publish", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_publish(aclient, topics[2], 5, "qos 1", 1, 1, NULL);
	assert("Good rc from publish", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);	

	rc = MQTTClient_publish(aclient, topics[3], 5, "qos 2", 2, 1, NULL);
	assert("Good rc from publish", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

    msleep(1000);

	rc = MQTTClient_subscribe(aclient, wildtopics[5], 2);
	assert("Good rc from subscribe", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

    msleep(2000);

	rc = MQTTClient_disconnect(aclient, 100);
	assert("Disconnect successful", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	assert("3 messages received", messageCount == 3, "messageCount was %d", messageCount);

	for (i = 0; i < messageCount; ++i)
	{
		assert("messages should be retained", messagesArrived[i].m- >retained, "retained was %d", 
			messagesArrived[i].m- >retained);
		MQTTClient_free(messagesArrived[i].topicName);
		MQTTClient_freeMessage(&messagesArrived[i].m);
	}
	messageCount = 0;

    // clear retained messages
	rc = MQTTClient_connect(aclient, &opts);
	assert("Good rc from connect", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_publish(aclient, topics[1], 0, "", 0, 1, NULL);
	assert("Good rc from publish", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_publish(aclient, topics[2], 0, "", 1, 1, NULL);
	assert("Good rc from publish", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);	

	rc = MQTTClient_publish(aclient, topics[3], 0, "", 2, 1, NULL);
	assert("Good rc from publish", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

    msleep(200); // wait for QoS 2 exchange to be completed
	rc = MQTTClient_subscribe(aclient, wildtopics[5], 2);
	assert("Good rc from subscribe", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

    msleep(200);

	rc = MQTTClient_disconnect(aclient, 100);
	assert("Disconnect successful", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	assert("0 messages received", messageCount == 0, "messageCount was %d", messageCount);

	MQTTClient_destroy(&aclient);

	MyLog(LOGA_INFO, "Retained message test %s", (failures == 0) ?  "succeeded" : "failed");
	return failures;
}

#define SOCKET_ERROR -1

int test6_socket_error(char* aString, int sock)
{
#if defined(_WIN32)
	int errno;
#endif

#if defined(_WIN32)
	errno = WSAGetLastError();
#endif
	if (errno != EINTR && errno != EAGAIN && errno != EINPROGRESS && errno != EWOULDBLOCK)
	{
		if (strcmp(aString, "shutdown") != 0 || (errno != ENOTCONN && errno != ECONNRESET))
			printf("Socket error %d in %s for socket %d", errno, aString, sock);
	}
	return errno;
}

int test6_socket_close(int socket)
{
	int rc;

#if defined(_WIN32)
	if (shutdown(socket, SD_BOTH) == SOCKET_ERROR)
		test6_socket_error("shutdown", socket);
	if ((rc = closesocket(socket)) == SOCKET_ERROR)
		test6_socket_error("close", socket);
#else
	if (shutdown(socket, SHUT_RDWR) == SOCKET_ERROR)
		test6_socket_error("shutdown", socket);
	if ((rc = close(socket)) == SOCKET_ERROR)
		test6_socket_error("close", socket);
#endif
	return rc;
}

typedef struct
{
	int socket;
	time_t lastContact;
#if defined(OPENSSL)
	SSL* ssl;
	SSL_CTX* ctx;
#endif
} networkHandles;


typedef struct
{
	char* clientID;					/**< the string id of the client */
	char* username;					/**< MQTT v3.1 user name */
	char* password;					/**< MQTT v3.1 password */
	unsigned int cleansession : 1;	/**< MQTT clean session flag */
	unsigned int connected : 1;		/**< whether it is currently connected */
	unsigned int good : 1; 			/**< if we have an error on the socket we turn this off */
	unsigned int ping_outstanding : 1;
	int connect_state : 4;
	networkHandles net;
/* ... */
} Clients;


typedef struct
{
	char* serverURI;
	Clients* c;
	MQTTClient_connectionLost* cl;
	MQTTClient_messageArrived* ma;
	MQTTClient_deliveryComplete* dc;
	void* context;

	int connect_sem;
	int rc; /* getsockopt return code in connect */
	int connack_sem;
	int suback_sem;
	int unsuback_sem;
	void* pack;
} MQTTClients;


int will_message_test(void)
{
	int i, rc, count = 0;
	MQTTClient_connectOptions opts = MQTTClient_connectOptions_initializer;
	MQTTClient_willOptions wopts =  MQTTClient_willOptions_initializer;
	MQTTClient aclient, bclient;

	MyLog(LOGA_INFO, "Will message test");

	tests = failures = 0;

	opts.keepAliveInterval = 2;
	opts.cleansession = 1;
	opts.username = options.username;
	opts.password = options.password;
	opts.MQTTVersion = options.MQTTVersion;

	opts.will = &wopts;
	opts.will- >message = "client not disconnected";
	opts.will- >qos = 1;
	opts.will- >retained = 0;
	opts.will- >topicName = topics[2];

	rc = MQTTClient_create(&aclient, options.connection, options.clientid1, MQTTCLIENT_PERSISTENCE_DEFAULT, NULL);
	assert("good rc from create",  rc == MQTTCLIENT_SUCCESS, "rc was %dn", rc);

	rc = MQTTClient_connect(aclient, &opts);
	assert("Good rc from connect", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_create(&bclient, options.connection, options.clientid2, MQTTCLIENT_PERSISTENCE_DEFAULT, NULL);
	assert("good rc from create",  rc == MQTTCLIENT_SUCCESS, "rc was %dn", rc);

	rc = MQTTClient_setCallbacks(bclient, NULL, NULL, messageArrived, NULL);
	assert("Good rc from setCallbacks", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	opts.keepAliveInterval = 20;
	opts.will = NULL;
	rc = MQTTClient_connect(bclient, &opts);
	assert("Good rc from connect", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_subscribe(bclient, topics[2], 2);
	assert("Good rc from subscribe", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

    msleep(100);

   	test6_socket_close(((MQTTClients*)aclient)- >c- >net.socket); 

	while (messageCount == 0 && ++count < 10)
    	msleep(1000);

	rc = MQTTClient_disconnect(bclient, 100);
	assert("Disconnect successful", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	MQTTClient_destroy(&bclient);

	assert("will message received", messageCount == 1, "messageCount was %d", messageCount);

	rc = MQTTClient_disconnect(aclient, 100);

	MQTTClient_destroy(&aclient);

	MyLog(LOGA_INFO, "Will message test %s", (failures == 0) ?  "succeeded" : "failed");
	return failures;
}


int overlapping_subscriptions_test(void)
{
  /* overlapping subscriptions. When there is more than one matching subscription for the same client for a topic,
   the server may send back one message with the highest QoS of any matching subscription, or one message for
   each subscription with a matching QoS. */

	int i, rc;
	MQTTClient_connectOptions opts = MQTTClient_connectOptions_initializer;
	MQTTClient aclient;
	char* topicList[] = {wildtopics[6], wildtopics[0]};
	int qosList[] = {2, 1};

	MyLog(LOGA_INFO, "Starting overlapping subscriptions test");

	clearMessages();
	tests = failures = 0;

	opts.keepAliveInterval = 20;
	opts.cleansession = 1;
	opts.username = options.username;
	opts.password = options.password;
	opts.MQTTVersion = options.MQTTVersion;

	rc = MQTTClient_create(&aclient, options.connection, options.clientid1, MQTTCLIENT_PERSISTENCE_DEFAULT, NULL);
	assert("good rc from create",  rc == MQTTCLIENT_SUCCESS, "rc was %dn", rc);

	rc = MQTTClient_setCallbacks(aclient, NULL, NULL, messageArrived, NULL);
	assert("Good rc from setCallbacks", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_connect(aclient, &opts);
	assert("Good rc from connect", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_subscribeMany(aclient, 2, topicList, qosList);
	assert("Good rc from subscribe", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_publish(aclient, topics[3], strlen("overlapping topic filters") + 1, 
                "overlapping topic filters", 2, 0, NULL);
	assert("Good rc from publish", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

    msleep(1000);

	assert("1 or 2 messages received", messageCount == 1 || messageCount == 2, "messageCount was %d", messageCount);

    if (messageCount == 1)
	{
		MyLog(LOGA_INFO, "This server is publishing one message for all matching overlapping subscriptions, not one for each.");
		assert("QoS should be 2", messagesArrived[0].m- >qos == 2, "QoS was %d", messagesArrived[0].m- >qos);
	}
    else
	{
		MyLog(LOGA_INFO, "This server is publishing one message per each matching overlapping subscription.");
		assert1("QoSs should be 1 and 2", 
			(messagesArrived[0].m- >qos == 2 && messagesArrived[1].m- >qos == 1) ||
      		(messagesArrived[0].m- >qos == 1 && messagesArrived[1].m- >qos == 2),
		"QoSs were %d %d", messagesArrived[0].m- >qos, messagesArrived[1].m- >qos);
	}

	rc = MQTTClient_disconnect(aclient, 100);

	MQTTClient_destroy(&aclient);

	MyLog(LOGA_INFO, "Overlapping subscription test %s", (failures == 0) ?  "succeeded" : "failed");
	return failures;
}


int keepalive_test(void)
{
	/* keepalive processing.  We should be kicked off by the server if we don't send or receive any data, and don't send
	any pings either. */

	int i, rc, count = 0;
	MQTTClient_connectOptions opts = MQTTClient_connectOptions_initializer;
	MQTTClient_willOptions wopts =  MQTTClient_willOptions_initializer;
	MQTTClient aclient, bclient;

	MyLog(LOGA_INFO, "Starting keepalive test");

	tests = failures = 0;
	clearMessages();

	opts.cleansession = 1;
	opts.username = options.username;
	opts.password = options.password;
	opts.MQTTVersion = options.MQTTVersion;

	opts.will = &wopts;
	opts.will- >message = "keepalive expiry";
	opts.will- >qos = 1;
	opts.will- >retained = 0;
	opts.will- >topicName = topics[4];

	opts.keepAliveInterval = 20;
	rc = MQTTClient_create(&bclient, options.connection, options.clientid2, MQTTCLIENT_PERSISTENCE_DEFAULT, NULL);
	assert("good rc from create",  rc == MQTTCLIENT_SUCCESS, "rc was %dn", rc);

	rc = MQTTClient_setCallbacks(bclient, NULL, NULL, messageArrived, NULL);
	assert("Good rc from setCallbacks", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_connect(bclient, &opts);
	assert("Good rc from connect", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_subscribe(bclient, topics[4], 2);
	assert("Good rc from subscribe", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	opts.keepAliveInterval = 2;
	rc = MQTTClient_create(&aclient, options.connection, options.clientid1, MQTTCLIENT_PERSISTENCE_DEFAULT, NULL);
	assert("good rc from create",  rc == MQTTCLIENT_SUCCESS, "rc was %dn", rc);

	rc = MQTTClient_connect(aclient, &opts);
	assert("Good rc from connect", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	while (messageCount == 0 && ++count < 20)
    	msleep(1000);

	rc = MQTTClient_disconnect(bclient, 100);
	assert("Disconnect successful", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	assert("Should have will message", messageCount == 1, "messageCount was %d", messageCount);

	rc = MQTTClient_disconnect(aclient, 100);

	MQTTClient_destroy(&aclient);

	MyLog(LOGA_INFO, "Keepalive test %s", (failures == 0) ?  "succeeded" : "failed");
	return failures;
}



int redelivery_on_reconnect_test(void)
{
	/* redelivery on reconnect. When a QoS 1 or 2 exchange has not been completed, the server should retry the 
	 appropriate MQTT packets */

	int i, rc, count = 0;
	MQTTClient_connectOptions opts = MQTTClient_connectOptions_initializer;
	MQTTClient aclient;

	MyLog(LOGA_INFO, "Starting redelivery on reconnect test");

	tests = failures = 0;
	clearMessages();

	opts.keepAliveInterval = 0;
	opts.cleansession = 0;
	opts.username = options.username;
	opts.password = options.password;
	opts.MQTTVersion = options.MQTTVersion;

	rc = MQTTClient_create(&aclient, options.connection, options.clientid1, MQTTCLIENT_PERSISTENCE_DEFAULT, NULL);
	assert("good rc from create",  rc == MQTTCLIENT_SUCCESS, "rc was %dn", rc);

	rc = MQTTClient_connect(aclient, &opts);
	assert("Good rc from connect", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_subscribe(aclient, wildtopics[6], 2);
	assert("Good rc from subscribe", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);
	MQTTClient_yield();

    // no background processing because no callback has been set
	rc = MQTTClient_publish(aclient, topics[1], 6, "qos 1", 2, 0, NULL);
	assert("Good rc from publish", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_publish(aclient, topics[3], 6, "qos 2", 2, 0, NULL);
	assert("Good rc from publish", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_disconnect(aclient, 0);

	assert("No messages should have been received yet", messageCount == 0, "messageCount was %d", messageCount);

	rc = MQTTClient_setCallbacks(aclient, NULL, NULL, messageArrived, NULL);
	assert("Good rc from setCallbacks", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_connect(aclient, &opts);
	assert("Good rc from connect", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	while (messageCount < 2 && ++count < 5)
		msleep(1000);

	assert("Should have 2 messages", messageCount == 2, "messageCount was %d", messageCount);

	rc = MQTTClient_disconnect(aclient, 100);

	MQTTClient_destroy(&aclient);

	MyLog(LOGA_INFO, "Redelivery on reconnect test %s", (failures == 0) ?  "succeeded" : "failed");
	return failures;
}



int zero_length_clientid_test(void)
{
	int i, rc, count = 0;
	MQTTClient_connectOptions opts = MQTTClient_connectOptions_initializer;
	MQTTClient aclient;

	MyLog(LOGA_INFO, "Starting zero length clientid test");

	tests = failures = 0;
	clearMessages();

	opts.keepAliveInterval = 0;
	opts.cleansession = 0;
	opts.username = options.username;
	opts.password = options.password;
	opts.MQTTVersion = options.MQTTVersion;

	rc = MQTTClient_create(&aclient, options.connection, "", MQTTCLIENT_PERSISTENCE_DEFAULT, NULL);
	assert("good rc from create",  rc == MQTTCLIENT_SUCCESS, "rc was %dn", rc);

	rc = MQTTClient_connect(aclient, &opts);
	assert("rc 2 from connect", rc == 2, "rc was %d", rc); // this should always fail

	opts.cleansession = 1;
	rc = MQTTClient_connect(aclient, &opts);
	assert("Connack rc should be 0 or 2", rc == MQTTCLIENT_SUCCESS || rc == 2, "rc was %d", rc);

	MyLog(LOGA_INFO, "This server %s support zero length clientids", (rc == 2) ? "does not" : "does");

	if (rc == MQTTCLIENT_SUCCESS)
		rc = MQTTClient_disconnect(aclient, 100);

	MQTTClient_destroy(&aclient);

	MyLog(LOGA_INFO, "Zero length clientid test %s", (failures == 0) ?  "succeeded" : "failed");
	return failures;
}


int dollar_topics_test(void)
{
  /* $ topics. The specification says that a topic filter which starts with a wildcard does not match topic names that
   	begin with a $.  Publishing to a topic which starts with a $ may not be allowed on some servers (which is entirely valid),
   	so this test will not work and should be omitted in that case.
	*/
	int i, rc, count = 0;
	MQTTClient_connectOptions opts = MQTTClient_connectOptions_initializer;
	MQTTClient aclient;
	char dollartopic[20];

	MyLog(LOGA_INFO, "Starting $ topics test");

	sprintf(dollartopic, "$%s", topics[1]);

    clearMessages();

	opts.keepAliveInterval = 5;
	opts.cleansession = 1;
	opts.username = options.username;
	opts.password = options.password;
	opts.MQTTVersion = options.MQTTVersion;

	rc = MQTTClient_create(&aclient, options.connection, options.clientid1, MQTTCLIENT_PERSISTENCE_DEFAULT, NULL);
	assert("good rc from create",  rc == MQTTCLIENT_SUCCESS, "rc was %dn", rc);

	rc = MQTTClient_setCallbacks(aclient, NULL, NULL, messageArrived, NULL);
	assert("Good rc from setCallbacks", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_connect(aclient, &opts);
	assert("Good rc from connect", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_subscribe(aclient, wildtopics[5], 2);
	assert("Good rc from subscribe", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

    msleep(1000); // wait for any retained messages, hopefully
    clearMessages();

	rc = MQTTClient_publish(aclient, topics[1], 20, "not sent to dollar topic", 1, 0, NULL);
	assert("Good rc from publish", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_publish(aclient, dollartopic, 20, "sent to dollar topic", 1, 0, NULL);
	assert("Good rc from publish", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

    msleep(1000);
	assert("Should have 1 message", messageCount == 1, "messageCount was %d", messageCount);

	rc = MQTTClient_disconnect(aclient, 100);
	assert("Disconnect successful", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	MQTTClient_destroy(&aclient);

	MyLog(LOGA_INFO, "$ topics test %s", (failures == 0) ?  "succeeded" : "failed");
	return failures;
}


int subscribe_failure_test(void)
{
  /* Subscribe failure.  A new feature of MQTT 3.1.1 is the ability to send back negative reponses to subscribe
   requests.  One way of doing this is to subscribe to a topic which is not allowed to be subscribed to.
  */
	int i, rc, count = 0;
	MQTTClient_connectOptions opts = MQTTClient_connectOptions_initializer;
	MQTTClient aclient;
	int subqos = 2;

	MyLog(LOGA_INFO, "Starting subscribe failure test");

    clearMessages();

	opts.keepAliveInterval = 5;
	opts.cleansession = 1;
	opts.username = options.username;
	opts.password = options.password;
	opts.MQTTVersion = options.MQTTVersion;

	rc = MQTTClient_create(&aclient, options.connection, options.clientid1, MQTTCLIENT_PERSISTENCE_DEFAULT, NULL);
	assert("good rc from create",  rc == MQTTCLIENT_SUCCESS, "rc was %dn", rc);

	rc = MQTTClient_setCallbacks(aclient, NULL, NULL, messageArrived, NULL);
	assert("Good rc from setCallbacks", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_connect(aclient, &opts);
	assert("Good rc from connect", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	rc = MQTTClient_subscribeMany(aclient, 1, &nosubscribe_topics[0], &subqos);
	assert("Good rc from subscribe", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);
	assert("0x80 rc from subscribe", subqos == 0x80, "subqos was %d", subqos);

	rc = MQTTClient_disconnect(aclient, 100);
	assert("Disconnect successful", rc == MQTTCLIENT_SUCCESS, "rc was %d", rc);

	MQTTClient_destroy(&aclient);

	MyLog(LOGA_INFO, "Subscribe failure test %s", (failures == 0) ?  "succeeded" : "failed");
	return failures;
}


int main(int argc, char** argv)
{
	int i;
	int all_failures = 0;

	getopts(argc, argv);

	for (i = 0; i < options.iterations; ++i)
	{
		cleanup();
		all_failures += basic_test() + 
						offline_message_queueing_test() +
		                retained_message_test() +
		                will_message_test() +
		                overlapping_subscriptions_test() +
		                keepalive_test() +
						redelivery_on_reconnect_test() + 
						zero_length_clientid_test();

		if (options.run_dollar_topics_test)
			all_failures += dollar_topics_test();
		
		if (options.run_subscribe_failure_test)
			all_failures += subscribe_failure_test();
	}

	MyLog(LOGA_INFO, "Test suite %s", (all_failures == 0) ?  "succeeded" : "failed");
}

4.2 DHT11溫濕度

#include "dht11.h"
#include "delay.h"

//復(fù)位DHT11
void DHT11_Rst(void)	   
{                 
	DHT11_IO_OUT(); 	//SET OUTPUT
    DHT11_DQ_OUT=0; 	//拉低DQ
    delay_ms(20);    	//拉低至少18ms
    DHT11_DQ_OUT=1; 	//DQ=1 
	delay_us(30);     	//主機拉高20~40us
}
//等待DHT11的回應(yīng)
//返回1:未檢測到DHT11的存在
//返回0:存在
u8 DHT11_Check(void) 	   
{   
	u8 retry=0;
	DHT11_IO_IN();//SET INPUT	 
    while (DHT11_DQ_IN&&retry< 100)//DHT11會拉低40~80us
	{
		retry++;
		delay_us(1);
	};	 
	if(retry >=100)return 1;
	else retry=0;
    while (!DHT11_DQ_IN&&retry< 100)//DHT11拉低后會再次拉高40~80us
	{
		retry++;
		delay_us(1);
	};
	if(retry >=100)return 1;	    
	return 0;
}
//從DHT11讀取一個位
//返回值:1/0
u8 DHT11_Read_Bit(void) 			 
{
 	u8 retry=0;
	while(DHT11_DQ_IN&&retry< 100)//等待變?yōu)榈碗娖?/span>
	{
		retry++;
		delay_us(1);
	}
	retry=0;
	while(!DHT11_DQ_IN&&retry< 100)//等待變高電平
	{
		retry++;
		delay_us(1);
	}
	delay_us(40);//等待40us
	if(DHT11_DQ_IN)return 1;
	else return 0;		   
}
//從DHT11讀取一個字節(jié)
//返回值:讀到的數(shù)據(jù)
u8 DHT11_Read_Byte(void)    
{        
    u8 i,dat;
    dat=0;
	for (i=0;i< 8;i++) 
	{
   		dat< <=1; 
	    dat|=DHT11_Read_Bit();
    }						    
    return dat;
}
//從DHT11讀取一次數(shù)據(jù)
//temp:溫度值(范圍:0~50°)
//humi:濕度值(范圍:20%~90%)
//返回值:0,正常;1,讀取失敗
u8 DHT11_Read_Data(u8 *temp,u8 *humi)    
{        
 	u8 buf[5];
	u8 i;
	DHT11_Rst();
	if(DHT11_Check()==0)
	{
		for(i=0;i< 5;i++)//讀取40位數(shù)據(jù)
		{
			buf[i]=DHT11_Read_Byte();
		}
		if((buf[0]+buf[1]+buf[2]+buf[3])==buf[4])
		{
			*humi=buf[0];
			*temp=buf[2];
		}
	}else return 1;
	return 0;	    
}
//初始化DHT11的IO口 DQ 同時檢測DHT11的存在
//返回1:不存在
//返回0:存在    	 
u8 DHT11_Init(void)
{
	RCC- >APB2ENR|=1< 8;    //使能PORTG口時鐘 
	GPIOG- >CRH&=0XFFFF0FFF;//PORTG.11 推挽輸出
	GPIOG- >CRH|=0X00003000;
	GPIOG- >ODR|=1< 11;      //輸出1				    
	DHT11_Rst();
	return DHT11_Check();
}

4.3 光敏傳感器

#include "adc.h"
#include "delay.h"					   

//初始化ADC1
//這里我們僅以規(guī)則通道為例
//我們默認僅開啟通道1																	   
void  Adc_Init(void)
{    
	//先初始化IO口
 	RCC- >APB2ENR|=1< 2;    //使能PORTA口時鐘 
	GPIOA- >CRL&=0XFFFFFF0F;//PA1 anolog輸入 
	RCC- >APB2ENR|=1< 9;    //ADC1時鐘使能	  
	RCC- >APB2RSTR|=1< 9;   //ADC1復(fù)位
	RCC- >APB2RSTR&=~(1< 9);//復(fù)位結(jié)束	    
	RCC- >CFGR&=~(3< 14);   //分頻因子清零	
	//SYSCLK/DIV2=12M ADC時鐘設(shè)置為12M,ADC最大時鐘不能超過14M!
	//否則將導(dǎo)致ADC準確度下降! 
	RCC- >CFGR|=2< 14;      	 
	ADC1- >CR1&=0XF0FFFF;   //工作模式清零
	ADC1- >CR1|=0< 16;      //獨立工作模式  
	ADC1- >CR1&=~(1< 8);    //非掃描模式	  
	ADC1- >CR2&=~(1< 1);    //單次轉(zhuǎn)換模式
	ADC1- >CR2&=~(7< 17);	   
	ADC1- >CR2|=7< 17;	   //軟件控制轉(zhuǎn)換  
	ADC1- >CR2|=1< 20;      //使用用外部觸發(fā)(SWSTART)!!!	必須使用一個事件來觸發(fā)
	ADC1- >CR2&=~(1< 11);   //右對齊	 
	
	ADC1- >CR2|=1< 23;      //使能溫度傳感器

	ADC1- >SQR1&=~(0XF< 20);
	ADC1- >SQR1|=0< 20;     //1個轉(zhuǎn)換在規(guī)則序列中 也就是只轉(zhuǎn)換規(guī)則序列1 			   
	//設(shè)置通道1的采樣時間
	ADC1- >SMPR2&=~(3*1);   //通道1采樣時間清空	  
 	ADC1- >SMPR2|=7< 3*1); //通道1  239.5周期,提高采樣時間可以提高精確度	 

	ADC1- >SMPR1&=~(7< 3*6);//清除通道16原來的設(shè)置	 
	ADC1- >SMPR1|=7< 3*6); //通道16  239.5周期,提高采樣時間可以提高精確度	 

	ADC1- >CR2|=1< 0;	   //開啟AD轉(zhuǎn)換器	 
	ADC1- >CR2|=1< 3;       //使能復(fù)位校準  
	while(ADC1- >CR2&1< 3); //等待校準結(jié)束 			 
    //該位由軟件設(shè)置并由硬件清除。在校準寄存器被初始化后該位將被清除。 		 
	ADC1- >CR2|=1< 2;        //開啟AD校準	   
	while(ADC1- >CR2&1< 2);  //等待校準結(jié)束
	//該位由軟件設(shè)置以開始校準,并在校準結(jié)束時由硬件清除  
}				  
//獲得ADC1某個通道的值
//ch:通道值 0~16
//返回值:轉(zhuǎn)換結(jié)果
u16 Get_Adc(u8 ch)   
{
	//設(shè)置轉(zhuǎn)換序列	  		 
	ADC1- >SQR3&=0XFFFFFFE0;//規(guī)則序列1 通道ch
	ADC1- >SQR3|=ch;		  			    
	ADC1- >CR2|=1< 22;       //啟動規(guī)則轉(zhuǎn)換通道 
	while(!(ADC1- >SR&1< 1));//等待轉(zhuǎn)換結(jié)束	 	   
	return ADC1- >DR;		//返回adc值	
}
//獲取通道ch的轉(zhuǎn)換值,取times次,然后平均 
//ch:通道編號
//times:獲取次數(shù)
//返回值:通道ch的times次轉(zhuǎn)換結(jié)果平均值
u16 Get_Adc_Average(u8 ch,u8 times)
{
	u32 temp_val=0;
	u8 t;
	for(t=0;t< times;t++)
	{
		temp_val+=Get_Adc(ch);
		delay_ms(5);
	}
	return temp_val/times;
} 
//得到溫度值
//返回值:溫度值(擴大了100倍,單位:℃.)
short Get_Temprate(void)
{
	u32 adcx;
	short result;
 	double temperate;
	adcx=Get_Adc_Average(ADC_CH_TEMP,20);	//讀取通道16,20次取平均
	temperate=(float)adcx*(3.3/4096);		//電壓值 
	temperate=(1.43-temperate)/0.0043+25;	//轉(zhuǎn)換為溫度值 	 
	result=temperate*=100;					//擴大100倍.
	return result;
} 
//初始化ADC3
//這里我們僅以規(guī)則通道為例
//我們默認僅開啟通道6																	   
void  Adc3_Init(void)
{      
	RCC- >APB2ENR|=1< 15;   //ADC3時鐘使能	  
	RCC- >APB2RSTR|=1< 15;   //ADC復(fù)位
	RCC- >APB2RSTR&=~(1< 15);//復(fù)位結(jié)束	    
	RCC- >CFGR&=~(3< 14);   //分頻因子清零	 
	//SYSCLK/DIV2=12M ADC時鐘設(shè)置為12M,ADC最大時鐘不能超過14M!
	//否則將導(dǎo)致ADC準確度下降! 
	RCC- >CFGR|=2< 14;      	 
	ADC3- >CR1&=0XF0FFFF;   //工作模式清零
	ADC3- >CR1|=0< 16;      //獨立工作模式  
	ADC3- >CR1&=~(1< 8);    //非掃描模式	  
	ADC3- >CR2&=~(1< 1);    //單次轉(zhuǎn)換模式
	ADC3- >CR2&=~(7< 17);	   
	ADC3- >CR2|=7< 17;	   //軟件控制轉(zhuǎn)換  
	ADC3- >CR2|=1< 20;      //使用用外部觸發(fā)(SWSTART)!!!	必須使用一個事件來觸發(fā)
	ADC3- >CR2&=~(1< 11);   //右對齊	   
	ADC3- >SQR1&=~(0XF< 20);
	ADC3- >SQR1|=0< 20;     //1個轉(zhuǎn)換在規(guī)則序列中 也就是只轉(zhuǎn)換規(guī)則序列1 			   
	//設(shè)置通道1的采樣時間
	ADC3- >SMPR2&=~(7< 3*6));//通道6采樣時間清空	  
 	ADC3- >SMPR2|=7< 3*6); //通道6  239.5個周期,提高采樣時間可以提高精確度	

	ADC3- >CR2|=1< 0;	   //開啟AD轉(zhuǎn)換器	 
	ADC3- >CR2|=1< 3;       //使能復(fù)位校準  
	while(ADC1- >CR2&1< 3); //等待校準結(jié)束 			 
    //該位由軟件設(shè)置并由硬件清除。在校準寄存器被初始化后該位將被清除。 		 
	ADC3- >CR2|=1< 2;        //開啟AD校準	   
	while(ADC3- >CR2&1< 2);  //等待校準結(jié)束
	//該位由軟件設(shè)置以開始校準,并在校準結(jié)束時由硬件清除  
}		 
//獲得ADC3某個通道的值
//ch:通道值 0~16
//返回值:轉(zhuǎn)換結(jié)果
u16 Get_Adc3(u8 ch)   
{
	//設(shè)置轉(zhuǎn)換序列	  		 
	ADC3- >SQR3&=0XFFFFFFE0;//規(guī)則序列1 通道ch
	ADC3- >SQR3|=ch;		  			    
	ADC3- >CR2|=1< 22;       //啟動規(guī)則轉(zhuǎn)換通道 
	while(!(ADC3- >SR&1< 1));//等待轉(zhuǎn)換結(jié)束	 	   
	return ADC3- >DR;		//返回adc值	
}

五、總結(jié)

本項目致力于開發(fā)一款基于STM32微控制器的智能養(yǎng)殖場環(huán)境監(jiān)測系統(tǒng)。該系統(tǒng)集成了DHT11溫濕度傳感器、BH1750光敏傳感器等,用于實時采集養(yǎng)殖環(huán)境中的溫度、濕度及光照強度數(shù)據(jù),并通過OLED顯示屏提供本地數(shù)據(jù)顯示功能。為了實現(xiàn)遠程監(jiān)控與管理,系統(tǒng)還配備了ESP8266 WiFi模塊,利用MQTT協(xié)議與華為云物聯(lián)網(wǎng)平臺連接,使得用戶可以通過定制的Windows上位機軟件或Android應(yīng)用程序隨時隨地訪問環(huán)境數(shù)據(jù),設(shè)定報警閾值,并遠程控制通風(fēng)風(fēng)扇、加濕器和燈光等設(shè)備,以確保養(yǎng)殖環(huán)境維持在最優(yōu)狀態(tài)。系統(tǒng)采用USB線5V供電,確保了運行的便捷性和能耗的有效控制。

總體而言,這一環(huán)境監(jiān)測系統(tǒng)通過智能化手段提升養(yǎng)殖場的管理水平,降低運營成本,同時提高動物的生長質(zhì)量和健康水平。

審核編輯 黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 微控制器
    +關(guān)注

    關(guān)注

    48

    文章

    7574

    瀏覽量

    151707
  • STM32
    +關(guān)注

    關(guān)注

    2270

    文章

    10914

    瀏覽量

    356711
  • 監(jiān)測系統(tǒng)

    關(guān)注

    8

    文章

    2739

    瀏覽量

    81396
  • IOT
    IOT
    +關(guān)注

    關(guān)注

    187

    文章

    4218

    瀏覽量

    197153
  • 華為云
    +關(guān)注

    關(guān)注

    3

    文章

    2653

    瀏覽量

    17496
收藏 人收藏

    評論

    相關(guān)推薦

    基于STM32設(shè)計的物聯(lián)網(wǎng)環(huán)境監(jiān)測系統(tǒng)(華為IOT)

    該項目設(shè)計一個基于華為IOT的物聯(lián)網(wǎng)環(huán)境監(jiān)測系統(tǒng),實現(xiàn)對光照強度、溫濕度等信息的實時監(jiān)測,并將
    的頭像 發(fā)表于 07-14 10:20 ?5611次閱讀
    基于<b class='flag-5'>STM32</b>設(shè)計的物聯(lián)網(wǎng)<b class='flag-5'>環(huán)境監(jiān)測</b><b class='flag-5'>系統(tǒng)</b>(<b class='flag-5'>華為</b><b class='flag-5'>云</b><b class='flag-5'>IOT</b>)

    【W(wǎng)RTnode2R申請】海上養(yǎng)殖場環(huán)境監(jiān)測

    申請理由:網(wǎng)箱養(yǎng)魚需要監(jiān)測海上環(huán)境和魚的活動狀況,需要構(gòu)建一個系統(tǒng)能夠適應(yīng)不同的傳輸途徑并能夠與不同的傳感器通信,wrtnode具有這樣的功能而且功耗小,成本低,開發(fā)文檔齊全,能夠縮短開發(fā)周期。項目描述:《網(wǎng)箱養(yǎng)魚環(huán)境監(jiān)測
    發(fā)表于 11-02 10:54

    基于GPRS DTU/4G DT養(yǎng)殖場污水處理遠程監(jiān)測系統(tǒng)方案

    `基于GPRSDTU/4G DT養(yǎng)殖場污水處理遠程監(jiān)測系統(tǒng)方案一、背景 隨著養(yǎng)殖業(yè)的發(fā)展,養(yǎng)殖場的污水排放量已越來越大,已造對地表水的嚴重污
    發(fā)表于 02-23 10:03

    溫濕度環(huán)境監(jiān)測雞舍豬舍豬圈自動采集數(shù)據(jù)監(jiān)控

    ,計算系統(tǒng)做出數(shù)據(jù)分析,當(dāng)環(huán)境質(zhì)量變得惡劣時系統(tǒng)會聯(lián)動風(fēng)機/加溫等設(shè)備自動調(diào)節(jié)環(huán)境,從而達到采用養(yǎng)豬場
    發(fā)表于 03-22 11:09

    農(nóng)業(yè)物聯(lián)網(wǎng)應(yīng)用方案介紹 禽畜養(yǎng)殖智能監(jiān)控解決方案

    需求,將圍繞著維護禽畜的健康生長和加快生產(chǎn)效益為主要原則。在養(yǎng)殖場內(nèi)投入環(huán)境監(jiān)測系統(tǒng),實現(xiàn)監(jiān)測影響禽畜生長的重要環(huán)境要素:空氣溫濕度、光照強
    發(fā)表于 08-24 14:51

    基于ARM的蛋雞養(yǎng)殖場網(wǎng)絡(luò)視頻監(jiān)控系統(tǒng)設(shè)計

    基于ARM的蛋雞養(yǎng)殖場網(wǎng)絡(luò)視頻監(jiān)控系統(tǒng)設(shè)計
    發(fā)表于 09-25 08:45 ?8次下載
    基于ARM的蛋雞<b class='flag-5'>養(yǎng)殖場</b>網(wǎng)絡(luò)視頻監(jiān)控<b class='flag-5'>系統(tǒng)</b>設(shè)計

    紫金橋組態(tài)軟件在養(yǎng)殖場智能監(jiān)控系統(tǒng)的方案

    養(yǎng)殖場智能環(huán)境監(jiān)控系統(tǒng)結(jié)合了最先進的網(wǎng)絡(luò)通信、自動控制、物聯(lián)網(wǎng)及軟件技術(shù), 可以實現(xiàn)對養(yǎng)殖場內(nèi)部的環(huán)境狀況進行實時
    發(fā)表于 10-12 17:49 ?2次下載
    紫金橋組態(tài)軟件在<b class='flag-5'>養(yǎng)殖場</b>智能監(jiān)控<b class='flag-5'>系統(tǒng)</b>的方案

    紫金橋軟件實現(xiàn)養(yǎng)殖場智能監(jiān)控系統(tǒng)

    養(yǎng)殖場智能環(huán)境監(jiān)控系統(tǒng)結(jié)合了最先進的網(wǎng)絡(luò)通信、自動控制、物聯(lián)網(wǎng)及軟件技術(shù), 可以實現(xiàn)對養(yǎng)殖場內(nèi)部的環(huán)境狀況進行實時
    發(fā)表于 10-13 15:50 ?6次下載
    紫金橋軟件實現(xiàn)<b class='flag-5'>養(yǎng)殖場</b>智能監(jiān)控<b class='flag-5'>系統(tǒng)</b>

    大型魚蝦類水產(chǎn)養(yǎng)殖場自動監(jiān)測系統(tǒng)

    大型魚蝦類水產(chǎn)養(yǎng)殖場自動監(jiān)測系統(tǒng) 水產(chǎn)養(yǎng)殖中池塘底質(zhì)常見的問題 魚蝦等水產(chǎn)動物的最基本生存條件是水體環(huán)境,所以為保證水產(chǎn)
    發(fā)表于 10-14 09:51 ?586次閱讀

    養(yǎng)殖場用電安全和高溫報警監(jiān)測方案

    養(yǎng)殖場用電安全和高溫報警監(jiān)測方案
    發(fā)表于 11-13 14:52 ?1000次閱讀

    養(yǎng)殖場智能監(jiān)控系統(tǒng)方案

    ,正是在這一行業(yè)轉(zhuǎn)折點的大背景下興起。實現(xiàn)智能養(yǎng)殖,需要基于物聯(lián)網(wǎng)、無線通訊、自動控制等技術(shù)的應(yīng)用,即養(yǎng)殖場智能監(jiān)控系統(tǒng)解決方案。由環(huán)境監(jiān)測系統(tǒng)
    的頭像 發(fā)表于 03-06 15:39 ?1139次閱讀

    智慧養(yǎng)殖環(huán)境監(jiān)測系統(tǒng)方案

    。 智慧養(yǎng)殖環(huán)境監(jiān)測系統(tǒng)解決方案,基于物聯(lián)網(wǎng)、互聯(lián)網(wǎng)、移動互聯(lián)網(wǎng)、智能感知、自動化控制等技術(shù),與養(yǎng)殖業(yè)深度結(jié)合,圍繞設(shè)施化的畜禽養(yǎng)殖場、水產(chǎn)
    的頭像 發(fā)表于 04-19 16:40 ?693次閱讀

    養(yǎng)殖場污水處理遠程監(jiān)測系統(tǒng)方案

    一、系統(tǒng)背景隨著人們對生態(tài)環(huán)境的關(guān)注,政府對環(huán)保愈發(fā)重視。除了一些大型的化工企業(yè),一些小規(guī)模污染也對生態(tài)環(huán)境造成不同程度的影響。其中,隨著養(yǎng)殖行業(yè)的發(fā)展,
    的頭像 發(fā)表于 06-09 09:10 ?575次閱讀
    <b class='flag-5'>養(yǎng)殖場</b>污水處理遠程<b class='flag-5'>監(jiān)測</b><b class='flag-5'>系統(tǒng)</b>方案

    畜牧養(yǎng)殖環(huán)境監(jiān)測控制系統(tǒng)功能

    畜牧養(yǎng)殖作為農(nóng)業(yè)的一部分,在實現(xiàn)規(guī)?;?、產(chǎn)業(yè)化問題上,也與農(nóng)業(yè)面臨相同的問題,需實現(xiàn)畜牧業(yè)的資源整合、數(shù)據(jù)共享和業(yè)務(wù)協(xié)同,能助力現(xiàn)代畜牧產(chǎn)業(yè)轉(zhuǎn)型升級。 畜牧養(yǎng)殖環(huán)境監(jiān)測控制系統(tǒng),利用物聯(lián)網(wǎng)、自動化
    的頭像 發(fā)表于 04-02 15:52 ?352次閱讀

    養(yǎng)殖場環(huán)境安全和斷電監(jiān)測告警物聯(lián)網(wǎng)系統(tǒng)解決方案

    安全和設(shè)備用電穩(wěn)定,成為管理人員注重解決的問題之一。 對此,數(shù)之能提供一套的養(yǎng)殖場環(huán)境安全和斷電監(jiān)測告警物聯(lián)網(wǎng)系統(tǒng)解決方案,旨在提升養(yǎng)殖場
    的頭像 發(fā)表于 07-26 15:59 ?284次閱讀